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Abstract The generalization ability of artificial neural net-
works (ANNs) and M5 model tree (M5Tree) in modeling
reference evapotranspiration (ET0) is investigated in this
study. Daily climatic data, average temperature, solar radia-
tion, wind speed, and relative humidity from six different sta-
tions operated by California Irrigation Management
Information System (CIMIS) located in two different regions
of the USA were used in the applications. King-City Oasis
Rd., Arroyo Seco, and Salinas North stations are located in
San Joaquin region, and San Luis Obispo, Santa Monica, and
Santa Barbara stations are located in the Southern region. In
the first part of the study, the ANN and M5Tree models were
used for estimating ET0 of six stations and results were com-
pared with the empirical methods. The ANN and M5Tree
models were found to be better than the empirical models. In
the second part of the study, the ANN and M5Tree models
obtained from one station were tested using the data from the
other two stations for each region. ANN models performed
better than the CIMIS Penman, Hargreaves, Ritchie, and Turc
models in two stations while the M5Tree models generally
showed better accuracy than the corresponding empirical
models in all stations. In the third part of the study, the ANN
andM5Tree models were calibrated using three stations locat-
ed in San Joaquin region and tested using the data from the

other three stations located in the Southern region. Four-input
ANN and M5Tree models performed better than the CIMIS
Penman in only one station while the two-input ANN models
were found to be better than the Hargreaves, Ritchie, and Turc
models in two stations.

1 Introduction

Evapotranspiration is one of the most important parameters in
hydrologic cycle. It is very important for irrigation projects
and determination of irrigation regime. Irrigation can be ap-
plied with considerable savings by correct estimation of
evapotranspiration.

In general, the combination of energy balance/aerodynamic
equations provides accurate results because they are based on
physics and rational relationships (Jensen et al. 1990). For this
reason, the Food and Agricultural Organization of the United
Nations (FAO) accepted the FAO Penman-Monteith as the
standard equation for estimation of evapotranspiration (Allen
et al. 1998; Naoum and Tsanis 2003).

The application of artificial neural networks (ANNs) for
reference evapotranspiration (ET0) modeling has received
much attention in recent years (Trajkovic et al. 2003;
Trajkovic 2005; Kisi 2006a, b, 2007a; Jain et al. 2008; Kim
and Kim 2008; Kumar et al. 2009; Hamid et al. 2011; Kilic
2011; Tabari et al. 2012; Shirin Manesh et al. 2013; Kim et al.
2014; Adamala et al. 2014; Deo and Sahin 2015). Trajkovic
et al. (2003) forecasted ET0 using radial basis neural network
(RBNN). Trajkovic (2005) employed temperature-based
RBNN models for estimating FAO-56PM ET0. Kisi (2006a)
investigated the accuracy of ANN method in estimating ET0,
and he compared ANN results with the Penman and
Hargreaves models. He showed that the ANN model
performed better than the empirical models. Kisi (2006b)
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modeled ET0 by using generalized regression neural network
(GRNN) models. Kisi (2007a) modeled ET0 by using multi-
layer perceptron and compared test results with the Penman,
Hargreaves, and Turc models. The superiority of the multi-
layer perceptron to the empirical models was shown in this
study. Jain et al. (2008) employed ANN for estimating ET0
and proposed a procedure to evaluate the effects of input var-
iables on the output using the weight connections of ANN.
Kim and Kim (2008) examined the ability of GRNN model
for estimating the alfalfa ET0. Kumar et al. (2009) employed
different ANN models for modeling ET0 under the arid con-
ditions and compared the results with the FAO-24 Radiation,
Turc, and FAO-24 Blaney–Criddle methods. They indicated
that the ANN model performed better than the empirical
models. Hamid et al. (2011) investigated the ability of ANN
in estimating ET0. Tabari et al. (2012) compared different
data-driven approaches with climate-based models for ET0
modeling using limited climatic data in a semi-arid highland
environment. Shirin Manesh et al. (2013) evaluated the differ-
ent ANN models to estimate and interpolate the ET0 in Fars
province of Iran. Kim et al. (2014) used two different ANN
methods in estimation of ET0. Adamala et al. (2014) utilized
the second-order ANN method to model the ET0 in different
climatic zones of India. Gocic et al. (2015) forecastedET0 data
collected during the period 1980–2010 in Serbia using ANN
and support vector machine. Deo and Sahin (2015) used ANN
for prediction of monthly standardized precipitation and
evapotranspiration index using hydrometeorological parame-
ters and climate indices in eastern Australia. The use of M5
model tree (M5Tree) is limited in the hydrology literature
(Bhattacharya and Solomatine 2005; Deswal 2008; Pal and
Deswal 2009; Singh et al. 2010; Sattari et al. 2013;
Rahimikhoob et al. 2013; Rahimikhoob 2014). Bhattacharya
and Solomatine (2005) used ANN and M5Tree for modeling
water level–discharge relationship. Deswal (2008) investigat-
ed the prediction of pan evaporation using M5Tree. Pal and
Deswal (2009) investigated the potential of M5Tree to model
daily ET0 using climatic data of Davis station maintained by
California irrigation Management Information System
(CIMIS). Singh et al. (2010) explored the potential of ANN
and M5Tree to estimate the mean annual flood. Sattari et al.
(2013) investigated the potential of M5Tree tree in predicting
daily stream flows in the Sohu River located within the mu-
nicipal borders of Ankara, Turkey. Rahimikhoob et al. (2013)
assessed the performance of M5Tree for converting pan evap-
oration data to ET0 in semi-arid regions. Rahimikhoob (2014)
evaluated the performances of ANN and M5Tree for estimat-
ing ET0 at four meteorological sites in an arid climate. To the
best knowledge of the authors, there is not any published work
related to investigate the generalization ability of M5Tree in
modeling ET0.

