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Abstract The regionalization methods, which “trade space
for time” by pooling information from different locations in
the frequency analysis, are efficient tools to enhance the reli-
ability of extreme quantile estimates. This paper aims at im-
proving the understanding of the regional frequency of ex-
treme precipitation by using regionalization methods, and pro-
viding scientific background and practical assistance in for-
mulating the regional development strategies for water re-
sources management in one of the most developed and
flood-prone regions in China, the Yangtze River Delta
(YRD) region. To achieve the main goals, L-moment-based
index-flood (LMIF) method, one of the most popular region-
alizationmethods, is used in the regional frequency analysis of
extreme precipitation with special attention paid to inter-site
dependence and its influence on the accuracy of quantile esti-
mates, which has not been considered by most of the studies
using LMIF method. Extensive data screening of stationarity,

serial dependence, and inter-site dependence was carried out
first. The entire YRD region was then categorized into four
homogeneous regions through cluster analysis and homoge-
nous analysis. Based on goodness-of-fit statistic and L-
moment ratio diagrams, generalized extreme-value (GEV)
and generalized normal (GNO) distributions were identified
as the best fitted distributions for most of the sub-regions, and
estimated quantiles for each region were obtained. Monte
Carlo simulation was used to evaluate the accuracy of the
quantile estimates taking inter-site dependence into consider-
ation. The results showed that the root-mean-square errors
(RMSEs) were bigger and the 90 % error bounds were wider
with inter-site dependence than those without inter-site depen-
dence for both the regional growth curve and quantile curve.
The spatial patterns of extreme precipitation with a return
period of 100 years were finally obtained which indicated that
there are two regions with highest precipitation extremes and a
large region with low precipitation extremes. However, the
regions with low precipitation extremes are the most devel-
oped and densely populated regions of the country, and floods
will cause great loss of human life and property damage due to
the high vulnerability. The study methods and procedure dem-
onstrated in this paper will provide useful reference for fre-
quency analysis of precipitation extremes in large regions, and
the findings of the paper will be beneficial in flood control and
management in the study area.

1 Introduction

Changes in precipitation extremes are of great importance to
the welfare of human beings as well as the entire ecosystem
(Zhang et al. 2014; Li et al. 2014; Olsson and Foster 2014;
Charles and Patrick 2015). One of the most significant conse-
quences of climate change due to the increase in greenhouse
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gases would be an increase in the magnitude and frequency of
extreme precipitation events (Rajeevan et al. 2008). On a
global scale, Frich et al. (2002) found a significant increase
in extreme precipitation amount, although the changes of spa-
tial patterns were complex. Any positive or increasing trend in
extreme rainfall events is a serious concern. Increases in heavy
precipitation can increase river discharge and lead to more and
worse floods and mudslides. The situation, particularly for
those highly developed regions, will be worsened by rapid
increases in population, unprecedented rise in living stan-
dards, and economic development (Xu and Singh 2004).

A number of studies on precipitation extremes have been
undertaken using various statistical procedures, including re-
gionalization techniques which can potentially reduce the un-
certainties in quantile estimates that are inherent in the at-site
approach. The index-flood method first suggested by
Dalrymple (1960) of US Geological Survey has been one of
the most widely utilized methods in regional flood frequency
analysis. Hosking et al. (1985) and Lettenmaier and Potter
(1985) indicated that the index-flood method can provide suit-
able, accurate, and robust quantile estimates. Hosking and
Wallis (1993) proposed an index-flood method by assuming
that the flood distributions at all stations within a homoge-
neous region are identical apart from the scale or index-
flood parameter and used L-moments to conduct regional
flood frequency analysis. Past research results (Vogel and
Fennessey 1993; Lim et al. 2009) indicated that L-moment-
based index-flood (LMIF) method has several advantages,
such as better robustness and identifiability of the best fitted
distribution than conventional moment methods, and this is
particularly true for regional studies.

The LMIF method has been extensively applied in the re-
gional frequency analysis of extreme precipitation in many
countries (Fowler and Kilsby 2003; Norbiato et al. 2007;
Hailegeorgis et al. 2013; Chen et al. 2014). However, most
of the studies conducted regional frequency analysis without
fully considering the assumptions given by Hosking (Yang
et al. 2010a, b). Extensive tests for stationarity, serial correla-
tion, and inter-site dependence should be conducted in the
analysis to guarantee the reliability of estimates. In fact, both
stationarity and independence are the major underlying as-
sumptions of frequency analysis. Therefore, the analysis with-
out the tests of stationarity and serial correlation may cause
incorrect results and conclusions. Despite of its importance, in
the literature, the inter-site dependence has rarely been con-
sidered in regional frequency analysis using LMIF method
(Hussain 2011). Therefore, it will be desirable to draw suffi-
cient concerns on the tests of stationarity, serial correlation,
and inter-site dependence prior to the regional frequency
analysis.

The objective of this paper is to promote the understanding
of the spatial and temporal characteristics of extreme precipi-
tation in the Yangtze River Delta (YRD) region, China, by

using the state-of-the-art LMIF method. The main goal is
achieved through the following steps: (1) extensive screening
for stationarity, serial correlation, and inter-site dependence of
the extreme precipitation time series and determining the ho-
mogeneous regions; (2) identifying the best probability distri-
bution for different durations of extreme precipitation time
series for each homogeneous sub-region, deriving the regional
growth curves, and evaluating the accuracy of the estimated
quintiles taking inter-site dependence into consideration; and
(3) obtaining the map of the spatial patterns of extreme pre-
cipitation which can be served as an indicator of future flood
risk in the YRD region by using the GIS technology. The
study procedure demonstrated in this paper can provide a use-
ful reference for regional frequency analysis of extreme pre-
cipitation in other regions of the world. This research can also
be instrumental for further understanding of the unique and
complex characteristics of extreme precipitation in the YRD
region, which in turn will be beneficial to flood control and
management in the study area.

