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Abstract Daily temperature and precipitation data from 15
rain gauges covering a period of 1957–2011 were analyzed
using the Mann-Kendall trend test with the aim to investigate
changing characteristics of weather extremes in the Poyang
Lake basin, the largest freshwater lake in China. Also, the
connection between El Niño Southern Oscillation (ENSO)
and precipitation extremes is analyzed and possible causes
for the connection are briefly discussed. Results indicate that
(1) warming, characterized by a decreasing trend in frost days
and a significant decrease of temperature extremes defined by
lower temperature, in the Poyang Lake basin is observed.
Temperature extremes, defined by higher temperature indices
such as hot days, exhibit moderate changes with no significant
trends. Moreover, warming occurs mainly in the northern part
of the Poyang Lake basin; (2) precipitation changes are inten-
sifying as reflected by increasing precipitation extremes.
However, these changes are different from 1 month to another
and the intensification is found mainly in winter and/or sum-
mer months; (3) the influence of ENSO on precipitation
changes in the Poyang Lake basin is evident with a time lag

of longer than 3 months. This should be due to the fact that
higher sea surface temperature tends to trigger the occurrence
of convective precipitation regimes. Results of this study are
important for modeling the occurrence of precipitation ex-
tremes in a changing climate and regional climatic responses
to global climate changes.

1 Introduction

It is widely recognized that lakes play an important role in
flood control, land-use planning, and ecological conservation,
and it is particularly true for the Poyang Lake (e.g. Shankman
and Liang 2003; Shankman et al. 2006; Zhang et al. 2011a). In
the wake of global warming and the resulting alteration of
hydrological cycle, there is growing concern about the chang-
es of lakes in terms of size, inundation area, and morphology
in a changing environment (e.g., Ma et al. 2010; Feng et al.
2012). Climate change, especially changes in temperature and
precipitation, has a considerable effect on lakes. The increase
in temperature and precipitation variations over the past
50 years have triggered significant changes in the lakes of
southeast Alaska (e.g., Bryant 2009) and North China (Yu
and Shen 2010). For lakes in China, different changes across
the country have been investigated. Most of 254 lakes have
shrunk and 243 lakes have vanished; these lakes are in the
Inner Mongolia-Xinjiang Lake Zone and the Eastern Plain
Lake Zone. On the other hand, most enlarged and new lakes
are in the Tibetan Plateau Lake Zone covering Qinghai Prov-
ince and Tibet Autonomous Region (Ma et al. 2010).

Located in the middle Yangtze River basin (Fig. 1), the
Poyang Lake (28° 22′–29° 45′ N, 115° 47′–116°45′ E) is the
largest freshwater lake in China. Its drainage area is 162.2
thousand km2, accounting for 9 % of the drainage area of
the Yangtze River basin. The total streamflow and sediment
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load input into the Poyang Lake from the five tributaries, i.e.,
the Xiushui River, Ganjiang River, Fuhe River, Xinjiang Riv-
er, and Raohe River, were 108.49 billion m3 and 0.133 billion
tons, respectively, during 1956–2005. However, the Poyang
Lake region is also one of the lakes being heavily influenced
by frequently occurring floods and droughts (Shankman et al.
2006; Feng et al. 2012). Floods and droughts not only influ-
ence the inundation area and aquatic ecology but also the
regional economic and social development. For example, the
drought in 2007 caused potable water problems for more than
ten million people (Liu 2010), and a large flood in 1998 re-
sulted in economic losses of more than 5 billion US dollars in
the Poyang Lake region (Chen et al. 2002; Feng et al. 2012). It
should be noted that these extremes are in close relation with
spatiotemporal patterns of precipitation and temperature ex-
tremes. Further, there is a considerable influence of increasing
temperature on the precipitation variation (Zhang et al.
2013a).

However, limited work has been reported in the context
of lake basins. In this case, the objective of this study is to
analyze spatiotemporal patterns of precipitation and tem-
perature extremes and their teleconnections with El Niño
Southern Oscillation (ENSO) events. Results of this study
will be of significance in modeling regional responses of
precipitation and temperature changes to global climate
variations and will have practical application in basin-
scale conservation of aquatic ecosystems and management
of floods and droughts in a changing environment in the
Poyang Lake basin, China.

