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Abstract The right design and the high efficiency of solar
energy systems require accurate information on the availabil-
ity of solar radiation. Due to the cost of purchase and mainte-
nance of the radiometers, these data are not readily available.
Therefore, there is a need to develop alternative ways of gen-
erating such data. Artificial neural networks (ANNs) are ex-
cellent and effective tools for learning, pinpointing or
generalising data regularities, as they have the ability to model
nonlinear functions; they can also cope with complex ‘noisy’
data. The main objective of this paper is to show how to reach
an optimal model of ANNs for applying in prediction of solar
radiation. The measured data of the year 2007 in Ghardaïa city
(Algeria) are used to demonstrate the optimisation methodol-
ogy. The performance evaluation and the comparison of re-
sults of ANN models with measured data are made on the
basis of mean absolute percentage error (MAPE). It is found
that MAPE in the ANN optimal model reaches 1.17 %. Also,
this model yields a root mean square error (RMSE) of 14.06%
and an MBE of 0.12. The accuracy of the outputs exceeded
97 % and reached up 99.29 %. Results obtained indicate that
the optimisation strategy satisfies practical requirements. It
can successfully be generalised for any location in the world
and be used in other fields than solar radiation estimation.

1 Introduction

In order to balance the ecological system for clean air, water
and food, the less polluting renewable energy sources should
be used to meet the energy demand of human beings across
developed, developing and underdeveloped countries. Re-
newable energies refer to sources of energy that are sustain-
able (non-depletable), ubiquitous (found everywhere) and es-
sentially non-polluting (Nelson 2011). Among the renewable
energy sources, solar energy is at the top of the list due to its
abundance and distribution more uniform in nature.

Consequently, estimation of solar radiation reaching the
earth’s surface has a paramount importance for various appli-
cations such as photovoltaic applications, cooling and heating
applications, agriculture, medical studies and seawater desali-
nation. This matter usually is possible via solar measuring
equipment which requires daily maintenance and data record-
ing; consequently, this procedure increases cost of data collec-
tion. Furthermore, some remote and rural areas are suitable for
the installation of solar energy but do not have the necessary
measuring devices (Azadeh et al. 2009a).

In the literature, different approaches have been used to
predict solar radiation; recall, for example: estimating global
solar radiation from meteorological observations (Ångstrom
1924; Bristow and Campbell 1984; Cengiz et al. 1981; Har-
greaves et al. 1985; Liu and Scott 2001; Mahmood and Hub-
bard 2002; Thornton and Running 1999; Kambezidis et al.
1997; Psiloglou and Kambezidis 2007), substitution of data
from nearby stations (Trnka et al. 2005; Rivington et al. 2006),
linear interpolation (Soltani et al. 2004), interpolation in neu-
ral networks (Elizondo et al. 1994; Reddy and Ranjan 2003),
satellite-based methods (Pinker et al. 1995) and generation
from stochastic weather models (Richardson et al. 1984;
Hansen 1999). Most of the above models lack the detailed
knowledge of various parameters whether geographical or
meteorological, and they will underperform when used to
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model nonlinear systems. To overcome these problems, the
need for accurate modelling becomes even more important.

Recently, the artificial neural network (ANN) technique
has received much attention as a computational approach pro-
viding an alternative and complementary way for modelling,
due to its ability to cope with complex and ill-defined prob-
lems in many scientific fields. In the meteorological field, the
modelling of solar radiation variables by the ANN models
knew a very promising development which improved the per-
formance of the existing statistical approaches (Lopez et al.
2000a, b). Several studies have been done in this context as
can be seen from the literature (Azadeh et al. 2009b; Elizondo
et al. 1996; Al-Alawi and Al-Hinai 1998; Togrul and Onat
1999; Sozen et al. 2004, 2005; Yang and Koike 2002;
Mohandes et al. 1998, 2000; Hontoria et al. 2001, 2002;
Tasadduq et al. 2002; Tymvios et al. 2005; Kalogirou
et al. 2002; Bosch et al. 2008; Mubiru and Banda
2008), noting that there are a few attempts interested in
the methodology to obtain an optimal model for the es-
timation of solar radiation.

In solar radiation estimation, the most commonly used
ANNs are the multi-layer perceptrons (MLP) that use back-
propagation training.

This paper endeavours to propose an optimisation method-
ology for reaching the better MLP network; based on almost
all aspects in ANN modelling such as the activation function,
the training data, the training algorithms, pre- and post-pro-
cessing, number of hidden layers and size.