The main aim of the present study is to examine the ability
of ANNs in (i) locally modeling ET0 of six stations, (ii)

estimating ET0 of one station using the data from the other
two stations, and (iii) estimating ET0 of three stations located
in the Southern region using data of three stations located in
San Joaquin region. The performances of the ANN and
M5Tree models are compared with the CIMIS Penman,
Hargreaves, Ritchie, and Turc empirical models.

2 Artificial neural network

Artificial neural networks (ANNs), inspired from biological
nervous system, are massively parallel systems composed of
many processing elements. The network consists of layers and
each one comprises processing elements, called neurons. Each
layer is fully connected to the proceeding layer by intercon-
nection weights. Initial weight values are randomly assigned,
and then they are progressively corrected during a training
process that compares calculated outputs to known outputs.
By this was, the errors are backpropagated to determine the
appropriate weight adjustments necessary to minimize the
errors (Kisi, 2005).

In the current study, the Levenberg–Marquardt was used
for the training of ANNmodels because this technique is more
powerful and faster than the conventional gradient descent
technique (Hagan and Menhaj, 1994; Kisi, 2007b). The de-
tailed theoretical information about ANN can be obtained
from Haykin (1998).

A difficult task with ANN involves choosing the hidden
nodes’ number. In the current study, the network with one
hidden layer was used and the hidden nodes’ number was
determined by trial-and-error method. The sigmoid and linear
activation functions were used for the hidden and output
nodes of the ANN models, respectively. The network training
was stopped after 100 epochs since the variation of error was
too small after this epoch.

3 M5 model tree

M5 model tree (M5Tree) is first introduced by (Quinlan
1992). In M5Tree, the parameter space is split into subspaces
and a local linear regression model is built for each of them.
Regression trees have constant values at their leaves. M5Tree,
however, has linear regression functions at the leaves and
generalizes the concepts of regression trees (Breiman et al.
1984). So, they are similar to piece-wise linear functions.
Model trees can adequately learn and succeed in tasks with
very high dimensionality. The main advantage of M5Tree
compared to regression trees is that it is much smaller than
regression trees, the decision strength is clear, and the regres-
sion functions do not normally contain numerous variables
(Bhattacharya and Solomatine 2005). The splitting criterion
for the M5Tree depends on treating the standard deviation of
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the class values and calculating the probable reduction in this
error in consequence of testing each attribute at that node.
Equation (1) is used for calculating the standard deviation
reduction (SDR) (Pal and Deswal, 2009):