2 Data

Daily precipitation data covering 1957–2011 from 15 rain
gauge stations in the Poyang Lake basin, shown in Fig. 1,

were collected. There were nomissing precipitation data. The-
se data were obtained from the National Meteorological Infor-
mation Center of the China Meteorological Administration
(CMA). The quality of the data is firmly controlled before
its release. The extreme climate indices recommended by the
World Meteorological Organization (WMO) Expert Team on
Climate Change Detection and Indices (ETCCDI) were ana-
lyzed in the study (Table 1). They were derived from daily
maximum and minimum temperature and daily precipitation.
A full list of these indices can be found at http://etccdi.
pacificclimate.org/list_27_indices.shtml. The indices were
chosen primarily for evaluation of weather extremes, such as
intensity, frequency, and duration of temperature and
precipitation extremes. These extremes represent events that
occur several times per season or year, yielding more robust
statistical properties than other measures of extremes which
are far into the distribution tails such that they may not be
observed during some years (Alexander et al. 2006).

Furthermore, correlations between ENSO and extreme pre-
cipitation indices were also analyzed. The ENSO regimes are
defined by the Niño 3.4 indices. The Niño 3.4 indices during
the period of 1956–2011 were extracted from the National
Oceanic and Atmospheric Administration (NOAA) website
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ensoyears.shtml. Meanwhile, due to a significant
warming trend in the Niño 3.4 region since 1950, El Niño
and La Niña episodes that are defined by a single fixed 30-
year base period (e.g., 1971–2000) are increasingly incorpo-
rating longer-term trends that do not reflect the inter-annual
ENSO variability. In order to remove this warming trend, the
Climate Prediction Center (CPC) of NOAA is adopting a new
strategy to update the base period every 5 years, details of
which can be found from the website http://www.cpc.ncep.
noaa.gov/products/analysis_monitoring/ensostuff/ONI_
change.shtml.

Fig. 1 Study region and rain
gauges across the Poyang Lake
basin
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3 Methodologies

3.1 Mann-Kendall trend test

Nonparametric trend detection methods are less sensitive
to outliers than are parametric statistics. In addition, the
rank-based nonparametric Mann-Kendall (MK) test can
test trends without requiring normality or linearity.
Therefore, this method has been widely used. It should
be noted that results of the MK test are affected by the
serial correlation of time series. Von Storch (1999) and
Kulkarni and von Storch (1995) advocated eliminating
the persistence effect in the hydrometeorological series
before the Mann-Kendall test, and pre-whitening has of-
ten been recommended to eliminate the influence of

serial correlation (if significant) in the MK test results
(Yue et al. 2002; Zhang et al. 2013b). However, the
presence of a trend alters the estimate of serial correla-
tion, which reduces the trend. Yue et al. (2002) modified
a pre-whitening procedure, in which the slope of trend is
first estimated and the record is detrended. Then, the lag-
1 serial correlation coefficient of the detrended series is
estimated, and the series is pre-whitened using this esti-
mate. Finally, the identified trend is added to the pre-
whitened series. The MK test is applied to this series
to assess the significance of trend. Yue et al. (2002)
pointed out that the removal of trend as a first step
may allow for a more accurate estimate of the popula-
tion’s lag-1 autocorrelation coefficient and subsequently
a better estimate of the significance of trend. Hence, the

Table 1 Extreme climate indices
considered in this study Index Indicator name Description Units

Temperature indices

FD0 Frost days Annual count when TN (daily minimum temperature)
<0 °C

Days

SU35 Hot days Annual count when TX (daily maximum temperature)
>35 °C

Days

TN10p Cold nights Percentage of days when TN <10th percentile %

TX10P Cold days Percentage of days when TX <10th percentile %

TN90P Warm nights Percentage of days when TN >90th percentile %

TX90P Warm days Percentage of days when TX >90th percentile %

WSDI Warm spell duration index Annual count of days with at least 6 consecutive days
when TX >90th percentile

Days

CSDI Cold spell duration index Annual count of days with at least 6 consecutive days
when TN <10th percentile

Days

DTR Annual temperature range Difference between maximumTX andminimumTN in
the year