The main objective of this research is to develop an accu-
rate model for predicting 5-min solar radiation data in the
region of Ghardaïa, Algeria based on the number of days,
time, temperature and humidity. Furthermore, the novelty in
our study, compared to other studies, is that we have tried to
predict four parameters at once, which are: direct normal

radiation, diffuse radiation (90°), global radiation (90°), global
radiation (30°).

2 Artificial neural networks

A neural network is a massively parallel distributed processor
made up of simple processing units, known as nodes that
perform certain mathematical functions, usually nonlinear.
This kind of non-algorithmic computation is characterised
by a system that resembles the human brain structure. One
of the great advantages of these models is their ability to learn
(store experimental knowledge), generalise (make the knowl-
edge available) or extract automatically rules from complex
data (Haykin 1998).

The architecture of ANN consists of a number of units
called nodes. These nodes are arranged in layers and are in-
terconnected by weights and biases between the layers. Usu-
ally, three stages are considered in ANN applications, viz., (i)
training, (ii) validation and (iii) testing.

Neural networks are characterised by their topology,
weight vectors and activation functions. In this work, an
MLP model with each layer consisting of a number of com-
puting neurons has been used. A schematic representation of a
feed-forward MLP neural network is shown in Fig. 1. In this
network, all the information is transferred in the forward di-
rection only and there is no loop or cycle in the network.

The procedure of weight adjustment is called back-propa-
gation. A simplified procedure for the learning process of
ANNs is summarised below:

Step 1 Provide the network with training data consisting of
input variables and target outputs.

Fig. 1 Schematic diagram of a
feed-forward MLP network
(Bishop 1995)
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Step 2 Evaluate the agreement of the network output with
the target outputs.

Step 3 Adapt the connection weights between the neurons so
the network produces better approximations of the
desired target outputs.

Step 4 Continue the process of adjusting the weights until
some desired level of accuracy is achieved.

3 Study area and database

In order to train the neural network and to apply the suggested
methodology, the 5-min mean values of air temperature, rela-
tive humidity, global, direct and diffuse solar radiation, mea-
sured for 1 year (2007) by the Unit for Applied Research in
Renewable Energy (URAER) located in Ghardaïa city were
used; Ghardaïa is a city in northern-central of Algeria in the
Sahara desert (32°38 N, 3°78 E, 468 m above sea level)
(Fig. 2). Geographically, Ghardaïa is in a key region (in the
Sun Belt), to play an important strategic role in the implemen-
tation of renewable energy technology in Algeria.

The climate of Ghardaïa is classified as semi-arid with
minimum and maximum air temperatures ranging from 14 to
47 °C and 2 to 37 °C in summer and winter months, respec-
tively. The daily global solar radiation varies between a

minimum of 2.185 MJ/m2 to a maximum of 27.266 MJ/m2,
and the annual daily mean is about 20.361 MJ/m2, measured
on the horizontal surface.

Figure 3 shows the high precision radiometers, installed at
the rooftop of URAER, that record the solar radiation data
every 5 min. Air temperature and relative humidity are mea-
sured via a thermo-hygrograph.

Table 1 gives a detailed exposition of the specifications of
these apparatuses.

We note that a quality control procedure has been imple-
mented for data recorded where:

& Overcast days were rejected due to the difficulty of con-
trolling the data from pyrheliometer.

& Times where we found missing data, data that clearly vi-
olate physical limits and extreme data were omitted.

The database was divided in two different sets:

& Training and validation set: This data set constitutes the
major part of the data, because from this data set, the
connection weights of the neurons are adjusted during
the training in order to acquire the knowledge of the net-
work. On the other hand, the validation set is used for
verifying the generalisation ability of the network. The
training and validation set covers 66 % of the database.

Fig. 2 Geographical location of
Ghardaïa, Algeria
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& Test set: this data set is used to evaluate the ANN perfor-
mance in real situations. This data set is formed by the
remains of the database, i.e., 33 %.

4 Building the neural network and optimisation
methodology

There is no method to predetermine the best combination of
neurons/layers, as this depends on the specific model, the
physical process and the simulating data. In the bibliography,
there are some empirical relationships to solve this problem
but the best method till now is up to the researcher to build
several models and choose the best suited for the particular
application.

In this part, we list all important steps that led us to the
solution of the optimisation of neural networks. The following
parameters are investigated and optimised during the develop-
ment of the best network for the prediction of solar radiation:
input and output data selection, possible transfer functions,

training mode, stopping criteria, training algorithm, normal-
isation technique, number of hidden layers, number of hidden
nodes and performance evaluation measures.