SDR ¼ sd Tð Þ−
X Tij j

Tj j sd Tið Þ ð1Þ

where T indicates a set of examples that reaches the node, Ti is
the subset of examples that have the ith outcome of the poten-
tial set and sd refers the standard deviation (Rahimikhoob
et al., 2013; Wang and Witten, 1997). Because of the splitting
process, the data in child nodes have less sd in comparison to
parent nodes and therefore are purer. Further details of an
M5Tree can be attained from Quinlan (1992).

4 Case study

The daily climatic data of King-City Oasis Rd. Station (lati-
tude 36° 07′ 17″ N, longitude 121° 05′ 02″ W), Arroyo Seco
Station (latitude 36° 21′ 32″ N, longitude 121° 17′ 25″ W),
Salinas North Station (latitude 36° 43′ 00″ N, longitude 121°
41′ 27″ W), San Luis Obispo Station (latitude 35° 18′ 22″ N,
longitude 120° 39′ 37″W), SantaMonica Station (latitude 34°
02′ 28″ N, longitude 118o 28′ 34″ W), and Santa Barbara
Station (latitude 34° 26′ 16″ N, longitude 119° 44′ 10″ W)
operated by the California Irrigation Management
Information System (CIMIS) located in the USA were used
in the study. King-City Oasis Rd., Arroyo Seco, and Salinas
North stations are located in San Joaquin region while the San
Luis Obispo, Santa Monica, and Santa Barbara stations are
located in the Southern region (Figs. 1, 2, and 3). Detailed

information about data measurements can be obtained from
the CIMIS web site (http://www.cimis.water.ca.gov). The
King-City Oasis Rd., Arroyo Seco, Salinas North, San Luis
Obispo, SantaMonica, and Santa Barbara stations are 165, 72,
19, 101, 104, and 76 m below the sea level, respectively.

The data sample covers 16 years (1994–2009) of dai-
ly records of air temperature (T), solar radiation (SR),
wind speed (U2), and relative humidity (RH). Before
applying ANN models, missing data were removed from
the whole data set. First, 8-year (1994–2001) data were
used to train the ANN models; second, 4-year (2002–
2005) data were used for validation; and the remaining
4-year (2006–2009) data were used for testing. The dai-
ly statistical parameters of the climatic data are given in
Table 1. In this table, the xmean, Sx, Cv, Csx, xmax, and
xmin denote the mean, standard deviation, variation co-
efficient, skewness, maximum, and minimum, respec-
tively. The air temperature and solar radiation shows
significantly low skewed distribution for the King-City
Oasis Rd., Arroyo Seco, and Santa Barbara stations (see
Csx values in Table 1). Among the climatic data used in
the study, the wind speed data show high skewed dis-
tribution especially for the Santa Monica Station. As
can be seen from the correlation coefficients in
Table 1, the solar radiation has the highest correlation
with the ET0. Wind speed has the least correlation with
ET0 except for the Santa Barbara Station.

5 Application and results

5.1 Application of ANNs in modeling ET0

In the present study, the generalization ability of ANNs and
M5Tree in modeling ET0 is investigated. The ET0 values were
calculated using the FAO-56PMmethod as described in Allen
et al. (1998):

ET0 ¼
0:408Δ Rn−Gð Þ þ γ

900

T þ 273
U 2 ea−edð Þ

Δþ γ 1þ 0:34U2ð Þ ð1Þ

where ET0 = reference evapotranspiration (mm day−1),
Δ = slope of the saturation vapor pressure function
(kPa °C−1), Rn = net radiation (MJ m−2 day−1), G = soil heat
flux density (MJ m−2 day−1), γ = psychometric constant
(kPa °C−1), T = mean air temperature (°C), U2 = average
24-h wind speed at 2 m height (m s−1), ea = saturation vapor
pressure (kPa), and ed = actual vapor pressure (kPa).