2 Study area and data

The Yangtze River Delta (YRD) region is one of the major
economic and cultural centers of China which undergoes the
most rapid urbanization and economic development and has
the densest population as well. In the current research, the
YRD region is defined in a broad sense, comprising Jiangsu
Province, Zhejiang Province, Anhui Province, and Shanghai
City (Fig. 1). It has an area of 35.24×104 km2, accounting for
3.66 % of China’s territory, but produces 24.25 % of China’s
GDP with 16.1 % of China’s population in the year 2012. The
YRD region is located in the middle and northern subtropical
regions; the topography is mainly plains (in the northern and
eastern parts) and low mountains (distributed in the southwest
and southern parts) (Fig. 1). Few studies conducted on the
extreme precipitation in the YRD region showed that the
Yangtze River Delta was dominated by positive extreme pre-
cipitation anomalies during 1961–2002 (Zhang et al. 2007),
and a significant increasing trend of precipitation intensity
was observed in YRD during 1960–2005 (Zhang et al.
2008). As for the spatial pattern, Gu and Sun (2013) demon-
strated that annual extreme precipitation intensity decreased
from south to north; the maximum was located in the south-
ernmost part, while the minimum was located around
Shanghai City. However, Dong et al. (2015) concluded that
extreme precipitation showed an obviously higher level in
southern Anhui, northern Jiangsu, and southern Zhejiang
Provinces.

In this study, daily precipitation data of 44 stations in the
YRD region from 1951 to 2010 were obtained from the
Climate Data Center (CDC) of the National Meteorological
Information Center, China Meteorological Administration
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(CMA). More detailed information about the weather stations
can be found in Table 1. Figure 1b shows the locations of the
weather stations in the YRD region. As for precipitation ex-
tremes, the following annual maximum time series are derived
for analysis: annual maximum 1-day rainfall (AMS1), annual
maximum 3-day rainfall (AMS3), annual maximum 5-day
rainfall (AMS5), annual maximum 7-day rainfall (AMS7),
annual maximum 10-day rainfall (AMS10), and annual max-
imum 15-day rainfall (AMS15).

The study area mainly belongs to the Meiyu rain belt. The
seasonal torrential rain band usually lasts from mid-June to
mid-July over the Yangtze and Huai River basin (28°–34° N
and 110°–122° E) in East China.Meiyu is formed by torrential
rain and drizzles along a persistent stationary front, and this
causes the rain belt to linger and consequently gives rise to
intermittent rain for about a month. We include AMS10 and
AMS15 to get more information about the persistent rain in
the study area.

3 Methods

Most of the analyses were performed with the free statistical
software R (R Development Core Team 2013) in this paper.
The LMIF method was performed by using the packages

written by Hosking (2013) in R Software. They are lmom
package, version 2.1 (http://CRAN.R-project.org/package=
lmom), and lmomRFA package version 2.5 (http://CRAN.R-
project .org/package=lmomRFA). For the sake of
completeness, the analysis methods and the evaluation
procedures used in this study are briefly described in the
following sections.

3.1 L-moment

L-moments are expectations of certain linear combina-
tions of order statistics. L stands for linear, which em-
phasizes that L-moments are a linear function of the
order statistics. L-moments are more robust than conventional
moments to the presence of outliers in the data. Therefore, L-
moments provide more robust parameter estimates than con-
ventional moments.

Let X1:n ≤ X2:n ≤… ≤ Xn:n be the order statistics of a random
sample of size n drawn from the distribution of X, and define
the rth L-moment of variable X to be the quantities:

λr≡r−1
X r−1

k¼0
−1ð Þk r−1

k

� �
EX r−k:r; r ¼ 1; 2 ð1Þ

Here, EXr−k :r is the (r-k)th order statistics from a
sample size of r. Because of the linearity of its

Fig. 1 Location and the DEM of the YRD region (left, a), and the weather stations (right, b) used in the study
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moment statistics, L-moments method has been accept-
ed as a more robust method for select ing and

parameterizing representative probability distribution
functions.

Table 1 Detailed information of
the weather stations in the YRD
region

Stations Series length Lat (E) Long (N) Elevation
(m)

Mean annual
precipitation (mm)