4.1 Selection of input and output parameters

The performance of the final model is heavily dependent on
the input variables used to develop the model. The selection of
the best and appropriate set of input variables is a vital step
and essential to being able to model the system under consid-
eration reliably and to improve computational efficiency.
However, the input selection is a difficult task since real sys-
tems are generally complex and mostly associated with non-
linear processes. Consequently, the dependencies between
output and input variables, as well as conditional dependen-
cies between variables, are difficult to measure.

According to the limited data that we have and the lack of a
huge database with variety of inputs and outputs, we decided
to fix these inputs and outputs during the study stages. Air
temperature, relative humidity, number of days and local time
are considered as input parameters. These parameters are used
for simulating the outputs parameters, which are direct normal
radiation, diffuse radiation (90°), global radiation (90°), global
radiation (30°).

Thirty and Ninety degrees are respectively the optimal in-
clination for a maximum global irradiation on the year and the
South-facing vertical plane.

The structure of the neural network is shown in Fig. 4.

4.1.1 Sensitivity analysis

In order to investigate the impacts of the inputs parameters
selected at the predicted outputs, a sensitivity study is per-
formed, where the model that was chosen to be an application
example of the study has 4 inputs, 4 outputs and 10 neurons in
its hidden layer; it uses the Min–Max method as a normalisa-
tion technique and ‘trainbr’ as a training algorithm. Once the
network has been trained and optimised, weights matrix will
be generated (Table 2).

Fig. 3 Radiometric station. (1) A shading ball for diffuse irradiance
measurements. (2) Pyranometer for diffuse irradiance measurements.
(3) Pyranometer for horizontal global solar irradiance measurements.
(4) Pyranometer for tilted global solar irradiance measurements. (5)
Pyrheliometer for direct irradiance measurements

Table 1 Technical specifications of used instruments

Apparatus Pyranometer MS-64 Pyrheliometer MS-101D Thermo-hygrograph

Specifications Non-stability
Nonlinearity
Directional response
Spectral selectivity
Temperature response
Tilt response
Sensitivity
Operating temperature
range

Wavelength range

<0.5 %
<0.2 %
<10 W/m2

<1 %
<1 %
<0.2 %
≈7 μV/W/m2

−40 to +80 °C
305–2800 nm

Non-stability
Non-linearity
Directional response
Spectral selectivity
Temperature response
Tilt response
Sensitivity
Operating temperature
range

Wavelength range

<0.5 %
<0.2 %
<10 W/m2

<1 %
<1 %
–
6 to 10 μV/W/m2

−20 to +60 °C
200–4000 nm

Exactitude
Temp scale
Hum scale
Rotation
Sensor for temp
Sensor for hum

±3 %; ±0.5 °C
−15 to 65 °C
0 to 100 %
7 days
Ultra-sensitive
thermometric bulb

A special
hygrometric
bulb textile type
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Then, this weights matrix is exploited in the formula
(Eq. (1)) proposed by Garson (1991) to assess the relative
importance of the input variables.
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where Ij is the relative importance of the jth input variable on
output variable, Ni and Nh are the number of input and hidden
neurons, respectively, W’s are connection weights, the super-
scripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output layers,

respectively, and subscripts ‘k’, ‘m’ and ‘n’ refer to input,
hidden and output neurons, respectively. Note that the numer-
ator in (Eq. (1)) describes the sums of absolute products of
weights for each input. However, the denominator in (Eq. (1)),
represents the sum of all the weights feeding into hidden unit,
taking the absolute values (El Hamzaoui et al. 2011). A sum-
mary of the obtained results are shown in Table 3, where we
have found that, all input variables have a considerable influ-
ence on the estimation of solar radiation, with a slight advan-
tage of the air temperature and the local time.

4.2 Selection of the ANN structure

The selected ANN structure is a multi-layer feed-forward back-
propagation, consisting of an input layer, an output layer and
usually one or more hidden layers. A detailed description of this
network may be found in (Haykin 1994; Rumelhart et al. 1986).