The ANN and M5Tree models were calibrated using the
daily climatic inputs, T, SR, U2, RH, and output ET0 values
calculated using the FAO-56PM method. Root mean square
errors (RMSE), mean absolute errors (MAE), andFig. 1 The locations of San Joaquin and Southern regions in California
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Fig. 2 The locations of King-
City Oasis Rd. (113), Arroyo
Seco (114), and Salinas North
(116) stations in San Joaquin
region, California

Fig. 3 The locations of San Luis
Obispo (52), Santa Monica (99),
and Santa Barbara (107) in
Southern region, California

416 Kisi O., Kilic Y.



determination coefficient (R2) were used for evaluating the
accuracy of the models. The RMSE and MAE can be respec-
tively expressed as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Eiobserved−Eipredicted
� �2

vuut ð2Þ

MAE ¼ 1

N

XN
i¼1

Eiobserved−Eipredicted
�� �� ð3Þ

where N and Ei denote the number of data and ET0,
respectively.

In the first part of the study, the ANN and M5Tree models
were used for estimating ET0 of six stations and results were
compared with the empirical methods, CIMIS Penman,
Hargreaves-Samani, Ritchie, and Turc. The CIMIS Penman
equation uses the modified Penman equation (Pruitt and

Doorenbos 1977) with a wind function developed at the
University of California, Davis. The method uses hourly av-
erage climatic data as an input to calculate hourlyET0. The 24-
hourly ET0 values for the day (midnight-to-midnight) are then
summed to obtain daily ET0. The hourly PM equation that
CIMIS uses to estimate hourly PM ET0 is the Food and
Agricultural Organization’s version that is described in
Irrigation and Drainage Paper No. 56 (Allen et al. 1998).
The CIMIS Penman equation is also described in detail in
Hidalgo et al. (2005), (see CIMIS website: http://wwwcimis.
water.ca.gov/cimis/infoEtoCimisEquation.jsp);

ET0 ¼ Δ
Δþ γ

� �
Rn þ 1−

Δ
Δþ γ

� �
ea−edð Þ f U ð4Þ

where ET0 = hourly reference evapotranspiration (mm day−1),
Δ = slope of the saturation vapor pressure function
(kPa °C−1), Rn = mean hourly net radiation (Wm−2),

Table 1 The daily statistical parameters of the climatic data used in the study

Station Data set Unit xmean Sx Cv (Sx/xmean) Csx xmin xmax Correlation with E

King-City Oasis Rd. T °C 14.8 4.9 0.33 0.010 −0.1 28.8 0.791

SR mm 18.3 7.8 0.43 −0.090 0.0 43.2 0.922

U2 m/s 2.5 0.8 0.33 0.937 0.4 6.7 0.309

RH % 70.3 10.8 0.15 −0.221 29.0 100 −0.638
E mm 4.10 2.17 0.53 0.171 −0.27 11.0 1.000

Arroyo Seco T °C 14.5 4.1 0.28 −0.086 1.1 27.4 0.730

SR mm 17.6 8.0 0.45 −0.045 0.0 41.9 0.910

U2 m/s 2.9 0.9 0.33 0.482 0.4 7.6 0.426

RH % 72.3 9.3 0.13 −0.553 36.5 99.5 −0.494
E mm 3.75 1.87 0.50 0.213 −0.31 10.6 1.000

Salinas North T °C 13.1 3.1 0.24 −0.183 2.1 25.8 0.507

SR mm 15.2 7.6 0.50 0.219 0.0 37.7 0.866

U2 m/s 2.6 0.9 0.34 1.865 0.4 9.7 0.075

RH % 81.1 10.0 0.12 −1.374 0.0 100 −0.456
E mm 2.55 1.34 0.52 0.374 −0.35 8.19 1.000

San Luis Obispo T °C 15.4 4.0 0.26 0.149 3.9 29.5 0.688

SR mm 17.7 7.7 0.43 −0.169 0.0 40.9 0.894

U2 m/s 1.6 0.6 0.37 3.063 0.4 12.6 0.309

RH % 64.3 12.4 0.19 −0.886 16.0 96.0 −0.323
E mm 3.60 1.65 0.46 −0.044 −0.27 10.1 1.000