Cixi 1954–2010 30° 12′ 121° 16′ 4.5 1304

Hangzhou 1951–2010 30° 14′ 120° 10′ 41.7 1418.3

Hongjia 1951–2010 28° 37′ 121° 25′ 4.6 1551.9

Jinhua 1953–2010 29° 07′ 119° 39′ 62.6 1426.7

Kuocangshan 1956–1993 28° 49′ 120° 55′ 1383.1 2133.4

Lishui 1953–2010 28° 27′ 119° 55′ 59.7 1416.1

Longquan 1953–2008 28° 04′ 119° 08′ 195.5 1647.3

Pinghu 1954–2010 30° 37′ 121° 05′ 5.4 1216.6

Quzhou 1951–2010 29° 00′ 118° 54′ 82.4 1665.6

Shengxian 1953–2010 29° 36′ 120° 49′ 104.3 1300.2

Shipu 1956–2010 29° 12′ 121° 57′ 128.4 1400.9

Tianmushan 1956–1997 30° 21′ 119° 25′ 1505.9 1706.9

Wenzhou 1951–2000 28° 02′ 120° 39′ 28.3 1724.9

Yinxian 1953–2010 29° 52′ 121° 34′ 4.8 1404.1

Anqing 1951–2010 30° 32′ 117° 03′ 19.8 1413

Bengbu 1952–2010 32° 55′ 117° 23′ 21.9 935.5

Bozhou 1953–2010 33° 52′ 115° 46′ 37.7 808.7

Chaohu 1957–2010 31° 37′ 117° 52′ 22.4 1052.9

Chuzhou 1952–2010 32° 18′ 118° 18′ 27.5 1052.8

Dangshan 1955–2010 34° 26′ 116° 20′ 44.2 758.2

Fuyang 1953–2010 32° 52′ 115° 44′ 32.7 927.5

Hefei 1953–2010 31° 47′ 117° 18′ 27 994.3

Huangshan 1956–2010 30° 08′ 118° 09′ 1840.4 2324.2

Huoshan 1954–2010 31° 24′ 116° 19′ 86.4 1381.9

Lu'an 1956–2010 31° 45′ 116° 30′ 60.5 1107.7

Ningguo 1957–2010 30° 37′ 118° 59′ 89.4 1425.1

Shouxian 1955–2010 32° 33′ 116° 47′ 22.7 902.4

Suzhou 1953–2010 33° 38′ 116° 59′ 25.9 870.4

Tunxi 1953–2010 29° 43′ 118° 17′ 142.7 1705.9

Wuhu 1952–1985 31° 20′ 118° 23′ 14.8 1198.7

Changzhou 1952–2010 31° 53′ 119° 59′ 4.4 1089.9

Dongshan 1956–2010 31° 04′ 120° 26′ 17.5 1146.5

Dongtai 1953–2010 32° 52′ 120° 19′ 4.3 1065.4

Ganyu 1957–2010 34° 50′ 119° 07′ 3.3 932.3

Gaoyou 1955–2010 32° 48′ 119° 27′ 5.4 1022.7

Huaiyin 1951–2001 33° 36′ 119° 02′ 17.5 938.2

Liyang 1953–2010 31° 26′ 119° 29′ 7.7 1141.4

Lusi 1957–2010 32° 04′ 121° 36′ 5.5 1062.2

Nanjing 1951–2010 32° 00′ 118° 48′ 7.1 1060.9

Nantong 1951–2010 31° 59′ 120° 53′ 6.1 1096.8

Sheyang 1954–2010 33° 46′ 120° 15′ 2 1012.6

Xuyi 1957–2010 32° 59′ 118° 31′ 40.8 1013.8

Xuzhou 1960–2010 34° 17′ 117° 09′ 41.2 845

Longhua 1951–1998, 2007–2008 31° 10′ 121° 26′ 2.6 1160
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3.2 Index-flood method

The key assumption of an index-flood procedure is that the
stations form a homogeneous region, meaning that the fre-
quency distributions of the N stations are identical apart from
a site-specific scaling factor, the index flood. We may then
write

Qi Fð Þ ¼ μiq Fð Þ; i ¼ 1; 2;⋯;N ð2Þ

where Qi(F) for 0<F<1 is the quantile function of the fre-
quency distribution at site i, μi is the index flood (Hosking
and Wallis 1997), N is the number of sites, and q(F) is the
regional growth curve, a dimensionless quantile function
common to every site.

The index flood is estimated by bμi ¼ bQi, the sample mean
of the data at site i, and the dimensionless rescaled data are
computed by qi j ¼ Qi j=bμi, where Qij is the observed data at

site i, j=1, 2, …, ni, and ni is the sample size at site i.
Hosking and Wallis (1993, 1997) considered an index-

flood method where the parameters are estimated separately
at each site. They suggested the use of a weighted average of
the at-site estimates:

θ ̂R
k ¼

X
i¼1

N niθ
̂ ið Þ
k =

X
i¼1

N ni ð3Þ

where bθ ið Þ
k stands for the L-moment of interest. The estimated

regional quantile bq Fð Þ ¼ qðF;bθR1 ; ⋯;bθRP is obtained by

substituting the estimates bθ ið Þ
k into q(F) (Hosking and Wallis

1993). The quantile estimates at site i can be obtained using
the estimates of μi and q(F):

bQi Fð Þ ¼ bμibq Fð Þ ð4Þ

This index-flood procedure makes assumptions as follows:
(i) observations at any given site are identically distributed,
and independent both serially and spatially; (ii) frequency dis-
tributions at different sites are identical apart from a scale
factor; and (iii) the mathematical form of the regional growth
curve is correctly specified.

3.3 Data screening

Trend test is one of the most popular statistical methods in
detecting the stationarity in time series. The rank-based
Mann–Kendall method (MK) (Mann 1945; Kendall 1975)
was highly recommended by the World Meteorological
Organization to estimate the significance of monotonic
trends in hydrometeorological series (Mitchell et al. 1966),
because it possesses the advantage of requiring no distribution

assumptions in the data while it has the same power as its
parametric rivals.

Serial correlation within a time series can decrease the ef-
fective sample size in comparison to independent data
(Tallaksen et al. 2004). To detect the existence of possible
serial correlation in the extreme precipitation time series,
lag-1 autocorrelation coefficient was used.

Additionally, Hosking and Wallis (1997) proposed a dis-
cordancy measure in order to recognize the stations
which are grossly discordant with the other stations. It
is a single statistic based on the discordancy between
the L-moment ratios of a station and the average L-moment
ratios of a group as a whole, which can also be used to identify
erroneous data.

3.4 Inter-site dependence

Inter-site dependence can increase the variability of estimates
even though it can exert little effect on their bias (Hosking and
Wallis 1997). Let Qik be the data for station i at time point k,
the sample correlation coefficient between stations i and j can
be given by

ri j ¼
X

k
Qik−Q

�
i

� �
Qjk−Q

�
j

� �
X

k
Qik−Q

�
i

� �2X
k
Qjk−Q

�
j

� �2
� 	1=2

ð5Þ

where

Q
�

i ¼ n−1i j
X
k

Qik ð6Þ

and the sums over k extend over all time points for which
stations i and j both have data, and ni j is the number of such
time points. The average inter-site correlation can then be
given by

r ¼ 1

2
N N−1ð Þ

� 	−1X
1≤ i

X
i< j≤N

ri j ð7Þ

More elaborate correlation structures may also be used, if it
is justified by physical reasoning about the similarity of dif-
ferent sites.

3.5 Identification of homogeneous regions

The first step in LMIF method is the determination of homo-
geneous regions. The cluster analysis by station characteristics
is considered to be one of the most practical methods of
forming regions from large data sets (Hosking and Wallis
1997). In the current research, the k-means algorithm was
applied for cluster analysis. Suppose there are M sites in an
N-dimensional space, the k-means algorithm allocates the sites
into k clusters. Initial site allocation is made by locating the
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two closest centers. Then, every site is allocated to the cluster
whose center (also known as centroid) is the nearest, i.e., such
that the within-cluster sum of squares is the lowest. For
every dimension (attribute), the center coordinates are
the corresponding arithmetic mean over all the sites in
the cluster. Once initial site allocations are finished,
cluster centers are updated according to the attribute averages
of the sites located within each cluster. The site transfer/
reassignment process is repeated until the optimal combina-
tion of sites and clusters is achieved according to the criteria of
minimum sum of square.

For the current research, two sets of dimensions (attributes)
were utilized together with the k-means algorithm. The first
attribute set was site information of longitude, latitude, and the
elevation above sea level. The second set was the mean annual
precipitation (MAP) of each site. The four variables (longi-
tude, latitude, elevation, and MAP) were then scaled to values
between 0 and 1 to avoid bias of those variables with large
absolute values.

The output of the cluster analysis is usually not the final
result. Subjective adjustments are often needed to enhance the
physical coherence of regions and to decrease the heterogene-
ity of regions. Several adjustments of regions were recom-
mended by Hosking and Wallis (1997): move a site or some
sites from one region to another, remove a site or some sites
from the data, subsplit the region, split the region by reallocate
its sites to other regions, combine the region with another or
others, combine two or more regions and reclassify groups,
and obtain more data and reclassify groups.

