
Theor Appl Climatol (2016) 124:825–833
DOI 10.1007/s00704-015-1455-5

ORIGINAL PAPER

Temperature variability and early clustering
of record-breaking events

Amalia Anderson1 ·Alex Kostinski1

Received: 11 September 2014 / Accepted: 30 March 2015 / Published online: 22 April 2015
© Springer-Verlag Wien 2015

Abstract As the number of climatological studies using
record-breaking statistics is growing rapidly, understanding
the sensitivity of the chosen time period becomes essential.
To that end, here we examine the evolving variability of
monthly mean temperatures and its dependence on begin-
ning and final year. Specifically, we use an index, α, based
on record-breaking statistics and employing reversibility
such that 〈α〉 = 0 indicates no trend in variability. Gen-
erally, 〈α〉 has decreased between 1900 and 2013, indi-
cating decreasing variability relative to early decades for
stations from the contiguous USA (United States Histori-
cal Climatology Network, version 2.5). We find, somewhat
surprisingly, that the observed decrease is due to an early
excess of records beginning in 1917 (record low value) and
1921 (record high value). While detailed results depend
on whether the data is gridded, detrended, etc., the gen-
eral finding appears remarkably robust and holds globally
as well.
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1 Introduction

The frequency of extremes is affected by changes in the
underlying distribution, including trends in the mean and
higher moments, such as variance (Parey et al. 2013). This
fact, along with the large number of recent extreme events,
has led to several investigations of variance as it pertains
to global, regional, interannual, intraannual, and seasonal
surface temperatures, e.g., Michaels et al. (1998), Yin and
Knapp (1999), Simolo et al. (2011), Shen et al. (2011),
Donat and Alexander (2012), and Hansen et al. (2012).
However, the choice of a time period is often somewhat
arbitrary, yet important, e.g., Liebmann et al. (2010). For
example, Karl et al. (1995) found that while interannual
temperature variance in the USA has increased in recent
decades (1974–1993), it has decreased over a longer time
span (1911–1994). Additionally, while trends in the mean
are, for the most part, qualitatively uniform (increasing)
regardless of data (Hartmann et al. 2013), this is not so
for trends in higher moments. Motivated by Karl et al.’s
results, the varied effect of selected data on trends in vari-
ability, and the tendency of more recent research to focus
primarily on trends following 1950, we ask how variabil-
ity of monthly means has evolved within the time period
1900–2013. For example, compared to Karl et al.’s results,
do the additional 19 years (1995–2013) change the observed
trend in the USA? And, in particular, does the early twen-
tieth century continue to impact the observed trend in
variability?

To answer these questions, we turn to record-breaking
statistics. Due to the distributional invariance, simplicity of
underlying concepts, and frequently striking results, e.g.,
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Meehl et al. (2009), the use of record-breaking events
(records) in analysis of temperature trends has become
more widespread in the past decade, e.g., Benestad (2004),
Redner and Petersen (2006), Newman et al. (2010),
Wergen and Krug (2010), Munasinghe et al. (2011),
Rahmstorf and Coumou (2011), and Rowe and Derry
(2012). By way of brief summary, the statistics are based
on the following result: for a time series with indepen-
dent and identically distributed values from a continuous
distribution, X = x1, x2, x3 . . . xi , the probability that xi

is a record is 1/i. It follows that the expected number of
records, E(r), for a time series with n values is E(r) =
1+1/2+1/3 . . .+1/n. A record is a value that exceeds all
previous values in the sequence. The first value is always a
record. Therefore, records become logarithmically rare in a
stationary time series.

In Anderson and Kostinksi (2010), we used this result
to develop an index that indicates the presence of a trend
in variability. Since stationary time series have no trends
in the mean or higher moments, they are statistically inva-
riant with respect to time-reversal. Therefore, the
expected number of record highs (or lows) does not
change upon time-reversal. We make use of this time-
reversal symmetry (or lack thereof) in the variability
index, α,

α = (RHf wd − RHbwd) + (RLf wd − RLbwd)

= (RH + RL)f wd − (RH + RL)bwd (1)

where RH and RL are the numbers of record-breaking
highs and record-breaking lows, respectively, and the sub-
scripts indicate direction in time (forward and backward).
For time series without a trend in variance, 〈α〉 = 0
(we use angular brackets to indicate an average over all
individual α values in an ensemble). Meanwhile, increas-
ing (decreasing) variance is accompanied by an excess
(dearth) of records (highs and lows) in the forward direction
and a dearth (excess) of records in the backward direc-
tion. Thus, a positive (negative) 〈α〉 indicates an increas-
ing (decreasing) variance and a qualitative trend can be
extracted.