Fig. 4 ANN architecture used for
estimation in this present work

Table 2 Statistical parameters obtained for the example ANN model (4-10-4)

Neuron
N°

W1 Bias 1 W2 Bias 2

Air
temperature

Relative
humidity

Number of
days

Local
time

Direct normal
radiation

Diffuse
radiation (90°)

Global
radiation (90°)

Global
radiation (30°)

1 −0.0704 −1.8408 0.2419 1.6572 2.4896 0.1812 0.3209 −0.9049 −0.3024 −0.3367
−0.6955
−0.3040
−0.7567

2 1.8090 1.0575 −0.7777 1.0965 −1.9363 −0.0973 −0.5182 0.4301 0.7124

3 −1.4768 0.5968 0.4868 1.8505 1.3831 −0.4370 0.4621 −0.7245 0.6734

4 −0.4554 1.3793 −0.5770 −1.9379 0.8299 −0.7228 0.1764 −0.2677 0.6135

5 2.0133 −0.4792 1.2084 −0.6743 −0.2766 0.0076 −0.0208 0.7541 −0.2937
6 1.9982 1.1957 −0.4121 0.7785 0.2766 −0.1011 0.9271 −0.9154 0.9459

7 1.1721 1.8397 −0.0420 −1.1991 0.8299 −0.6216 0.3342 0.1729 0.3502

8 0.7456 −1.1186 1.2270 −1.6987 1.3831 −0.2780 0.2406 0.6223 −0.9615
9 −0.7179 0.2394 2.1656 0.9672 −1.9363 −0.8323 0.9496 0.3027 −0.5375
10 1.5921 1.7495 −0.6289 0.4549 2.4896 −0.1930 −0.7560 −0.4631 −0.4843

W1 matrix of weights between the input and hidden layers,W2 matrix of weights between the hidden and output layers
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4.2.1 Transfer function

The main difference between the various network types lies in
the type of the activation function used by the hidden neurons. In
MLPs, a common type used by the hidden neurons has a logistic
sigmoid function shown in Eq. (2); and that by the output neu-
rons a purelin function shown in Eq. (3) (Rafiq et al. 2001; Vogl
et al. 1988; Hagan et al. 1996; MathWorks 2004):

f wð Þ ¼ 1

1þ e−w
ð2Þ

where W is the weighted sum of the input.

f zð Þ ¼ z ð3Þ

and Z is the input to the output layer.

4.2.2 Effect of learning rate

An important parameter in the back-propagation algorithm is
the learning rate. It is a parameter used to level out the changes
in the weights at the end of each epoch. The learning rate
coefficient determines the size of the weight adjustments made
at each iteration and hence influences the rate of convergence.
Poor choice of this coefficient can result in failure in
convergence.

We should keep the coefficient constant through all the
iterations for best results. If it is too large, the search path will
oscillate and will converge more slowly than a direct descent.
If it is too small, the descent will progress in small steps sig-
nificantly increasing the time of convergence. In the present
work, a learning rate of 0.1 is selected.

Table 3 Relative importance of input variables on the outputs

Input variables Air
temperature

Relative
humidity

Number
of days

Local
timeOutputs

Direct normal
radiation

21 % 26 % 21 % 32 %

Diffuse radiation
(90°)

29 % 26 % 20 % 25 %

Global radiation
(90°)

28 % 26 % 17 % 29 %

Global radiation
(30°)

28 % 25 % 18 % 29 %

Table 4 Example of ANN
performance with 20 trials Trial number MAPE (%)

Diffuse radiation
(90°)

Direct normal
radiation

Global radiation
(90°)

Global radiation
(30°)

1 22.88 4.16 0.87 4.25

2 20.91 4.85 0.88 3.40

3 22.27 4.46 0.93 4.10

4 21.70 4.83 0.96 3.63

5 20.71 4.52 0.95 4.16

6 23.81 4.71 0.90 3.94

7 21.42 4.66 0.89 3.81

8 21.33 4.54 0.91 3.54

9 20.92 4.54 0.86 3.98

10 21.61 4.71 0.91 3.58

11 22.38 4.75 0.99 3.94

12 21.44 4.29 0.89 3.29

13 21.55 5.04 0.98 4.68

14 21.64 4.76 0.89 4.24

15 21.05 4.50 0.84 3.86

16 22.45 4.20 0.96 3.61

17 21.50 4.45 0.91 3.77

18 21.52 5.00 0.90 3.90

19 20.37 4.81 0.88 3.95

20 22.58 4.47 0.89 3.82

Average MAPE (%) 21.70 4.61 0.91 3.87

Total average MAPE
(%)

7.77
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4.2.3 Number of epochs, goal and momentum

A very significant parameter in the ANN work is the number
of training epochs. Each epoch consists of all calculations
made by the network expressed as a response to the output
neuron. Therefore, the time of training was individually deter-
mined for each set of input data. The goal determines the
desired accuracy in the output result. Adding some inertia or
momentum to the gradient expression is another way to im-
prove the network performance. This can be accomplished by
adding a fraction of the previous weight change to the current
weight change. The addition of such a term helps to smooth
out the descent path by preventing extreme changes in the
gradients due to local anomalies. The values of these param-
eters assumed in this study are as follows:

& The number of epochs is 1000.