3.6 Heterogeneity measure

To estimate the heterogeneity degree in a group of sites, a
heterogeneity measure (Hn, n=1, 2, and 3) was proposed by
Hosking and Wallis (1997). It is based on observed and sim-
ulated dispersion of L-moments for a group of sites under
consideration. The regions are regarded as “acceptably homo-
geneous” when Hn<1, “possibly heterogeneous” when 1<Hn

<2, and “definitely heterogeneous” when Hn>2. A large pos-
itive value of H1 implies that the observed L-moments are
more scattered than what is consistent with the assumption
of homogeneity. H2 suggests whether the at-site and regional
estimates are near to each other. A large value of H2 implies a
large difference between regional and at-site estimates. H3

suggests whether the at-site and the regional estimates agree.
Large values of H3 imply a large deviation between at-site
estimates and measured data. However, H1 is the principal
measure for the heterogeneity test because both H2 and H3

rarely can yield values bigger than 2 even for grossly hetero-
geneous regions (Hosking and Wallis 1997; Yang et al.
2010b). The details for the calculation of Hn are given in
Hosking and Wallis (1997).

3.7 Goodness of fit test

In order to aid in the choice of an appropriate distribu-
tion, Hosking and Wallis (1997) proposed a statistic
named the Z-statistic, which is a goodness of fit mea-
sure for given distributions that measures how well the
theoretical L-kurtosis of the fitted distribution matches
the regional average L-kurtosis of the measured data.
For each of the candidate distribution, the goodness of
fit is measured by

ZDIST ¼ τDIST4 −t4 þ β4

� �
=σ4 ð8Þ

as proposed by Hosking and Wallis (1993, 1997) using
the L-kurtosis, where τ4

DIST indicates the L-kurtosis of
the fitted distribution to the data using the candidate distribu-
tion, and

β4 ¼
X Nsim

m¼1
t mð Þ
4 −t4

� �
=Nsim ð9Þ

is the bias of estimated t4 with t mð Þ
4 being the sample

L-kurtosis of the mth simulation, and

σ4 ¼ Nsim−1ð Þ−1
X Nsim

m¼1
t mð Þ
4 −t4

� �2
−Nsimβ

2
4


 �� 	1
2

ð10Þ

The fit is regarded as adequate if |ZDIST| is sufficient-
ly close to zero, and a reasonable criterion can be
|ZDIST|≤1.64. If there are more than one candidate dis-
tributions acceptable, the one with the smallest |ZDIST| is
considered to be the most appropriate distribution.
Moreover, the L-moment ratio diagram will also be utilized
to inspect the distribution by the comparison of its closeness to
the L-skewness versus L-kurtosis combination in the L-
moment ratio diagram.

3.8 Assessment of the accuracy of estimated quantiles

Hosking and Wallis (1997) proposed an assessment procedure
which involves generation of regional average L-moments by
using a Monte Carlo simulation. In the simulation, quantile esti-
mates for various return periods are calculated. At the mth repe-
tition, the estimated quantiles for nonexceedance probability F is

Q ̂m½ �
i Fð Þ. The relative error of the estimate at station i for

nonexceedance probability F is Q ̂m½ �
i Fð Þ−Qi Fð Þ

n o
=Qi Fð Þ.

This quantity can be averaged over all theM repetitions in order
to approximate the relative RMSE of the estimators. For largeM,
the relative RMSE is approximated by

Ri Fð Þ ¼ 1

M

XM

m¼1

bQ m½ �
i Fð Þ−Qi Fð Þ

Qi Fð Þ

" #2
8<:

9=;
1=2

ð11Þ
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A summary of the accuracy of quantile estimates over all of
the stations in the region can be obtained by the regional
average relative RMSE of the quantile estimates:

RR Fð Þ ¼ 1

N

X N

i¼1
Ri Fð Þ ð12Þ

Analogous quantities can be computed for the estimates of

growth curve, but with bQi Fð Þ and bQ m½ �
i Fð Þ substituted by bqi

Fð Þ and bq m½ �
i Fð Þ, respectively. The 90 % error bounds for bq

Fð Þ are
bq Fð Þ

U0:05 Fð Þ≤q Fð Þ≤ bq Fð Þ
L0:05 Fð Þ ð13Þ

where L0.05(F) and U0.05(F) are the values where approxi-
mately 90 % of simulated values to true value ratio, i.e.,bqi Fð Þ=qi Fð Þ, lies. Please refer to Hosking and Wallis (1997)
for more details. To obtain the measures of absolute error, we
just multiply the relative error measures by the estimated
quantiles.

3.9 Spatial interpolation

Spatial patterns of the extreme precipitation with different
return periods can be used as one of the most important indi-
cators for flood control and management; thus, it is beneficial
in quantifying the spatial associations of extreme precipitation
between stations and mapping of extreme precipitation with
different return periods across the YRD region using the
ArcGIS interpolation technique. For this purpose, inverse dis-
tance weighted (IDW) was applied to generate surface in
ArcGIS. Finally, isopluvial maps were generated using the
ArcGIS.

4 Results and discussions

4.1 Data screening

Considerable efforts were taken in the screening and
quality control of the data series, which aimed at re-
moving false values associated with enormous data mea-
surements, recording or transcription mistakes. Special
attention was paid to the verification of the major as-
sumptions of stationarity, serial independence, and inter-
site dependence.

Trend analysis was first conducted. The Mann-Kendall
trend test was conducted on the time series of precipitation
extremes (AMS1, AMS3, AMS5, AMS7, AMS10, and
AMS15) over the period 1951–2010 in the study region.
The results are given in Fig. 2. It can be seen that about 5 %
of the series present increasing (decreasing) trends (at the

significance level of 0.05) and the remaining series show no
significant trends. This implies that most of the precipitation
extremes series in this study have no trends.

Lag-1 autocorrelation coefficient (r1) was used, and the
value of r1 for each station is given in Fig. 3, which implies
that there is no evidence of significant serial correlation for
most of the series at most of the sites. Hosking and
Wallis (1997) came to the conclusion that a small quan-
tity of serial dependence in annual time series may exert little
influence on the quality of the estimates. Therefore, the as-
sumption that the data series have no significant serial corre-
lation is appropriate.