Here, we investigate the evolution of interannual temper-
ature variability in the contiguous USA within the period
1900–2013. To do this, we systematically evaluate 〈α〉 for
time periods of varying initial and final years. By examin-
ing all possible time periods, we avoid a time period bias.
Also, the reversibility of α prevents a preference for begin-
ning or ending of time period. In particular, we find this
method of observing change in variability proves useful
for observing the clustering of records and, thus, peri-
ods of increased variability. We also compare results to

the evolution of temperature variability for a globally dis-
tributed set of stations, finding a surprising similarity of
results.

2 Data and definitions

2.1 Selection and preparation of data

In order to examine the evolution of temperature variability
in the USA, we use the adjusted monthly mean temperatures
from the United States Historical Climatology Network,
version 2.5, ushcn.v2.5.0.20140508 (USHCN), Menne et al.
(2009). The adjusted data set accounts for inhomogeneities
in the raw data, see Menne et al. (2009, 2012) and Vose et al.
(2014) for details regarding the process of making adjust-
ments to the data. We use all time series from the contiguous
USA that have at least 90 years of data between the years
1900 and 2013. The 90-year minimum is based on the num-
ber of records expected in the stationary case: for 90 years,
it is 5.08 and for 114 years, it is 5.31. If any of the monthly
means in a time series are estimates they are removed
from the time series, leaving that year without a data entry
(estimated values are monthly means that are calculated
from incomplete daily data). The method does not require
data to be evenly spaced in time. Removed estimates do
not count toward the 90-year minimum length of time
series. Each month comprises its own time series and
this results in 18,264 time series (station-months) from
about 1500 stations. For example, a single time series
would be comprised of average monthly temperatures for
January at a single station, starting in 1900 and con-
tinuing until 2013. The total number of time series per
year fluctuates, so to aid in interpretation of results, we
include a graph of number of time series per year in
Appendix A.

We also examine the adjusted monthly mean tempera-
tures in the Global Historical Climatology Network, ver-
sion 3, ghcnm.v3.2.1.20130521 (GHCN), Lawrimore et al.
(2011). We remove USHCN stations from GHCN to enable
comparison. Excluding the USHCN stations, there are
6092 station-months with 90 or more years of data in
GHCN. The stations that fit this criterion are predom-
inately distributed in the northern hemisphere. Prepara-
tion and analysis of GHCN data is identical to that for
USHCN.

While the variability index is generally insensitive to
trends in the mean, isolating a variability trend makes
interpretation more straightforward. Therefore, we remove
the mean trend from the data (detrending) prior to anal-
ysis. Each station-month time series is detrended individ-
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ually using a local regression (LOWESS) with 50 year
smoothing, i.e., Cleveland (1979). The LOWESS regres-
sion is ideal because it does not assume a functional
form and it limits the effect of boundary biases. For
each time series, the regression is used to identify a
mean trend and then that trend is subtracted from the
time series. Only two decimal places are maintained since
USHCN and GHCN data have a resolution of 0.0 ◦C (the
results are robust and the observed trends discussed in the
following sections remain qualitatively the same regard-
less of detrending; see Appendix B for details). Once
these trends are removed, the data is ready for record
counting and calculation of 〈α〉 values, as discussed in
Section 3.