& The goal is 0.1.
& The momentum is 0.5.

All these values can be readjusted on real-time operation to
improve the prediction performance.

4.2.4 Training mode

There are two different modes for training ANNs: batch
mode and pattern mode. In a batch mode, when an epoch
is completed, a single average error is calculated and the
network weights are adjusted according to the error. In a
pattern mode, the error is calculated after each pattern is
presented to the network, and then the network weights
are adjusted. Choosing between the two modes is gener-
ally problem-specific. Swingler (1996) has indicated that
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the following points should be considered before making
the choice:

& The batch mode requires less weight update and hence it is
faster to train.

& The batch mode provides a more accurate measurement of
the required weight changes.

& The batch mode is more likely, than pattern mode, to be-
come tapped in local optima.

It would be advisable to train the network using
batch mode to start with and test and analyse the net-
work output. If the level of the error after testing the
network with unseen data, i.e., data that was not used in
training, is not satisfactory then a pattern mode should
be used.

4.2.5 Performance evaluation measures

In this article, we have only presented the mean of re-
sults obtained after about 20 trials with the same input–
output data for different models. An example of calculat-
ing the mean is illustrated in Table 4 (this example uses
the model ‘trainbr’ as the training algorithm and has 10
neurons in its hidden layer; it also uses the Min–Max
method as a normalisation technique).

Among the various statistical methods for assessing the
prediction performance of models, the mean absolute percent-
age error (MAPE) proposed by Lewis (1982), as one of the
most stringent criteria due to its relative values, is used for
comparing the final performance of different networks; the
mean squared error (MSE) is also used as a criterion for the
minimisation algorithms during the optimisation of the
network.

The MAPE and the MSE are defined as follows:

MAPE %ð Þ ¼ 1

n

� �
�

X
n

experimental value − predicted valueð Þ
experimental value

����
����� 100

 !

ð4Þ

MSE ¼ 1

n

X
n

experimental value − predicted valueð Þ
2
ð5Þ

where n is the number of data points.

4.2.6 Training algorithm

An algorithm is a procedure for solving a problem, in which a
list of well-defined instructions for completing a task will
proceed through a well-defined series of successive states,
eventually terminating in an end-state.

Selection of an appropriate ANN training algorithm has
always been a difficult task. Its importance is equally the net-
work architecture and geometry.

We performed thorough experimental tests to determine the
best training algorithm. Altogether, 13 different learning algo-
rithms for MLP networks algorithms available in Matlab were
used.

Only one hidden layer has been adopted with a variation in
the number of neurons from 1 to 30 for each tested algorithm.
As we have indicated previously, in each new configuration of
network, 20 trials have been carried out because the responses
of the networks were not stable, meaning that the performance
of the same network was varying from one training session to
another.

The detailed comparison of the performance of the MLP
neural networks trained by the different algorithms mentioned
above is shown in Fig. 5; where MAPE is plotted against the
number of neurons in the hidden layer.

In Fig. 5, it is observed that the performance results are
consistent with fairly minor changes when increasing the
number of neurons. However, it appears that among all algo-
rithms, trainlm, trainrp and trainbr out-perform the others in
account of error reduction. In order to see clearly the perfor-
mance of these three algorithms, Fig. 6 focuses on them only.

The variation range of MAPE values for all algorithms are
shown in Table 5.

Overall, these results are not good enough and, therefore,
no accurate estimations are expected. This means that the
networks should improve in terms of their prediction quality
and reduction of the error values. According to the previous
studies, the normalisation of data is considered necessary for
neural network training; it can be made more efficient using
certain pre-processing steps on the network inputs and targets.

Table 5 Range of MAPE (%) with different training algorithms

Training algorithm MAPE range (%) Rank

trainbfg 36.15–45.36 5

trainbr 25.83–50.75 3

traincgb 36.88–64.58 11

traincgf 32.91–67.39 12

traincgp 33.28–55.61 10

trainscg 39.99–54.09 9

traingd 39.74–41.44 6

traingda 68.15–99.47 13

traingdm 40.56–52.48 8

traingdx 39.20–45.26 7

trainlm 16.49–39.79 1

trainoss 35.62–41.51 4

trainrp 26.38–40.93 2
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4.2.7 Normalisation technique

The data normalisation refers to the analysis and trans-
formation of the input and output variables in order to
minimise noise, highlight important relationships, detect
trends and flatten the distribution of the variable to
assist the neural network in learning the relevant
patterns.