The average inter-site correlation coefficients for each ho-
mogeneous sub-regions are shown in Table 2. As we can see,
the study region has a moderate amount of inter-site depen-
dence. Average correlation coefficients between sites in the
homogeneous regions vary from 0.17 to 0.37, with an average
of 0.26. And, the average correlation coefficients increase
from AMS1 to AMS15. Therefore, the simulation accuracy
of the estimated quantiles in this study will include inter-site
dependence, using the algorithm described in Table 6.1 of
Hosking and Wallis (1997).

4.2 Identification of homogeneous regions

In order to evaluate the proposed procedures, the entire study
area was first assumed as one homogeneous group and the
assumption was detected by using the discordancy measure
Di and the heterogeneity measures H1, H2, and H3. The YRD
region did not pass the heterogeneity test because the stations
of Tianmushan and Yinxian had values of Di>3 (3.39 and
3.31, respectively). A check of the data at the two stations
indicated no obvious inconsistencies. The heterogeneity mea-
sures for the whole YRD region wereH1=5.26,H2=1.08, and
H3=1.10. The whole region should therefore be regarded as
definitely heterogeneous for H1>2, although the H2 and H3

values grouped it as possibly homogeneous. The region could
not pass the tests even after the disposal of Tianmushan and
Yinxian Stations, and cluster analysis was therefore
performed.

First, the k-means cluster method was applied to divide the
whole region into several clusters. The discordancy measure
and heterogeneity measures were then calculated for each of
the cluster, and the L-moment diagrams were drawn.
However, some of the clusters did not show sufficient homo-
geneity according to heterogeneity test, indicating that there
were some sites being discordant with the others within the
cluster. As for these discordant stations, further subjective ad-
justments are needed to enhance the physical coherence of
regions and to decrease the heterogeneity. We tried three
clusters at first since the region is not large and the
topography is not complex and finally decided to use four
clusters because the heterogeneity test showed big
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heterogeneity when the southernmost stations of Yinxian,
Shengxian, Hongjia, Shipu, and Wenzhou were included in
the first cluster. In fact, this is because these stations are near
the coast and located where typhoons often make landfall. We
made some further adjustment proposed by Hosking and
Wallis (1997) as follows: remove a site or some sites from
the data (e.g., Kuocangshan and Wuhu were excluded here
due to their relatively short time periods), subsplit the region
or split the region by reallocating its sites to other regions (e.g.,
Yinxian, Shengxian, Hongjia, Shipu, Wenzhou, and
Longquan were singled out as a new region), and move a site
or some sites from one region to another (e.g., Longquan
Station was moved to the new region). We also made adjust-
ments according to the physical geographical conditions such
as climate and topography of the study area. After several
adjustments, the resulting identified homogeneous regions
for each extreme precipitation time series were obtained and
illustrated in Fig. 4, which indicates that the entire YRD re-
gion can be categorized into four homogeneous sub-regions.

Moreover, Kuocangshan and Wuhu Stations were grouped to
region 1 and region 3, respectively, just according to their
location.

The discordance test of AMS1, AMS3, AMS5, AMS7,
AMS10, and AMS15 was conducted for each homogeneous
region. There are no discordant stations for each of the sub-
region. The results for the heterogeneity test based on 1000
simulations for each of the four homogeneous regions are
shown in Table 3. All the four sub-regions passed the hetero-
geneity test except for AMS1 of region 2. However, approx-
imate homogeneity is sufficient to ensure that regional fre-
quency analysis is much more accurate than at-site analysis
(Hosking and Wallis 1997). Since the H1 measurement of
AMS1 of region 2 is close to 1, we can still consider it to be
homogeneous.

The first region (the southeastern coastal region) has five
stations and is located in the southeastern part of the study
area. This region is the most prone to tropical cyclones and
typhoons, which can bring large amount of heavy rain in

Fig. 2 Mann-Kendall trend test
results for different precipitation
extreme series over the period
1951–2010. Asterisk indicates
statistical significance at 0.05
level
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summer and autumn. The region is homogeneous according to
the heterogeneity test.

The second region (the southern hilly region) has ten sta-
tions, which are mainly located in the southern Anhui
Province and the Zhejiang Province. The topography is main-
ly low mountains in the second region. The region is homo-
geneous except for AMS1 series according to the heterogene-
ity test.

The third region (the western hilly and plain region) has 13
stations, which are mostly located in Anhui Province, except
Xuzhou Station in Jiangsu Province. The terrain of the third
region is mainly plains with some low mountains in the south-
west. The region is homogeneous for all the extreme precipi-
tation series.

The fourth region (the eastern plain region) has the most
stations (14 stations), of which 12 are located in Jiangsu
Province. It is the most low-lying region of the study area
and is also the most typical area of the Yangtze River Delta.
The region is also homogeneous according to the heterogene-
ity test.

4.3 Goodness of fit test

In this section, the regional frequency distribution function for
each region is identified mainly based on goodness of fit
|ZDIST| statistics. In the LMIF method, distribution functions

Fig. 3 Lag-1 autocorrelation
coefficients for different
precipitation extreme series over
the period 1951–2010. Asterisk
indicates statistical significance at
0.05 level

Table 2 Inter-site correlation coefficients for different precipitation
extreme series in the four sub-regions

Sub-regions AMS1 AMS3 AMS5 AMS7 AMS10 AMS15

Region 1 0.21 0.24 0.26 0.25 0.22 0.32

Region 2 0.17 0.24 0.27 0.30 0.32 0.37

Region 3 0.20 0.23 0.25 0.27 0.30 0.32

Region 4 0.17 0.23 0.24 0.29 0.30 0.33
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commonly used to fit data include three-parameter distribu-
tions such as the generalized extreme-value (GEV), the gen-
eralized normal (GNO), the generalized pareto (GPA), the
generalized logistic (GLO), and the Pearson type III (PE3),
the four-parameter kappa (KAP) distribution, and the five-
parameter Wakeby (WAK) distribution. The four-parameter
kappa and five-parameter Wakeby distributions are more gen-
eral and flexible. The distributions of kappa and Wakeby will
be used in case the choice of the above three-parameter can-
didate distributions is inconclusive. This normally occurs
when the region is misspecified as being homogeneous. In
this study, the sub-regions are correctly identified as homoge-
neous, so we can identify the best fit three-parameter distribu-
tions for them and do not need to use kappa and Wakeby
distributions.