2.2 Stationary Monte Carlo ensembles

We provide 3-σ for ensembles of stationary time series
that mimic the data, USHCN or GHCN, as a ref-
erence to aid in interpretation of results. The pro-
cedure for calculating 3-σ values follows. For each
data set, USHCN and GHCN, we create 1000 ensem-
bles of stationary time series. Each simulated ensem-
ble is created by replacing all USHCN or GHCN tem-
peratures with values drawn from a stationary distri-
bution. We analyze the resulting stationary ensembles
with the same methods that are used for the actual USHCN
orGHCNdata.Weuse the resulting 〈α〉 values, 1000 〈α〉 val-
ues for every time series duration between 1900 and 2013,
to calculate 3-σ values (see figures of 〈α〉 in Section 3).
This approach maintains the exact locations and times for
which the time series in USHCN or GHCN do not have
data (see Appendix A) and results in fluctuating values
for 3-σ as time series duration changes. It is notable that
3-σ goes to zero when there is only one possible result
for α, at the beginning of record-counting α must be
zero.

2.3 Mean anomalies

As a reference, we also compute mean anomalies for the
data described above. Here, the mean anomaly is calculated
in two ways: (1) each time series has its mean subtracted
(1900–2013), resulting in anomalies, then all the time series
of anomalies are used to calculate average anomalies for
each year; (2) first, each time series is detrended via a
local regression (see above), then the procedure as formerly
described is followed. This results in anomalies for both the
detrended and original data. We also compute standard devi-
ations for the distributions of anomalies occurring in each
year.

3 Analysis and results

3.1 Evolution of temperature variability in the USA

Here, we return to our initial questions. Does interan-
nual temperature variability change between 1900 and 2013
within the contiguous USA? Also, if there is a change,
where and why does it occur? To answer these questions,
we consider 〈α〉 for varying durations of time. First, we
hold the initial year constant and vary the final year (Fig.
1a), calculating 〈α〉 for each possible set of time series
beginning in 1900. Then, we hold the final year constant
and vary the initial year (Fig. 1b), calculating 〈α〉 for each
possible set of time series ending in 2013. To simplify inter-
pretation, we analyze the detrended USHCN (see Section
2.1). For reference, we include a grey region that marks
3σ for stationary Monte Carlo ensembles in both panels of
Fig. 1 (see Section 2.2 for details). Additionally, we exam-
ine mean anomalies and the associated standard deviations
(Fig. 2).

In Fig. 1a, we see that on average variability of time
series increases (〈α〉 > 0) during time series that start in
1900 and end between 1909 and 1938. This is indicated by
an excess of records (highs and lows) approaching 1938 rel-
ative to what is expected in the stationary case. For example,
the maximum value of 〈α〉, 0.85, occurs in 1918, associ-
ated with the time span 1900–1918. Meanwhile, time series
beginning in 1900, but ending between 1939 and 2013, gen-
erally indicate decreasing variability (〈α〉 < 0). In this case,
many of the records that occur between 1900 and 1938
are not overcome later in the time series. The cluster of
record-breaking temperatures that occurs between 1909 and
1938 continues to dominate, even up to 2013.

In Fig. 1b, we also see the effect of early record-breaking:
variability decreases during time series that begin between
1900 and 1938 and end in 2013. For example, the minimum
value of 〈α〉, −1.4, occurs for 1917–2013. Here, a period
of excess records (1909–1938) occurs at the beginning of
the time series relative to the stationary case, so variabil-
ity decreases relative to those years. When years prior to
1939 are excluded from analysis, changes in variability
diminish.

Perhaps most notable is the general decline of 〈α〉 as
years are added to time series as depicted in Fig. 1a.
Part of this is due to the increasing length of the time
series: the maximum possible value for α increases as time
series duration increases. Yet part of the decline must also
be due to reigning record-breaking temperatures from early
in the time series. In panel b, we see this too. Interestingly,
the results are in agreement with Karl et al.’s observa-
tions despite the additional years of data. For time series
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Fig. 1 Evolution of the variability index α for detrended monthly
mean time series in USHCN. The variability of temperatures
decreases with respect to years prior to 1950 with the largest
decreases occurring for longer time series. In panel a, we con-
sider all possible durations of time series with a fixed initial year
of 1900. The grey region in each panel marks 3σ for a stationary

Monte Carlo ensembles. The maximum value of 〈α〉 is attained at
1918, associated with increasing variability over the period 1900–
1918. Alternatively, in panel b, we consider all possible durations of
the time series with a fixed final year of 2013. The minimal value of
〈α〉 is attained at 1917, associated with a decreasing variability over
the period 1917–2013

that begin in 1985 or later, variability is seen to increase
(〈α〉 > 0), but this increase is easily overwhelmed
when time series are extended further back in time. When
years prior to 1985 are added, 〈α〉 is seen to decay, dropping
below zero for all initial years prior to 1937.