Santa Monica T °C 16.6 3.5 0.21 0.122 5.0 28.7 0.593

SR mm 17.8 7.2 0.41 −0.066 0.0 41.9 0.857

U2 m/s 1.8 0.7 0.41 17.80 0.4 24.9 0.210

RH % 73.0 17.0 0.23 −1.381 11.5 100.0 −0.352
E mm 3.37 1.47 0.44 −0.042 −0.44 9.45 1.000

Santa Barbara T °C 15.7 3.4 0.22 0.052 5.2 26.1 0.621

SR mm 17.2 7.5 0.43 −0.044 0.4 33.3 0.946

U2 m/s 1.4 0.4 0.31 1.619 0.4 4.2 0.269

RH % 71.1 14.4 0.20 −0.680 21.5 100 −0.261
E mm 3.20 1.55 0.48 0.039 −0.44 8.37 1.000
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γ = psychometric constant (kPa °C−1), ea is the saturation
vapor pressure (kPa), ed is the actual vapor pressure (kPa),
and the fU = wind function (m s−1). Daily ET0 equals to the
sum of 24 h ET0 (mm).

Hargreaves and Samani (1985) equation can be defined as

ET 0 ¼ 0:408� 0:0023Ra
Tmax þ Tmin

2
þ 17:8

� �
Tmax−Tminð Þ0:5

ð5Þ

where ET0 is reference evapotranspiration (mm day−1), Tmax

and Tmin are maximum and minimum temperatures (°C), re-
spectively, and Ra is extraterrestrial radiation (MJ m−2 day−1).

TheRitchiemethod can be given as (Jones andRitchie, 1990)

ET0 ¼ α1: 3:87� 10−3:Rs: 0:6Tmax þ 0:4Tmin þ 29ð Þ� 	 ð6Þ

where ET0 = reference evapotranspiration (mm day−1), Tmax

and Tmin = maximum and minimum temperature (°C), and
Rs = solar radiation (MJ m−2 day−1).

where

5 < Tmax≤350C α1 ¼ 1:1

Tmax > 350C α1 ¼ 1:1þ 0:05 Tmax−35ð Þ
Tmax < 50C α1 ¼ 0:01:exp 0:18 Tmax þ 20ð Þ½ �

ð7Þ

Turc (1961) formula with reduced wind data is also a
common method for calculating ET0

ET 0 ¼ 23:89Rs þ 50ð Þ 0:013T
T þ 15

1−WRH 0:71−1:43RH=100ð Þ½ � ð8Þ

where WRH = 1 when RH < 50 % and WRH = 0 when
RH > 50 %.

Two different ANN and M5Tree models were devel-
oped in the study. ANN1 and M5Tree1 models have
four inputs comprising whole climatic variables. The
ANN2 and M5Tree2 models with two inputs, T and
SR, were also developed for the valid comparison with

Table 2 The test statistics of the ANN, M5Tree, and empirical models in the first application