The results of the goodness of fit test are shown in Table 4.
It can be observed that GEV and GNO perform very well in
fitting regional precipitation extremes in the study region.
GEV is found to be acceptable for all the four regions over

all durations from AMS1 to AMS15. GNO is also acceptable
very often except for AMS1 in region 4. PE3 is acceptable 11
times, and GLO is even less acceptable, only 8 times, whereas
GPA is acceptable for none of the circumstances.

The best distributions were further determined mainly ac-
cording to the minimum |ZDIST|.. What is more, L-moment
ratio plots which demonstrate the location of regional average
L-skewness versus L-kurtosis and their theoretical relation
with different candidate distributions are shown in Fig. 5a–f.
(For AMS7, the average L-skewness and L-kurtosis of region
2 and region 4 are so close to each other that the diamond
cannot be seen.) In the end, GNO was chosen as the best
parent distribution in 12 times, GEV in 8 times, and GLO
was chosen to be the best only 2 times (Table 4). The L-
moment ratio diagrams further verify the results obtained by
minimum |ZDIST| value in which these distributions were ac-
tually nearest to the regional weighted L-moment means. As
for region 2 of AMS7, the |ZDIST| values are the same for GEV
and GNO; therefore, L-moment ratio plots were used to

Fig. 4 Homogeneous regions of
the k-means cluster after
adjustment in the study area
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decide which one is the best distribution. The best distribution
identified for each homogeneous region in this step will be
used to estimate the regional growth curve.

4.4 Regional growth curves and accuracy assessment

Once the delineated regions have demonstrated to be accept-
ably homogeneous and appropriate distributions have been
determined for each sub-region, regional growth curves
can then be derived based on the selected distributions.
The regional growth curves of AMS1, AMS3, AMS5,
AMS7, AMS10, and AMS15 for each homogeneous re-
gion were obtained respectively, and quantiles at each
site were estimated for return periods of 2, 5, 10, 20,
50, and 100 years, etc.

The accuracy of the quantile estimates was assessed by
RMSE and 90 % error bounds. These quantities cannot be
calculated analytically so far since the regional L-moment

quantile estimation procedure is too sophisticated. However,
a Monte Carlo simulation procedure was applied, as described
in Sect. 6.4 of Hosking and Wallis (1997). Simulated data
were obtained for a region with the same number of stations
and the same record lengths as the actual region and were
derived from the distribution that was fitted to the actual re-
gional data.

The extreme precipitation series have a moderate amount
of inter-site dependence which increases from AMS1 to
AMS15 (Table 2). Here AMS15 in region 2 was taken as an
example to analyze the influences of inter-site dependence on
the accuracy of estimation. Correlation coefficients between
sites have an average of 0.37 for AMS15 in region 2.
Therefore, the inter-site dependence needs to be considered
in the simulation algorithm. To specify the L-CV (one of the
L-moment ratios being analogous to CV, coefficient of varia-
tion) range of the region which will be used as a base for
simulations, 100 simulations of the correlated GNO regions
with the same record lengths as the actual region indicate that
when at-site L-CVs vary linearly over a range of 0.02, from
0.1762 at Cixi Station to 0.1962 at Tunxi Station and L-
skewness equals 0.2143, the average H1 of the simulated re-
gions will be 0.23. Thus, the heterogeneity of the simulated
region equals that of the actual region. Therefore, this region
was used as a base in the simulation step. Ten thousand real-
izations of this region were made and the regional L-moment
algorithm was applied to fit the GNO distribution to the gen-
erated data. The regional RMSEs for the assessed regional
growth curves and quantiles were calculated based on these
simulations.

The simulation results for the estimated quantiles of region
2 of AMS15 are presented in Table 5 A (regional growth
curve) and B (Hangzhou Station, which belongs to region
2). Table 5 shows that the RMSEs with inter-site correlation
coefficient R=0.37 are bigger than those with R=0 for both
the regional growth curve and quantile curve. What is more,
both of the two curves have wider 90 % error bounds, when
inter-site dependence is taken into consideration. The differ-
ences between R=0 and R=0.37 become bigger with the in-
crease of return periods. And, this kind of influence will be
more significant with the increase of the correlation
coefficients.

The results of Table 5 also show that the RMSEs of the
estimated regional growth curve and the quantiles for
Hangzhou Station vary from 0.01 (10.15) to 0.11(38.7) when
return periods of AMS15 increase from 2 to 100 years, and
these values increase to 0.24 (70.27) with the return period of
1000 years (inter-site dependence considered). This indicates
that the RMSEs are so reliable that the quantile estimates can
be used with confidence if return periods are within 100 years.
Estimates of longer return periods (e.g., 1000 years) will re-
quire more historical records so that the reliability in the
quantile estimation can be enhanced. Figure 6 shows the

Table 3 Results of heterogeneity measures for different precipitation
extreme series in the four sub-regions

Series Sub-regions Stations
used

Heterogeneity measures

H1 H2 H3

AMS1 Region 1 5 −0.04 −1.34 −1.26
Region 2 10 1.5 −0.08 −0.22
Region 3 13 −0.19 −0.11 −0.16
Region 4 14 −0.71 −0.05 0.35

AMS3 Region 1 5 −0.09 −1.09 −0.58
Region 2 10 −0.32 −0.6 −1.07
Region 3 13 0.24 −0.54 −0.87
Region 4 14 −0.87 −0.46 −0.19

AMS5 Region 1 5 −0.15 −0.36 0.12

Region 2 10 −0.15 −1.05 −1.13
Region 3 13 0.98 −0.23 −0.53
Region 4 14 −0.49 −0.99 −1.08

AMS7 Region 1 5 0.07 −0.78 −0.38
Region 2 10 −0.16 0.29 0.28

Region 3 13 0.78 −0.26 −0.51
Region 4 14 −0.63 −0.67 −0.78

AMS10 Region 1 5 −0.59 −0.31 −0.24
Region 2 10 0.32 0.15 0.05

Region 3 13 0.67 −1.09 −1.21
Region 4 14 0.55 0.76 0.79

AMS15 Region 1 5 0.64 0.95 0.57

Region 2 10 0.23 0.57 0.62

Region 3 13 0.72 −0.05 −0.12
Region 4 14 0.78 0.04 0.48

AMS1 annual maximum 1-day rainfall, AMS3 annual maximum 3-day
rainfall, AMS5 annual maximum 5-day rainfall, AMS7 annual maximum
7-day rainfall, AMS10 annual maximum 10-day rainfall, AMS15 annual
maximum 15-day rainfall
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estimated regional growth curves of AMS15 for the four sub-
regions together with the 90 % error bounds, which also ver-
ifies that the quantile estimates are accurate enough when
return periods are shorter than 100 years.