One last note regarding the interpretation of Fig. 1:
not all time series have an initial year of 1900 or final
year or 2013. However, in Fig. 1, 〈α〉 is recorded accord-
ing to the variable year regardless of the actual fixed year.
For example, when the final year is fixed, the number of

Fig. 2 Panels a and b depict
mean anomalies for USHCN
times series. The standard
deviations of anomalies each
year appear as error bars. The
mean anomalies explain a cause
of the decreasing variability
observed in Fig. 1: an excess of
early records. For example,
maximum and minimum 〈α〉
values are associated with some
of the coldest and hottest years,
1917 (record low) and 1921
(record high), in particular.
Panels c and d depict the
standard deviations of the
anomalies occurring each year.
Linear trends are given in red: c
−0.18 ± 0.07 ◦C/century (no
detrending) and d
−0.16 ± 0.07 ◦C/century (with
detrending). A decreasing
variability is observed, in
agreement with analysis of
records
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Fig. 3 Similar to Fig. 1, but for global data (GHCN) excluding sta-
tions from the contiguous U.S. (USHCN). Again, variability decreases
with respect to early decades. Additionally, the same “check mark”
patterns seen for USHCN (Fig. 1) are apparent (correlation coefficients
of 0.86 each). Here, however, the values of 〈α〉 are lower. In panel a,
we consider all possible durations of the time series with a fixed ini-
tial year of 1900. Again, we see maximum values of 〈α〉 in 1917 and

1918; 1917 is the coldest year. In panel b, we consider all possible
durations of the time series with a fixed end year of 2013. The grey
region in each panel marks 3σ for a stationary Monte Carlo ensem-
bles. The greatest decreases are for 1913 and 1914, followed by 1917,
associated with time series 1913–2013, 1914–2013, and 1917–2013

time series 1900–2013 is only 84 % of that for a fixed ini-
tial year (10,880 versus 12,900). Indeed, 〈α〉 = −0.59 for
fixed initial year (1900–2013) and 〈α〉 = −0.65 for fixed
final year (1900–2013). Therefore, while the discrepancy is
minor, we add for comparison that 〈α〉 = −0.65 for all time
series (18264) at maximum length.

The mean anomalies for this data also support observa-
tions of early, extreme record-breaking and the associated
decreasing variability. This is evident in Fig. 2, panels a (not
detrended) and b (detrended). (Section 2.3 discusses com-
putation of mean anomalies). For 1900–1918, 〈α〉 reaches
its maximum value, 0.85. Notably, in the detrended data, the

Fig. 4 Panels a and b depict
mean anomalies for GHCN
times series excluding stations
from the contiguous USA
(USHCN). The standard
deviations of anomalies each
year appear as error bars. The
anomalies suggest a reason for
the decreasing variability
observed in Fig. 3: an excess of
early records. For example,
maximum 〈α〉 values are
associated with some of the
coldest years, 1917 and 1918
(record lows). Panels c and d
depict the standard deviations of
the anomalies occurring each
year. Linear trends are given in
red: c −0.02 ± 0.04 ◦C/century
(no detrending) and d
−0.03 ± 0.04 ◦C/century (with
detrending). By this measure,
there is no change
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average coldest year (1917) occurs at the end of this time
span, see Fig. 2b. For 1917–2013, 〈α〉 reaches its minimum
value, −1.4. Here, the average coldest (1917) and hottest
(1921) years occur at the beginning of the time series, again
see Fig. 2b (without detrending, we have the coldest year
(1917) and third hottest year (1931) and fourth hottest year
(1921) occurring between 1909 and 1938, see Fig. 2a).
Indeed, these temperatures were extreme enough to war-
rant early notice, e.g., Brooks (1918), where it is noted that
in 1917 abnormally cold weather began in August, contin-
ued through October, abated in November, and continued
again in December. Concerning December in particular, “In
the Appalachian and Atlantic coast region ...this cold wave
established new low December records for most states, and
at many stations ...the weather was the coldest ever recorded
since 1870 at least.” Concerning our warmest (detrended)
year, 1921, this year was also noted early on, e.g., Henry
(1921). It still shows up in lists of the hottest years on
record: 1921 is the fourth hottest mean temperature between
1895 and 2008 for the contiguous USA, Shen et al. (2012)
(since we do not use gridded data, our rankings are not
identical but similar to those found by Shen et al. (2012)).
Considering the mean trend, it is not surprising that the low
temperatures of 1917 should remain record-breaking, the
continuing effect of 1921 is more surprising.