The created forecasting models based on ANN de-
mand a consistent treatment of the data to guarantee
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Table 6 Network code description

Pre-processing method Net1
(trainbr)

Net2
(trainlm)

Net3
(trainrp)

Min–Max method (MMM) Net1_1 Net2_1 Net3_1

Mean and standard deviation
method (MSDM1)

Net1_2 Net2_2 Net3_2

Mean and standard deviation method
with scaling the inputs variables
between [0.2, 0.8]; (MSDM2)

Net1_3 Net2_3 Net3_3
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reasonably good performance and effective application
of them. In general, the normalisation is accomplished
to assure that all variables used in the model inputs
have equal importance during the training; therefore,
the normalisation should range the data from lower to
upper limit of the activation function. Finally, outputs
from the neural network are denormalised before being
presented.

In order to compare the ability of ANN between normal-
isation and no normalisation of the data (Fig. 7), three pre-
processing techniques have been applied at the three best net-
works in the previous stage. These techniques are:

& Minimum and maximum method (MMM);

& Mean and standard deviation method (MSDM);
& Mean and standard deviation method (MSDM) with scal-

ing the inputs variables between [0.2, 0.8];

A coding system (Table 6) is then created to facilitate the
separation of the different networks in terms of the pre-
processing methods.

It must be mentioned that the networks preserve their struc-
tures and their parameters that were used in the previous stage.

The obtained results show that the normalisation techniques
make the networks more stable and with a minimum error com-
pared to those without normalisation. Also, the networks using
MMM as a pre-processing technique performed much better
than the others in terms of consistency and the lowest MAPE.
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Figure 8 depicts the comparison between the three net-
works when the MMM is applied. The lowest error value is
achieved by Net1_1 that used Bayesian Regularisation algo-
rithm (trainbr). Furthermore, its response in terms of

consistency was very well. This network has been chosen
for the rest of the trials in the following stages.

Table 7 Error performance and architecture of the 10 best networks

Architecture 4-30-30-4 4-28-30-4 4-29-30-4 4-30-29-4 4-25-30-4 4-28-28-4 4-29-28-4 4-29-25-4 4-27-30-4 4-27-29-4

MAPE (%) Diffuse
radiation (90°)

2.78 2.87 2.86 2.90 2.92 2.91 3.02 3.07 2.96 3.02

Direct normal
radiation

0.62 0.61 0.61 0.57 0.60 0.61 0.64 0.59 0.68 0.66

Global
radiation (90°)

0.37 0.34 0.37 0.37 0.40 0.36 0.37 0.38 0.38 0.37

Global
radiation (30°)

0.91 0.91 0.92 0.96 0.93 1.00 0.89 0.93 0.95 0.95

Total MAPE (%) 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.24 1.25

MBE (%) Diffuse
radiation (90°)

0.32 0.35 0.40 0.55 0.13 0.47 0.17 0.28 0.72 0.10

Direct normal
radiation

0.05 0.02 0.27 0.22 0.05 0.08 0.02 0.07 0.10 0.05

Global
radiation (90°)

0.08 0.02 0.04 0.09 0.15 0.10 0.05 0.11 0.09 0.46

Global
radiation (30°)

0.05 0.19 0.07 0.29 0.03 0.16 0.19 0.20 0.23 0.76

Total MBE (%) 0.12 0.14 0.19 0.28 0.09 0.20 0.10 0.16 0.28 0.34

RMSE (%) Diffuse
radiation (90°)

20.27 21.84 22.81 22.59 23.28 21.92 20.90 22.48 21.78 26.94

Direct normal
radiation

9.22 9.70 9.81 9.98 10.28 9.60 9.47 9.42 9.93 10.96

Global
radiation (90°)

7.03 7.20 7.11 6.98 7.08 7.10 7.00 7.06 7.00 7.40

Global
radiation (30°)

19.73 20.06 19.70 19.95 20.6 20.16 19.76 19.66 20.33 21.54

Total RMSE (%) 14.06 14.7 14.85 14.87 15.31 14.69 14.28 14.65 14.76 16.71

4-30-30-4 this code means four neurons in the input layer, 30 in both hidden layers and four in the output layer
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At the end of this stage, we can say that the three networks
have responded very well to the introduction of the pre-
processed data. They give excellent performance and fairly
accurate prediction. On the other hand, it appears that MAPE
has reduced when the hidden nodes increase. Consequently,
there is a relationship between the performance of network
and the hidden nodes. This will be examined in the next

section looking for improvement in order to reduce the net-
work error further.