°C

Precipitation indices

Rx1day Max 1-day precipitation
amount

Monthly maximum 1-day precipitation mm

Rx5day Max 5-day precipitation
amount

Monthly maximum consecutive 5-day precipitation mm

SDII Simple precipitation
intensity index

Annual total precipitation divided by the number of wet
days in the year

mm.d−1

R10mm Number of heavy
precipitation days

Annual count of days when precipitation ≥10 mm/day Days

R20mm Number of heavy
precipitation days

Annual count of days when precipitation≥20 mm/day Days

R50mm Number of heavy
precipitation days

Annual count of days when precipitation ≥50 mm/day Days

CDD Maximum length of dry
spell

Maximum number of consecutive days with daily
precipitation <1 mm

Days

CWD Maximum length of wet
spell

Maximum number of consecutive days with daily
precipitation ≥1 mm

Days

R95p Very wet day precipitation
amount

Annual total precipitation when daily precipitation
>95th Percentile

mm

R99p Extremely wet day
precipitation amount

Annual total precipitation when daily precipitation
>99th Percentile

mm

PRCPTOT Annual total wet day precipitation Annual
total

precipitation in wet days mm
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modified pre-whitening procedure was applied in this
study to detect a significant trend in a serially correlated
time series, and the 95 % confidence level was used to
evaluate the significance of trend.

3.2 Definition of extreme precipitation and temperature
regimes

Eleven precipitation indices and nine temperature indices
from amongst extreme climate indices recommended by the
ETCCDI were used in this study (Table 1). These indices were
computed using the RClimDex, an R-based software package.
This software package along with documentation is available
at http://etccdi.pacificclimate.org/software.shtml or http://
www.climdex.org/index.html. The bootstrap procedure of
Zhang et al. (2005) was implemented in RClimDex to ensure
that the percentile-based temperature indices did not have ar-
tificial jumps at the boundaries of the in-base and out-of-base
periods. A base period of 1961–1990 was used when comput-
ing percentile-based indices. Furthermore, some of the month-
ly temperature and precipitation indices, such as the percentile
indices, were also analyzed using the RClimDex software
package.

4 Results and discussion

4.1 Annual and monthly temperature extremes

Figure 2 shows spatial properties of trends in warm and cold
regimes across the Poyang Lake basin. It can be seen from
Fig. 2 that warming regimes defined by SU35,WSDI, TN90P,
and TX90P are mostly increasing with increasing magnitudes.
Approximately, SU35 andWSDI are not significantly increas-
ing, except for five stations with significant increasingWSDI.
A few stations are characterized by a decreasing tendency of
SU35 but are not statistically significant. However, TN90P
and TX90P exhibit significant increasing trends. A closer look
at Fig. 2 shows that TN90P experiences a larger increasing
magnitude than does TX90P.Moreover, at 3 out of 15 stations,
TX90P is dominated by not significant increasing tendency.
Thus, warming in the Poyang Lake basin is characterized
mainly by warm nights. Cold regimes defined by FD0, CSDI,
TN10P, TX10P, and DTR (Fig. 2) are dominated by decreas-
ing trends with different decreasing magnitudes. Generally,
larger decreasing changes of FD0 and TN10P are observed.
And these changes are in agreement with those across China
(You et al. 2011; Zhang et al. 2011b; Wang et al. 2013), i.e.,
lower temperature regimes are subject to larger increases
when compared to higher temperature components.

Changes in monthly temperature extremes are shown in
Figs. 3, 4, and 5. Figure 3 indicates a significant increasing
TX90P in May, June, July, and October. A few stations are

characterized by increasing TX90P in February and Novem-
ber. Increasing tendency, but is not statistically significant, of
TX90P can be observed in March, April, and September.
However, decreasing TX90P, though it is not significant, can
be observed mainly in January. Therefore, changes of TX90P

R

FD0 SU35 WSDI

CSDI TN10P TX10P

TN90P TX90P DT

Fig. 2 Spatial distribution of trends in extreme temperature indices at
annual scale. Upward triangles represent increasing trends and
downward triangles decreasing trends. Different sizes of triangles
indicate different magnitudes of trends. Solid triangles denote trends
being significant at 95 % confidence level. Definitions of temperature
indices are given in Table 1
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Fig. 3 Spatial distribution of trends in monthly warm days (TX90P).
Upward triangles represent increasing trends and downward triangles
decreasing trends. Different sizes of triangles indicate different
magnitudes of trends. Solid triangles denote trends being significant at
95 % confidence level
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vary from 1 month to another. In summary, significant TX90P
regimes are identified mainly during late spring, early sum-
mer, and part of autumn. However, warm nights defined by

lower temperature (TN90P) increase during all months except
January, March, April, and December (Fig. 4). Larger increase
of TN90P is found mainly in July and August. In this case,
warm temperature regimes defined by lower temperature have
an apparently increasing tendency when compared to those
defined by higher temperature. Cold nights (TN10P) have a
generally decreasing tendency and significant decreasing
trends are found in months during winter, spring, early sum-
mer, and part of autumn. Moreover, larger decreases of
TN10P are observed mainly in winter and autumn (Fig. 5).
Besides, Figs. 2, 3, 4, and 5 show that warming is dominant in
the north Poyang Lake basin in comparison with the south
basin.