Models RMSE (mm/day) MAE (mm/day) R2 Models RMSE (mm/day) MAE (mm/day) R2

King-City Oasis Rd. Station Arroyo Seco Station

ANN1(4,9,1) 0.236 0.176 0.989 ANN1(4,7,1) 0.184 0.139 0.988

M5Tree1 0.286 5.84 0.982 M5Tree1 0.281 0.202 0.974

CIMIS Penman 0.622 0.485 0.953 CIMIS Penman 0.475 0.356 0.930

ANN2(2,10,1) 0.707 0.546 0.936 ANN2(2,5,1) 0.520 0.400 0.903

M5Tree2 0.746 0.579 0.922 M5Tree2 0.597 0.454 0.873

Hargreaves 0.995 0.806 0.928 Hargreaves 0.647 0.479 0.890

Ritchie 0.950 0.766 0.933 Ritchie 0.614 0.450 0.898

Turc 3.731 3.309 0.916 Turc 2.877 2.556 0.878

Salinas North Station San Luis Obispo Station

ANN1(4,6,1) 0.135 0.100 0.991 ANN1(4,8,1) 0.270 0.186 0.983

M5Tree1 0.188 0.122 0.981 M5Tree1 0.323 0.216 0.979

CIMIS Penman 0.519 0.385 0.852 CIMIS Penman 0.430 0.286 0.940

ANN2(2,6,1) 0.684 0.451 0.777 ANN2(2,7,1) 0.688 0.469 0.835

M5Tree2 0.723 0.482 0.747 M5Tree2 0.728 0.495 0.811

Hargreaves 0.690 0.512 0.740 Hargreaves 0.790 0.534 0.792

Ritchie 0.680 0.508 0.745 Ritchie 0.798 0.526 0.785

Turc 2.032 1.759 0.729 Turc 2.969 2.656 0.804

Santa Monica Station Santa Barbara Station

ANN1(4,3,1) 0.117 0.087 0.993 ANN1(4,10,1) 0.088 0.063 0.996

M5Tree1 0.116 0.080 0.993 M5Tree1 0.111 0.077 0.994

CIMIS Penman 0.506 0.349 0.877 CIMIS Penman 0.355 0.222 0.951

ANN2(2,8,1) 0.613 0.448 0.804 ANN2(2,10,1) 0.420 0.327 0.918

M5Tree2 0.700 0.505 0.748 M5Tree2 0.461 0.353 0.901

Hargreaves 0.804 0.676 0.751 Hargreaves 0.497 0.427 0.915

Ritchie 0.748 0.613 0.750 Ritchie 0.449 0.387 0.920

Turc 2.661 2.420 0.751 Turc 2.472 2.198 0.899
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two-parameter Hargreaves-Samani, Ritchie, and Turc
methods. For the ANN models, the optimal hidden
node numbers were determined by using trial-and-

error method. The optimal ANN and M5Tree models
are compared with empirical methods in Table 2. It is
clear from the table that the four-input ANN1 and

Fig. 4 The FAO-56PM and
estimated ET0 values by the
ANN, M5Tree, and empirical
models in test period—King-City
Oasis Rd. Station
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M5Tree1 models perform better than the CIMIS
Penman models for all stations. In five stations out of
six, two-input ANN2 and M5Tree2 models showed bet-
ter accuracy than the Hargreaves, Ritchie, and Turc
models. In the Salinas North Station, Ritchie model
has slightly better accuracy than the ANN2 model.
M5Tree2 model performs worse than the Hargreaves
and Ritchie models in this station. The ANN models
generally performs better than the M5Tree models in
local ET0 estimation. In the Santa Monica Station, the
M5Tree1 model has a slightly better accuracy than the
ANN1 model. As an example, the estimates of the
ANN, M5Tree, and empirical models are compared in
Fig. 4 for the King-City Oasis Rd. Station. As seen
from the scatterplots, the ANN and M5Tree models
have less scattered estimates than those of the corre-
sponding empirical models.

In the second part of the study, the four- and two-
input ANN and M5Tree models obtained from one sta-
tion in the previous application were tested using the
data from other two stations for each region. In the
San Joaquin region, the optimal ANN and M5Tree
models obtained for the King-City Oasis Rd. Station
in the previous application were tested using the data
of Arroyo Seco and Salinas North stations. In the
Southern region, the optimal ANN and M5Tree models
obtained for the San Luis Obispo Station were tested by
the data of Santa Monica and Santa Barbara stations.
Test results of the ANN, M5Tree, and empirical models

are given in Table 3 for each station. In Arroyo Seco
and Santa Monica stations, the four-input ANN1 model
performs better than the CIMIS Penman model. In
Salinas North and Santa Barbara stations, however,
CIMIS Penman shows better accuracy than the ANN1
model. The main reason of this maybe the fact that the
statistical properties of the data of the stations (King-
City Oasis Rd. and San Luis Obispo) used in the cali-
bration of ANN models are different with those of the
stations used for testing (see Table 1). M5Tree1 models,
however, perform better than the CIMIS Penman in all
stations. In Arroyo Seco Station, the ANN1 model has
better ET0 estimates than the M5Tree1. Comparison of
the two-parameter models indicates that the ANN2 mod-
el is better than the Hargreaves, Ritchie, and Turc
methods in Salinas North and Santa Monica stations
while the Ritchie model performs better than the
ANN2 model in Arroyo Seco and Santa Barbara sta-
tions. Two-parameter M5Tree2 models generally provide
inferior results compared to Hargreaves and Ritchie
models. Among the two-input models, the Hargreaves
is ranked as the second best in Santa Barbara Station.
As an example for each region, the estimates obtained
by ANN, M5Tree, and empirical models for the Arroyo
Seco and Santa Barbara stations are shown in Figs. 5
and 6. It is clear from the figures that the four-input
models give less scattered estimates than the two-input
models. The superior accuracy of M5Tree model to the
ANN in Santa Barbara Station can be clearly seen from