4.2.8 Network architecture (number of hidden layers
and number of neurons)

It is known from the literature that the hidden nodes should be
in an optimum range. Avalue higher than this optimum range
causes over specification of input layer-hidden layer relation
leading to over fitting of the model.

The previous section showed that a single hidden layer
with a variation of nodes from 0 to 30 provides a favourable
network performance. The lowest min error value is achieved
by the network with 30 neurons, having MAPE equal to
4.51 %, root mean square error (RMSE) around 25.70 %
and correlation coefficient over 0.969.

We therefore decided to investigate the performance of
networks using two hidden layers. It is known that three or
more hidden layered systems cause unnecessary computation-
al overload. In order to reach an optimum amount of nodes in
the two hidden layers, training with hidden nodes from 0 to 30
in each layer was applied. There is often no better solution
than to proceed by successive trials to test the architecture of
the network. To start off with Net 1_1 will be used with all
possible combinations, i.e., 900.

Figure 9 shows all responses corresponding to those com-
binations in three dimensions. Each point in the graph corre-
sponds to a value of error performance to one combination. As
there is a huge number of points for all combinations, the
points were divided into groups; each group belongs to a
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specific MAPE range and the optimum point is discerned
from the rest of the points. In fact, there will be several optimal
combinations, and, therefore, this is truly a multi-objective
optimisation problem. The optimisation search should be for
a set of combinations that gives a superior output. Table 7
summarises the error performance and architecture of the ten
best networks.

Fig. 9 shows a decrease in MAPE values with an increase
in the hidden nodes. Further, the presence of a single node in
the hidden layer, whether the first hidden layer or the second,
gives undesirable results.

In comparison, the performance of a network with two hid-
den layers is considerably better than with one hidden layer;
typically, the network error was 5 times lower on average. The
architecture with 4-30-30-4, i.e., 30 hidden nodes in both hid-
den layers, shows the best overall predictability with MAPE=
1.17, MBE=0.12 and RMSE=14.06 %. This means that this
network will be used to perform similar tasks in the future.

Figure 10 shows the performance curve produced while
training the network. This performance is measured in terms
of MSE. The line converges to the best MSE possible (a con-
stant drop). It turns out that after 100 iterations, the perfor-
mance does not improve and settles at 0.0042251.

The performance of a trained network can be measured to
some extent by the errors on the training, validation and test
sets, but it is often useful to investigate the network response
in more detail. One option is to perform a regression analysis

which is a measure of how well the variation in the outputs is
explained by the targets. The R values obtained for the four
estimated outputs are 97.28, 97.56, 99.28 and 99.29 % as
shown in Figs. 11, 12, 13 and 14. The linear fit to the
output-target relationship is close to the 1÷1 line (output=
target), which is a good sign to an accurate learning of the
network.

5 Comparison with other models

To evaluate the importance of the results obtained, we tried to
compare them with similar studies, and especially, with the
models that have the same or most inputs such as we used.
We find that inmost models, the goal is to determine the global
solar radiation on horizontal planes, like Rehman and
Mohandes (2009) who developed ANN model by using three
combinations of input parameters (day, maximum air temper-
ature, mean air temperature and relative humidity) to estimate
global solar radiation for Abha city in Saudi Arabia. Al-Alawi
and Al-Hinai (1998) used location, month, mean pressure,
mean temperature, mean vapour pressure, mean relative hu-
midity, mean wind speed and mean sunshine hours as input
variables to multi-layer feed-forward network, for prediction
global radiation in Seeb locations. Lazzús et al. (2011) applied
ANNmodel, for the estimation of hourly global solar radiation
in La Serena (Chile). The inputs of the model are wind speed,

Table 8 Results of our model versus various similar models

Name of
model

Direct normal radiation Diffuse radiation (90°) Global radiation (90°) Global radiation (30°)

MAPE
(%)

RMSE
(%)

MBE
(%)

R
(%)

MAPE
(%)

RMSE
(%)

MBE
(%)

R
(%)

MAPE
(%)

RMSE
(%)

MBE
(%)

R
(%)

MAPE
(%)

RMSE
(%)

MBE
(%)

R
(%)

Our model 0.62 9.22 0.05 97.28 2.78 20.27 0.32 97.56 0.37 7.03 0.08 99.28 0.91 19.73 0.05 99.29

Rehman and
Mohandes

– – – – – – – – 4.49 – – – – – – –

AI-Alawi
and
AI-Hinai

– – – – – – – – 5.43 to
7.30

– – 93 to
95

– – – –

Lazzús et al. – – – – – – – – – – – 94 – – – –

Linares-
Rodríguez
et al.