4.2 Monthly precipitation extremes

Figure 6 shows spatial patterns of monthly average of Rx1day
and trends of Rx1day. It shows that higher monthly average of
Rx1day is observed mainly in the northeast part of the Poyang
Lake basin. In late summer and autumn, a larger monthly
average of Rx1day is found in the middle and south parts of
the basin. The figure also shows evident geographical shifts of
zones with larger monthly average Rx1day. The center with
higher monthly average of Rx1day is located in the north
basin and shifts southward thereafter till May. Subsequently,
the belt with lower monthly average of Rx1day starts to shift
northward and then repeats southward shifts after September.
This shift behavior of rain belt is in close relation with the
propagation of southeast monsoon activities. The movement
of southeast monsoon is influenced by the behavior of sub-
tropical high. The southeast monsoon impacts precipitation
changes in south China inMay and then propagates northward
after June and further northward during late June and early
July. After August, the southeast monsoon starts to move
southward and retreats from the East Asian continent during
October. The north movement of the rainfall center with lower
Rx1day during July and August is mainly due to the north-
ward propagation of subtropical high and controlled by sub-
tropical high, which triggers hot and dry weather conditions.
This is one of the reasons for the increase of warm nights or
warm days during summer. Similar changing features are de-
tected in the spatial patterns of Rx5day with the difference that
more stations are characterized by significant increasing
Rx5day in January (Fig. 7).

Changes in precipitation extremes at the annual scale are
shown in Fig. 8. It can be seen from Fig. 8 that SDII at 12 out
of 15 stations generally exhibits an increasing tendency and
SDII at 3 out of 15 stations shows significant increasing
trends, implying a general increasing tendency of precipitation
intensity. Moderate changes are observed in CDD. However,
no significant decreasing tendency is detected at 9 out of 15
stations, and a decreasing tendency of CDD is dominant
across the Poyang Lake basin. However, these changes are
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Fig. 4 Spatial distribution of trends in monthly warm nights (TN90P).
Upward triangles represent increasing trends and downward triangles
decreasing trends. Different sizes of triangles indicate different
magnitudes of trends. Solid triangles denote trends being significant at
95 % confidence level
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Fig. 5 Spatial distribution of trends in monthly cold nights (TN10P).
Upward triangles represent increasing trends and downward triangles
decreasing trends. Different sizes of triangles indicate different
magnitudes of trends. Solid triangles denote trends being significant at
95 % confidence level
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not statistically significant; thus, no definitive conclusions are
drawn in terms of changes of CDD. CWD also does not show
significant changing trends. Other extreme precipitation indi-
ces, such as R10mm, R20mm, R95p, R99p, and PRCP, do not
exhibit significant increasing trends with the exception of
R50mm which has decreasing trends and particularly signifi-
cant decreasing trends at 4 out of 15 stations. Generally, the
changing properties of precipitation extremes in the basin in-
dicate a moderate intensification of precipitation, and an in-
crease of heavy precipitation events has also been projected
over the Yangtze River basin under the A2 and A1B scenarios
(Xu et al. 2009; Guo et al. 2013); then, a higher risk of
droughts and floods will be expected in the future.

Intensifying precipitation is found mainly in the north parts
of the basin which are heavily populated with large areas of
irrigated agricultural fields. Hence, considerable negative im-
pacts from intensifying weather extremes can be expected.