Since trends in variability are observed via 〈α〉 and
record-breaking temperatures, we look for further evidence
of the trends. In Fig. 2c, d, we see the standard deviation
of monthly mean temperature anomalies each year. These
standard deviations also appear as error bars in panels a and
b. The standard deviations decrease slightly over time and
a linear trend is given in red: −0.18 ± 0.07 ◦C/century (no
detrending), −0.16 ± 0.07 ◦C/century (with detrending). In
either case, we see a decrease of about 0.2 ◦C between 1900
and 2013. This is in agreement with results from analy-
sis of record-breaking temperatures above (Fig. 1). We also
note that the range of the annual mean anomalies clearly
decreases between 1950 and 1970, see panels a and b. Since
this trend is associated with the mean anomalies, rather than
the individual anomalies, it is distinct from the trends we are
exploring here.

3.2 Global evolution of temperature variability

Next, we analyze a globally distributed set of time series,
excluding the contiguous US stations used above, (GHCN)
in the same manner as above. First, we hold the initial year
constant and vary the final year (Fig. 3a). Then, we hold
the final year constant and vary the initial year (Fig. 3b).
In both panels, we include a grey region that marks 3σ for

stationary Monte Carlo ensembles, see Section 2.2 for
details. For comparison, we again examine mean anomalies
(Fig. 4). For GHCN, we again see an indication of decreas-
ing variability over the period 1900–2013, though 〈α〉 values
are smaller than those for the contiguous USA (above). Fur-
thermore, the same “check mark” patterns (Fig. 1) appear
in the GHCN data (Fig. 3) with correlation coefficients of
0.86 for the trends in both panels (a) and (b). This indi-
cates that record-breaking occurs, to some extent, in unison
throughout the northern hemisphere.

First, let us consider Fig. 3a. Increasing variability is
associated with most time series beginning in 1900 and end-
ing between 1914 and 1969. The maximum 〈α〉 value, 0.42,
occurs for 1917, associated with 1900–1917. Indeed, as with
USHCN, 1917 is an extreme cold year, a likely contribut-
ing factor in the high correlation between 〈α〉 values in
USHCN and GHCN. Alternatively, let us consider Fig. 3b.
Time series beginning between 1900 and 1956 and ending in
2013 generally suggest decreasing variability and an excess
of records occurring early in the century. For example, the
minimum 〈α〉 value, −0.49, occurs for 1913, associated
with 1913–2013. This minimum is closely followed by that
for 1917–2013, −0.44. In short, we have agreement with
USHCN: an early cluster of records occurring between 1910
and 1940 that continues to dominate through 2013.

We note that, as was true for the USHCN data in Fig. 1,
〈α〉 is recorded according to the variable year regardless of
the actual fixed year. This is particularly true for the GHCN
data where many time series used do not have data before
1915 and many time series do not have data after 1990. For
example, when the first year is fixed, the number of time
series for 1900–2013 is only 85 % of that for a fixed last
year. Indeed, 〈α〉 = −0.19 for fixed initial year (1900–
2013) and 〈α〉 = −0.10 for fixed final year (1900–2013).
Therefore, we add for comparison that 〈α〉 = −0.09 for all
time series at maximum length.