Table 3 The test statistics of the ANN, M5Tree, and empirical models in the second application

Models RMSE (mm/day) MAE (mm/day) R2 Models RMSE (mm/day) MAE (mm/day) R2

Arroyo Seco Station Salinas North Station

ANN1(4,9,1) 0.234 0.166 0.988 ANN1(4,9,1) 0.863 0.784 0.954

M5Tree1 0.252 0.182 0.983 M5Tree1 0.209 0.149 0.982

CIMIS Penman 0.475 0.356 0.918 CIMIS Penman 0.522 0.387 0.877

ANN2(2,10,1) 0.632 0.499 0.902 ANN2(2,10,1) 0.658 0.492 0.804

M5Tree2 0.678 0.529 0.884 M5Tree2 0.901 0.728 0.786

Hargreaves 0.647 0.479 0.884 Hargreaves 0.694 0.516 0.788

Ritchie 0.614 0.450 0.893 Ritchie 0.683 0.512 0.795

Turc 0.877 2.556 0.874 Turc 2.047 1.777 0.769

Santa Monica Station Santa Barbara Station

ANN1(4,8,1) 0.464 0.324 0.945 ANN1(4,8,1) 0.931 0.795 0.978

M5Tree1 0.253 0.169 0.971 M5Tree1 0.172 0.118 0.988

CIMIS Penman 0.505 0.347 0.897 CIMIS Penman 0.355 0.221 0.957

ANN2(2,7,1) 0.670 0.535 0.809 ANN2(2,7,1) 0.876 0.704 0.906

M5Tree2 0.784 0.659 0.785 M5Tree2 0.591 0.489 0.893

Hargreaves 0.801 0.675 0.786 Hargreaves 0.499 0.428 0.914

Ritchie 0.744 0.610 0.788 Ritchie 0.450 0.389 0.922

Turc 2.665 2.426 0.782 Turc 2.481 2.210 0.896
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the scatterplots. Turc model gives inaccurate estimates
for both stations.

In the third part of the study, the ANN and M5Tree
models were calibrated using the data of three stations
located in San Joaquin region and obtained models were

tested using the data from other three stations located in
the Southern region. Test results of the ANN, M5Tree,
and empirical models for each station are provided in
Table 4. It is apparent from the table that four-input
ANN1 and M5Tree models show better accuracy than

Fig. 5 The FAO-56PM and
estimated ET0 values by the
ANN, M5Tree and empirical
models in test period—Arroyo
Seco Station
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the CIMIS Penman in San Luis Obispo and Santa
Monica stations, respectively. The M5Tree1 models per-
form better than the ANN1 models in Santa Monica and

Santa Barbara stations. On the other hand, two-input
ANN2 model performs better than the Hargreaves,
Ritchie, and Turc models in San Luis Obispo and Santa

Fig. 6 The FAO-56PM and
estimated ET0 values by the
ANN, M5Tree, and empirical
models in test period—Santa
Barbara Station
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Monica stations while the M5Tree2 model provides
worse accuracy than the Hargreaves and Ritchie models
in Santa Monica and Santa Barbara stations. The main
reason of the poor generalization ability of the ANN and
M5Tree models is maybe the fact that the stations locat-
ed in San Joaquin region have different statistical prop-
erties than those of the tested stations located in the
Southern region (see Table 1). As an example, the esti-
mates of the ANN, M5Tree, and empirical models are
compared in Fig. 7 for the Santa Monica Station. It is
clear from the figure that the M5Tree1 has less scattered
estimates than the ANN1 and empirical models. All these
results indicate that the ANN and M5Tree models should
be carefully used without local calibration. M5Tree1
model may be a better alternative to ANN1 model in
case of a lack of local climatic data.