4.5 At-site and regional estimates

In this part, the estimation accuracy based on at-site and re-
gional methods was compared by using relative RMSE. The
best fitted distributions of each station for at-site method are
determined by extreme-value plot. For illustrative purpose,
Fig. 7 demonstrates the results for Nanjing and Longhua
Stations, and it can be seen that PE3 and GLO fit AMS1 well
for both stations, respectively. The best fitted distributions for
all the other series were determined accordingly. For the re-
gional method, inter-site dependency was also considered in
the estimation.

Lower relative RMSE values give an indication of better
accuracy. Figure 8 gives the box plots of the estimated relative
RMSE of at-site and regional methods for AMS1 and AMS15
of all the 42 stations except for Kuocangshan andWuhu. First,

the ranges of relative RMSE of at-site method are much
wider than those of regional method; there are no evi-
dent differences in the range for regional method be-
tween different return periods, while the range became
much wider for at-site method with the increase of re-
turn periods. This verifies the robustness of estimated
quantiles of regional method. Second, the relative
RMSE values of at-site method can be lower than those
of the regional methods for periods under 50 years,
while they will be much higher than those of the re-
gional method for return periods over 50 years. And,
this may indicate that estimated quantiles based on re-
gional method have much better accuracy than those
based on at-site method for longer return periods, but
this may not be the case for shorter return periods.

Kuocangshan and Wuhu Stations, which were excluded
both in the identification of homogeneous region and in the
estimation of the regional quantiles, will also be used to obtain
the spatial pattern of extreme precipitation of the study area in
Sect. 4.6. The estimated quantiles based on regional method
have smaller uncertainty and better accuracy than those based

Table 4 Goodness of fit test
results for candidate distributions
in the four sub-regions

Series Sub-regions Best distribution Min of Z Acceptable distributions

AMS1 Region 1 GNO 0.26 GLO GEV GNO PE3

Region 2 GNO 0.18 GEV GNO PE3

Region 3 GEV 0.73 GLO GEV GNO

Region 4 GEV 0.9 GLO GEV

AMS3 Region 1 GLO 0.05 GLO GEV GNO

Region 2 GNO 0.24 GEV GNO PE3

Region 3 GEV 0.29 GLO GEV GNO

Region 4 GEV 0.46 GEV GNO

AMS5 Region 1 GLO 0.27 GLO GEV GNO

Region 2 GNO 0.54 GEV GNO PE3

Region 3 GNO 0.15 GEV GNO

Region 4 GEV 0.79 GEV GNO

AMS7 Region 1 GEV 0.64 GLO GEV GNO

Region 2 GNO 0.26 GEV GNO PE3

Region 3 GNO 0.4 GEV GNO

Region 4 GNO 0.23 GEV GNO PE3

AMS10 Region 1 GEV 0.17 GLO GEV GNO PE3

Region 2 GNO 0.1 GEV GNO PE3

Region 3 GEV 0.26 GEV GNO

Region 4 GEV 0.35 GEV GNO

AMS15 Region 1 GNO 0.06 GEV GNO PE3

Region 2 GNO 0.34 GEV GNO PE3

Region 3 GEV 0.33 GEV GNO

Region 4 GNO 0.14 GEV GNO PE3

AMS1 annual maximum 1-day rainfall, AMS3 annual maximum 3-day rainfall, AMS5 annual maximum 5-day
rainfall, AMS7 annual maximum 7-day rainfall, AMS10 annual maximum 10-day rainfall, AMS15 annual max-
imum 15-day rainfall, GLO generalized logistic distribution, GEV generalized extreme-value distribution, GNO
generalized normal distribution, PE3 Pearson type III distribution
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Fig. 5 L-moment ratio plots for the five candidate distributions
with regional average L-skewness versus L-kurtosis. a AMS1, b
AMS3, c AMS5, d AMS7, e AMS10, and f AMS15. Filled
square, region 1; filled circle, region 2; filled triangle, region 3;

filled diamond, region 4. For AMS7, the averages of L-skewness
and L-kurtosis of region 2 and region 4 are so near to each other
that the diamond cannot be seen
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on at-sitemethod (Ngongondo et al. 2011); thus, wewill use their
quantile estimates based on regional method. The regional anal-
ysis used the regional growth curves of region 1 and region 3, to
which Kuocangshan and Wuhu Stations belong, and estimated
the index flood at each station by the sample mean.

4.6 Spatial patterns of extreme precipitation

In order to obtain the spatial patterns of extreme precipitation,
isopluvial maps of the study area were drawn using the ex-
treme precipitation for different return periods (10, 20, 50, and
100 years) (44 stations including Kuocangshan and Wuhu
were used here). In this analysis, surface of extreme rainfall
for each duration and return period was generated using IDW
interpolation technique (Geostatistical Analyst tool) in
ArcGIS. Then, contours (isopluvial) were generated from the
surface, which indicates the precipitation for different dura-
tions and return periods with spatial variations. According to
Sarkar et al. (2010), these isopluvial maps are more informa-
tive than the isopluvial maps generated by Central Water
Commission report (CWC 1973). Isopluvial maps of the
YRD region for different return periods of AMS1, AMS3,
AMS5, AMS7, AMS10, and AMS15 were then obtained,
which can be used to identify those areas with major flooding
problems within the study area.

Figure 9 illustrates the spatial patterns of extreme precipita-
tion with return period of 100 years. It can be seen that there are
two areas with the highest precipitation extremes: One is in the
southeastern coastal area of Zhejiang Province (mainly region
1), and the other is in the southwest part of Anhui Province
(between region 2 and region 3). Southeastern coastal area of
Zhejiang Province is in the windward slope of landing ty-
phoons, so that extreme precipitation is very high. The eleva-
tion in the south and southwest parts of Anhui Province is quite
high, whichwill bring in large amount of orographic rain. There
is also a small area with relatively high precipitation extremes in
the northwest of Jiangsu Province for AMS1 and AMS3. What
is more, there is another large area with low precipitation ex-
tremes in the north and middle parts of Zhejiang Province,
Shanghai City, and Jiangsu Province (the rest of region 2 and
most parts of region 4), and it is particularly the case for north
Zhejiang, Shanghai, and south Jiangsu. This area with low pre-
cipitation extremes spreads in AMS5 and AMS7 and covers
about two thirds of the whole study area in AMS10 and
AMS15. The maps for the other return periods are similar to
the pattern in Fig. 9 and are not shown here.