Is there also evidence of the changing variability within
the standard deviations of monthly mean anomalies? Unlike
USHCN, the average standard deviations for GHCN do not
appear to change much over time: the linear trends are an
order of magnitude smaller than for USHCN. A linear trend
is given in red: −0.02 ± 0.04◦C/century (no detrending)
and −0.03 ± 0.04 ◦C/century (with detrending). By this
measure, unlike for USHCN, there is essentially no trend.

4 Concluding remarks

In terms of both attention and magnitude, trends in surface
temperature variability have been largely overshadowed by
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trends in mean surface temperature. Yet, to predict future
trends and extremes, we must understand how both the mean
and higher moments are changing. There are multiple ways
to do this, for example, one can focus on seasonal, intran-
nual, or interannual trends in variance. Here, we focus on
the evolution of variability of interannual monthly mean
temperatures.

To do this, we build on prior research where we found
a significant decrease in variability for GHCN version
2 (including USHCN stations) Anderson and Kostinksi
(2010). Here, we offer a substantial expansion of those
results by asking about the evolution of the signal and treat-
ing USHCN separately from GHCN (given its dominance in
the GHCN ensemble). We also now use the recently updated
versions of GHCN (v3) and USHCN (v2.5). As before, we
make use of our variability index, α, but here we calcu-
late and interpret it for varying initial and final years, thus
avoiding a time period bias and learning about its evolu-
tion. We also add an analysis of standard deviations for
comparison.

We find that variability has decreased for both USHCN
and GHCN between 1900 and 2013. In the case of USHCN,
this result is corroborated by an observed trend in stan-
dard deviation of anomalies each year. Our analysis indi-
cates that the decrease in variability is caused largely by
early high and low record-breaking temperatures, partic-
ularly those clustered around 1920. Indeed, 1917 (record
low value) and 1921 (record high value) are among the
coldest years and hottest years between 1900 and 2013.
However, when the earlier decades are removed, espe-
cially 1900–1940, the trend is diminished or reversed.
This is consistent with an earlier study by Karl et al.
(1995), even though we add 30 years of data (1900–
1910 and 1995–2013). They found that interannual variance
had decreased in the USA between 1911 and 1994, but
increased in more recent decades, 1974–1993. We find the
largest interannual variability between 1900 and 2013 is
still found early in the century despite the current warming
trend.

Lastly, while 〈α〉 values indicate a decreased vari-
ability for GHCN monthly mean temperatures, unlike
USHCN, standard deviations of anomalies each year do
not corroborate. This indicates that 〈α〉 may be able
detect differences in variability that are not observ-
able using more traditional methods. Indeed, the simi-
larity of the results for the USHCN and GHCN data
sets is striking. Though they share no stations, both
data sets contain “check mark” patterns caused by an
early clustering of records surrounding 1920 (see Figs. 1
and 3).
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Appendix A: Number of time series

The number of time series fluctuates from year to year.
For USHCN the range is between 10,864 and 17,086.
For GHCN, the range is between 4099 and 6018. We
include the following figure to aid in interpretation of results
(Fig. 5).
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Fig. 5 The number of time series per year for USHCN and GHCN

Appendix B: Effect of detrending on results

To simplify interpretation of results, we detrend each time
series by removing its mean trend as determined by the
LOWESS smoothing algorithm. Since the variability index,
〈α〉, is insensitive to mean trends, we expect similar results
regardless of detrending. In Fig. 6, we demonstrate this
insensitivity to the mean trend by comparing results for the
data with and without detrending (here, we mimic Figs. 1
and 3). In both panels, we include a grey region that marks
3σ for a stationary Monte Carlo ensembles. The similar-
ity of results is striking, both methods indicate the same
trends with respect to 3σ . Correlation coefficients are 0.99
for USHCN, with fixed initial year and fixed final year. Cor-
relation coefficients are 0.94 for GHCN with fixed initial
year and 0.81 for fixed final year.
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Fig. 6 Results for data with
(closed circles) and without
(open triangles) detrending. The
similarity of results with respect
to 3σ (grey) demonstrates the
insensitivity of the variability
index to mean trends. a and b
USHCN; c and d GHCN <
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