4.3 Relation between ENSO and precipitation extremes

Figure 9 shows correlations between ENSO events and
Rx1day regimes. Relatively, positive relations are identified
between ENSO and Rx1day during January and June and
negative relations are found during July and December. A
closer look at Fig. 9 shows relatively complicated ENSO vs.
Rx1day relations. With a time lag of 0–3 months, negative
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ENSO vs. Rx1day relations are dominant in January and June
and positive relations are found in July and December, and
adverse relation patterns are observed when the time lag is
longer than 3 months. ENSO vs. Rx1day relations are more
evident with a time lag of 7–10 months. In November, how-
ever, the ENSO vs. Rx1day relation is significant when the
time lag reaches 11–12 months. Similar relations are detected
between ENSO and Rx5day regimes in Fig. 10. The differ-
ence is that the ENSO vs. Rx5day relations seem to be more
apparent than those between ENSO vs. Rx1day regimes. Re-
lations between ENSO, Rx1day, and Rx5day regimes are rel-
atively confirmative in March, August, and November. In
general, positive relations are dominant between ENSO and
precipitation extremes, such as Rx1day and Rx5day, during
the first half of the year with a longer time lag, e.g., at least
longer than 3 months, particularly longer than 8 months; neg-
ative relations are found in the subsequent half of the year, i.e.,

from July to December of 1 year, and the relations are sup-
posed to be evident with time lag longer than 6 months.

Figure 11 shows relations between ENSO and precipi-
tation extremes defined at the annual time scale. Positive
relations are dominant between ENSO and extreme pre-
cipitation events defined by SDII, CWD, R10mm,
R20mm, R50mm, R95p, R99p, and PRCPTOT, but slight
negative relations occur between ENSO and CDD, which
represents dry events. The time lags with which these
relations are evident are different. However, evident rela-
tions are found between ENSO and most of the precipita-
tion extremes with a time lag of 8–10 months. With the
time lag of 0–2 months, relations are negligible and even
slightly negative. The aforementioned results indicate ev-
ident relations between ENSO and precipitation extremes.
The Poyang Lake is in the lower Yangtze River basin, and
this area is controlled by East Asian summer monsoon
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(Ding and Chan 2005). A causal relationship was already
found based on observations (e.g., Hu et al. 2000) and by
a coupled model study (Wei 2005). Modeling results from
the ECHAM4 general circulation model (GCM) (Cheng
et al. 2005) indicate that the increase in sea surface tem-
perature (SST) will strengthen convective precipitation in
the lower Yangtze River basin. Floods in East China, in-
cluding the lower Yangtze River, are more likely caused
by the strengthened convective precipitation associated
with the increase in SST. Besides, changing patterns of
precipitation maxima over the Yangtze River basin also
indicate intensifying precipitation processes in the lower
Yangtze River basin, particularly in the southeast parts of
the Yangtze River basin (Zhang et al. 2008). Moreover,
results from analysis of relations between ENSO regimes
and annual maximum streamflow advocate in-phase rela-
tions in the lower Yangtze River basin (Zhang et al.
2007). Annual maximum streamflow regimes often result
from heavy precipitation changes. In this case, relations
between ENSO and annual maximum streamflow may
well corroborate the relations between ENSO and precip-
itation extremes in the Poyang Lake basin.

5 Conclusions

Spatiotemporal patterns of precipitation and temperature ex-
tremes are analyzed, and relations between ENSO events and
precipitation extremes are investigated in the Poyang Lake
basin. Important conclusions drawn from this study are as
follows:

1. Changing properties defined by indices of temperature
extremes show warming in the Poyang Lake basin. The
warming is mirrored mainly by decreasing trends of frost
days and significant decrease of temperature extremes
defined by lower temperature. Temperature extremes de-
fined by higher temperature indices, such as hot days,
exhibit moderate changes with no confirmed spatiotem-
poral patterns. Besides, warming is observed mainly in
the north basin.

2. Precipitation changes are intensifying, mirrored mainly
by increasing precipitation extremes. However, different
changing properties are identified in changes of monthly
precipitation extremes. Evident intensification of precipi-
tation extremes is found mainly in winter and/or summer

M
o
n
th
 o
f 
E
N
S
O

0

1

2

3

4

5

6

7

8

9

10

11

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-0.18 -0.01 0.01 0 -0.05 -0.19 0.09 -0.12 -0.15 0.11 0.24 0.17