6 Concluding remarks

The generalization ability of ANN and M5Tree in
modeling ET0 has been investigated in this study. The
daily climatic data from King-City Oasis Rd., Arroyo
Seco, and Salinas North stations located in San
Joaquin region and San Luis Obispo, Santa Monica,
and Santa Barbara stations located in the Southern

region were used as inputs to the ANN and M5Tree
models for estimating ET0 obtained using the standard
FAO-56 Penman–Monteith equation. Three different ap-
plications were employed in the study. In the first ap-
plication, the ANN and M5Tree models were tested
using each station’s data and results were compared
with the empirical methods. The comparison results re-
vealed that the ANN and M5Tree models performed
better than the empirical models. In the second applica-
tion, the ANN and M5Tree models were calibrated
using climatic data of one station and tested by using
the data of the other two stations for each region. Four-
input ANN1 model performed better than the CIMIS
Penman model in Arroyo Seco and Santa Monica sta-
tions while the M5Tree1 model provided better accuracy
than the CIMIS Penman in all stations. The Hargreaves,
Ritchie, and Turc models showed better accuracy than
the two-input ANN2 model in Arroyo Seco and Santa
Barbara stations. M5Tree2 model generally provided in-
ferior results in ET0 estimation compared to Hargreaves
and Ritchie models. In the third application, three sta-
tions located in San Joaquin region were used for cali-
bration of ANN and M5Tree models and obtained
models were tested by the data of other three stations
located in Southern region. Four-input ANN1 and
M5Tree1 models were found to be better than the

Table 4 The test statistics of the ANN, M5Tree, and empirical models in the third application

Models RMSE (mm/day) MAE (mm/day) R2 Models RMSE (mm/day) MAE (mm/day) R2

San Luis Obispo Station Santa Monica Station

ANN1(4,7,1) 0.339 0.249 0.967 ANN1(4,7,1) 0.641 0.572 0.961

M5Tree1 0.707 0.589 0.967 M5Tree1 0.494 0.361 0.963

CIMIS Penman 0.432 0.287 0.949 CIMIS Penman 0.505 0.347 0.897

ANN2(2,3,1) 0.589 0.408 0.890 ANN2(2,3,1) 0.727 0.505 0.795

M5Tree2 0.674 0.505 0.870 M5Tree2 1.056 0.862 0.766

Hargreaves 0.795 0.537 0.881 Hargreaves 0.801 0.675 0.786

Ritchie 0.803 0.529 0.876 Ritchie 0.744 0.610 0.788

Turc 2.990 2.682 0.881 Turc 2.665 2.426 0.782

Santa Barbara Station

ANN1(4,7,1) 0.695 0.540 0.950

M5Tree1 0.577 0.444 0.962

CIMIS Penman 0.355 0.221 0.957

ANN2(2,3,1) 0.733 0.568 0.878

M5Tree2 0.823 0.656 0.865

Hargreaves 0.499 0.428 0.914

Ritchie 0.450 0.389 0.922

Turc 2.481 2.210 0.896
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CIMIS Penman in San Luis Obispo and Santa Monica
stations, respectively. Two-input ANN2 model per-
formed better than the Hargreaves, Ritchie, and Turc
models in San Luis Obispo and Santa Monica stations
while the M5Tree2 model provided worse accuracy than
the Hargreaves and Ritchie models in Santa Monica and

Santa Barbara stations. The study indicated that the
ANN and M5Tree models calibrated without local cli-
matic data can give poor estimates in some cases and
should be carefully employed in modeling ET0.
M5Tree1 can be used as a better alternative to ANN1
in the case without local input and output data.

Fig. 7 The FAO-56PM and
estimated ET0 values by the
ANN, M5Tree, and empirical
models in test period—Santa
Monica Station
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