The disaster situation depends not only on the disaster-
driving factors but also on the human and social vulnera-
bility. Extreme precipitation is the disaster-driving factor,
while the population and economic conditions belong to

Table 5 Accuracy measures for
the estimated growth curves of
region 2 and quantiles of
Hangzhou Station for AMS15

A. Regional growth curve of region 2 for AMS15

Return periods Growth curve RMSE Bound.0.05 Bound.0.95

R=0 R=0.37 R=0 R=0.37 R=0 R=0.37

2 0.93 0.01 0.01 0.91 0.91 0.94 0.95

5 1.24 0.01 0.01 1.22 1.22 1.26 1.26

10 1.45 0.02 0.03 1.42 1.41 1.49 1.50

20 1.67 0.04 0.05 1.61 1.59 1.73 1.75

50 1.95 0.06 0.08 1.85 1.82 2.06 2.09

100 2.17 0.09 0.11 2.04 2.00 2.33 2.36

200 2.39 0.12 0.14 2.23 2.17 2.60 2.64

500 2.70 0.16 0.19 2.48 2.41 2.99 3.04

1000 2.94 0.19 0.24 2.67 2.59 3.30 3.36

B. Quantiles of Hangzhou Station for AMS15

Return periods Quantile (mm) RMSE Bound.0.05 Bound.0.95

R=0 R=0.37 R=0 R=0.37 R=0 R=0.37

2 225.87 10.26 10.15 209.16 209.68 243.01 243.37

5 301.26 13.99 14.48 278.91 278.61 325.51 326.56

10 353.4 17.25 18.51 326.7 325.12 383.8 386.27

20 404.83 21.17 23.44 372.34 369.66 442.73 446.66

50 473.54 27.52 31.46 432.27 427.43 523.44 530.41

100 526.78 33.26 38.7 477.57 469.87 587.72 596.83

200 581.48 39.85 46.97 523.05 512.89 655.64 667.52

500 656.41 49.87 59.52 584.25 569.27 749.8 765.56

1000 715.3 58.47 70.27 631.09 612.97 825.92 843.7

RMSE root-mean-square error, AMS15 annual maximum 15-day rainfall
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the vulnerability. For the area with low precipitation ex-
tremes in the southern parts of Jiangsu Province, Shanghai

City, and northern parts of Zhejiang Province, the dense
population and advanced economy are most vulnerable to

Fig. 6 Estimated regional growth curves of AMS15, with the 90% error bounds for the four sub-regions. Panels (a), (b), (c), and (d) are for regions 1, 2,
3, and 4, respectively

Fig. 7 Extreme-value plot with
fitted probability functions for
AMS1 at Nanjing (a) and
Longhua Stations (b). GLO, red;
GEV, black; GNO, green; PE3,
blue; GPA, orange
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floods. What is more, the low-lying terrain and dense river
network with decreasing storage capacity will aggravate
the flood disaster situation. Consequently, floods in this
area may cause greater losses of human life and property
damage than in the upstream or mountainous regions,
which must be paid enough attention by both the govern-
ment and citizens.

5 Conclusions

Spatial-temporal characteristics of the extreme precipita-
tion in the Yangtze River Delta region are explored
based on daily precipitation data covering 1951–2010
by using L-moment-based index-flood (LMIF) method
together with some other statistical tests and spatial
analysis methods. The LMIF method in this study in-
volves extensive data screening, identification of homo-
geneous regions, goodness of fit test, quantile estimates for
each region, accuracy assessment including inter-site depen-
dence, and mapping of the spatial patterns of extreme precip-
itation. According to the results of this study, we can draw
some conclusions as follows:

1. The statistical test results suggest that most observations
of precipitation extremes in this study have no significant
trends and it is also appropriate to conclude that the data
series have no serious serial correlation. However, the
four homogeneous regions have a moderate amount of
inter-site dependence. Therefore, the simulation accuracy
of the estimated quantiles needs to consider inter-site
dependence.

2. The entire YRD region was categorized into four homo-
geneous regions through cluster analysis and some further
subjective adjustments. The best regional distribution
function for each region was identified using the goodness
of fit test measurement together with L-moment ratio

diagrams. The results revealed that GEV and GNO are
the dominant distribution functions for most of the sub-
regions.

3. Region 2 of AMS15 was used as an example to show the
influences of inter-site dependence on the accuracy
of estimated quantiles. The results indicated that the
RMSEs with inter-site correlation coefficient R=0.37
are bigger than those with R=0 for both the regional
growth curve and quantile curve. What is more,
both of the two curves have wider 90 % error
bounds when inter-site dependence was taken into
consideration. The differences become bigger with
the increase of return periods.

4. Relative RMSEs were used to compare the accuracy of
quantile estimates between at-site and regional methods.
The results verified the robustness of estimated quantiles
of regional method and showed that the estimated
quantiles based on regional method have better accuracy
than those based on at-site method especially for longer
return periods.

5. The spatial patterns of extreme precipitation with return
period of 100 years indicate that there are two areas with
the highest precipitation extremes: One is in the southeast-
ern coastal area of Zhejiang Province (mainly region 1),
and the other is in the southwest part of Anhui Province
(between region 2 and region 3). There is also a large area
with low precipitation extremes in the north and middle
parts of Zhejiang Province, Shanghai City, and Jiangsu
Province (mainly the rest of region 2 and most parts of
region 4). However, the area with low precipitation ex-
tremes in the southern parts of Jiangsu Province, Shanghai
City, and northern parts of Zhejiang Province are the most
developed and densely populated regions with low-lying
terrain; the flood in this specific area can cause great
losses of human life and property damage due to the high
vulnerability. So both the government and citizens should
pay enough attention to it, especially when many

Fig. 8 Box plots of relative
RMSE of AMS1 (a) and AMS15
(b) for different return periods by
using at-site and regional methods
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Fig. 9 Spatial patterns of extreme
precipitation with return period of
100 years. a AMS1, b AMS3, c
AMS5, dAMS7, eAMS10, and f
AMS15
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researchers report that the precipitation is on the increase
in this area recently.
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