-0.1 0.03 0.09 0.05 0.01 -0.12 0.07 -0.17 -0.12 0.1 0.14 0.14

-0.01 0.06 0.17 0.09 0.07 -0.05 0.04 -0.21 -0.08 0.07 0.03 0.11

0.07 0.1 0.23 0.13 0.11 0.01 0.01 -0.23 -0.04 0.04 -0.08 0.08

0.13 0.13 0.28 0.15 0.14 0.06 -0.01 -0.25 -0.01 0.02 -0.15 0.05

0.18 0.15 0.31 0.17 0.17 0.11 -0.03 -0.26 0.02 0 -0.2 0.03

0.21 0.16 0.33 0.17 0.18 0.14 -0.04 -0.27 0.04 -0.02 -0.24 0.01

0.22 0.17 0.35 0.18 0.2 0.17 -0.05 -0.27 0.06 -0.04 -0.27 -0.01

0.23 0.16 0.35 0.19 0.22 0.19 -0.06 -0.28 0.07 -0.06 -0.29 -0.03

0.23 0.15 0.35 0.19 0.24 0.21 -0.07 -0.28 0.09 -0.08 -0.31 -0.05

0.23 0.14 0.35 0.18 0.26 0.22 -0.07 -0.29 0.1 -0.11 -0.33 -0.09

0.21 0.13 0.35 0.17 0.28 0.23 -0.07 -0.3 0.12 -0.15 -0.35 -0.13

0.18 0.1 0.34 0.15 0.31 0.23 -0.05 -0.29 0.14 -0.2 -0.35 -0.18

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4Fig. 10 Pearson correlation
coefficients between ENSO and
monthly Rx5day. The month of
ENSO denotes the same month as
or 1 month earlier than the month
when Rx5day occurs. Dark red/
blue denotes statistically
significant positive/negative cor-
relation coefficients at 95 % con-
fidence level

M
o
n
th
 o
f 
E
N
S
O

0

1

2

3

4

5

6

7

8

9

10

11

12

SDII CDD CWD R10mm R20mm R50mm R95p R99p PRCPTOT

0.02 0.03 0.1 0.11 0.04 -0.09 -0.09 -0.13 0.03

0.11 0.02 0.17 0.17 0.12 -0.02 -0.03 -0.06 0.1

0.19 0.02 0.23 0.21 0.19 0.05 0.04 0 0.15

0.25 0.01 0.27 0.24 0.24 0.1 0.1 0.05 0.18

0.29 0 0.3 0.26 0.28 0.15 0.14 0.09 0.21

0.32 -0.01 0.32 0.26 0.3 0.18 0.17 0.12 0.23

0.33 -0.01 0.34 0.26 0.3 0.2 0.19 0.14 0.23

0.34 -0.01 0.34 0.25 0.3 0.22 0.21 0.16 0.23

0.33 -0.01 0.34 0.23 0.29 0.23 0.22 0.17 0.22

0.33 -0.01 0.34 0.21 0.28 0.23 0.22 0.19 0.21

0.32 0 0.33 0.19 0.25 0.23 0.22 0.2 0.19

0.3 0.02 0.32 0.14 0.21 0.23 0.22 0.21 0.16

0.27 0.04 0.3 0.08 0.15 0.22 0.21 0.23 0.11

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4Fig. 11 Pearson correlation
coefficients between ENSO and
annual extreme precipitation
indices. The month of ENSO
denotes the same month as or
1 month earlier than the month
when annual extreme
precipitation indices occur. Dark
red/blue denotes statistically
significant positive/negative cor-
relation coefficients at 95 % con-
fidence level

862 Q. Zhang et al.



months. Besides, intensifying precipitation occurs
mainly in the north basin, which is in agreement with
areas dominated by increasing temperature. This can
be attributed to regional climate conditions, and
higher temperature usually causes higher probability
of convective precipitation.

3. Relations between ENSO and precipitation extremes in-
dicate an evident influence of ENSO on precipitation
changes in the basin. Higher sea surface temperature trig-
gers the occurrence of convective precipitation. Besides,
results of analysis of ENSO vs. precipitation extremes
indicate significant correlations after considering time
lag. Generally, correlations with a time lag of longer than
3 months are stronger.

4. Though it has been found that the changes in pre-
cipitation indices are much weaker when compared
with those of temperature indices (Wang et al.
2013), the spatial variation of the changes in precip-
itation extremes is very large (You et al. 2011).
Furthermore, it has been projected that the intensity
of heavy precipitation events will increase over the
Yangtze River basin under the A2 and A1B scenar-
ios (Guo et al. 2013; Xu et al. 2009). So, an inves-
tigation of precipitation extremes in the Poyang
Lake basin will be of great importance and the var-
iation of precipitation extremes needs to be further
analyzed.
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