– – – – – – – – – 16.4 – 94 – – – –

Elminir et al. – – – – – – – 89 to
95

– – – – – – – –

Elminir
et al. 2

– – – – – – – – – 3.97 0.38 29 to
96

– – – –

Jiang – – – – – 7.46 −0.55 94.81 – – – – – – – –

Mubiru and
Banda

– – – – – – – – 0.3 – – 97.4 – – – –

Benghanem
et al.

– – – – – – – – – – – 97.65 – – – –

Fadare – – – – – – – – – – – 90 – – – –

Azadeh et al. – – – – – – – – 0.03 – – 94 – – – –
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relative humidity, air temperature and soil temperature.
Linares-Rodríguez et al. (2011) estimated daily global solar
radiation in Spain via ANN model using latitude, longitude,
day of the year, daily clear sky global radiation, total cloud
cover, skin temperature, total column water vapour and total
column ozone as inputs. Elminir et al. (2007) carried out an
ANNmodel to predict diffuse radiation in Egypt, based on the
global solar radiation, long-wave atmospheric emission, air
temperature, relative humidity and atmospheric pressure as
inputs. Elminir et al. (2005) also proposed multi-layer feed-
forward network for predicting infrared, ultraviolet, global so-
lar radiation at Helwan city, using wind direction, wind speed,
ambient temperature, relative humidity as inputs parameters.
Jiang (2008) developed an ANN model for estimating month-
ly mean daily diffuse solar radiation. The input data to the
network are monthly mean daily clearness index, sunshine
percentage. Mubiru and Banda (2008) found FFBPANN ar-
chitecture to estimate monthly average daily global solar radi-
ation for Uganda locations. The network uses inputs as annual
average of sunshine hours, cloud cover, relative humidity,
rainfall, latitude, longitude and altitude. Benghanem et al.
(2009) used the inputs (air temperature, relative humidity, sun-
shine duration and the day of year) at different combinations to
estimate solar radiation in Al-Madinah (Saudi Arabia) with
ANN model. Fadare (2009) elaborated ANN model with dif-
ferent architecture, for prediction of solar energy potential over
195 cities in Nigeria. The inputs for the network are latitude,
longitude, altitude, month, mean sunshine duration, mean
temperature and relative humidity. Azadeh et al. (2009a) pro-
posed an ANN approach for predicting global solar radiation
by using inputs variables such as mean value of maximum
temperature, minimum temperature, relative humidity, vapour
pressure, wind speed, duration of sunshine and total precipita-
tion. The results obtained from these models that we have
mentioned and our results are collected in the Table 8.

6 Conclusions

In this paper, a methodology for choosing ANN model to
predict solar radiation was presented. However, this type of
studies has not been seriously addressed in the literature. The
objective of this paper was to bridge this gap. The methodol-
ogy starts with an extensive search in order to select the model
with minimum complexity, optimal performance and choice
of the respective parameters (inputs and outputs, activation
functions, training algorithm, normalisation technique, hidden
layers and hidden nodes).

This work only dealt with the optimisation of MLP back-
propagation networks. However, the method proposed is gen-
eral enough to be used with other connectionist models or
different training algorithms. Actually, the results confirm
the hypothesis that the MLP neural networks are competent

enough to estimate solar radiation when using meteorological
parameters as inputs.

During the training process, several neural network config-
urations were studied. We started with the use of 13 training
algorithms, by observing the effect of each of them on the
network performance; therefore, we chose the three top and
we attempted to improve their performance by using two nor-
malisation techniques. Among the six obtained networks, we
selected the best predicting network, which has also been test-
ed with two hidden layers and several hidden nodes. It has
been found that two hidden layers with 30 neurons in each
layer can provide a better prediction.

The mean MAPE, MBE and RMSE values are found to be
1.17, 0.12 and 14.06 %, respectively, for the optimum model,
with accuracy exceeded 97.28 % for the estimation of direct
and diffuse radiation, and reached up 99.29 % for the global
radiation, which proves that the estimated values are in good
agreement with the actual values. Comparing these results to
other studies in the same context, we can say that our model
gives better performance to many other models.
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