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Abstract We propose a new method to est imate
autoregressive model parameters of the precipitation amount
process using the relationship between original and trans-
formed moments derived through a moment generating func-
tion. We compare the proposed method with the traditional
parameter estimation method, which uses transformed data,
by modeling precipitation data from Denver International Air-
port (DIA), CO. We test the applicability of the proposed
method (M2) to climate change analysis using the RCP 8.5
scenario. The modeling results for the observed data and fu-
ture climate scenario indicate that M2 reproduces key histor-
ical and targeted future climate statistics fairly well, while M1
presents significant bias in the original domain and cannot be
applied to climate change analysis.

1 Introduction

Stochastic modeling and simulation of daily rainfall has been
a prominent subject in hydrology and water resources for sev-
eral decades. The simulation of daily rainfall can be used for
agricultural operations, for the design of irrigation systems,
and as an input for rainfall-runoff studies. These simulation
models have also been employed in climate change studies
(Lee et al. 2012; Mezghani and Hingray 2009). An important
criterion for stochastic modeling is reproducibility of the sta-
tistical characteristics of observed data. Target characteristics
for daily rainfall would be the occurrence and amount process-
es. The scaling behavior and over-dispersion (tendency to

underestimate the observed variance of larger time scale data)
of generated data have also been considered (Burlando and
Rosso 1996; Katz and Zheng 1999).

A number of models have been developed to explain these
processes. Traditionally, stochastic modeling of precipitation
separates daily rainfall into two processes to account for
intermittency.

The occurrence process was first modeled by Gabriel and
Neumann (1962) using a Markov Chain (MC) for Tel Aviv
daily rainfall data. TheMCmodel assumes that the probability
of rainfall for a certain day depends on that for the previous
day. The MC model has been further developed in several
studies (e.g., Dennett et al. 1983; Guttorp and Minin 1995;
Yoon et al. 2013; Berne et al. 2004).

Meanwhile, Burlando and Rosso (1991) applied the dis-
crete autoregressive moving average (DARMA) model,
which was originally formulated by Eagleson (1978), to the
occurrence process of precipitation data. An alternative model
for the occurrence process is renewal, defined as a sequence of
alternating wet and dry intervals (Hingray and Ben Haha
2005; Roldan and Woolhiser 1982). Several other models
have been developed to explain the occurrence process, such
as the non-homogeneous hiddenMarkovmodel (Hughes et al.
1999). Lall et al. (1996) used a nonparametric approach for
wet- and dry-spell length that is similar to the renewal model
but uses a discrete fernel estimator.

Several probability distributions have been used to model
daily rainfall amount. Rainfall amount is so highly skewed
that an appropriate distribution must be chosen, or the data
should be transformed to fit Gaussian-based time series
models. Todorovic andf Woolhiser (1975) chose the exponen-
tial distribution to describe the amount process; this distribu-
tion has been applied by other authors (Richardson 1981;
Wilby 1994). A two-parameter gamma distribution, with scale
and shape parameters, has also been studied (e.g., Eagleson
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1978; Katz 1996; Koutsoyiannis and Onof 2001). An alterna-
tive has been the use of a mixture of two single-parameter
exponential distributions (Lebel et al. 1998; Wilks 1999;
Woolhiser and Roldan 1982).

Transformations have been applied to skewed data for nor-
malization, and the autoregressive moving average (ARMA)
has been used in the study of successive rainfall amounts
(Katz and Parlange 1993, 1995). Katz (1999) experimented
with the power transformation and derived a direct
relationship between the original and transformed data for
moments and autocorrelation functions. This study
determined that the power transformation stabilizes the
variance and amplifies the autocorrelation of the amount of
consecutive rainy days. Hannachi (2012) applied the
autoregressive-1 (AR-1) model to daily precipitation from
the Northern Ireland Armagh Observatory. Aronica and
Bonaccorso (2013) applied a first-order Markov Chain and
ARMA model to qualitatively assess the impact of climate
change on the hydrological regime of the Alcantara River
Basin in Italy.

Time-dependent models for precipitation data are not fa-
vored due to model complexity. In the current study, we nor-
malized the data on the amount of precipitation with a power
transformation to test a time-dependent AR model. We ap-
plied a simple Markov Chain to precipitation occurrence (X
process). We used a novel method to estimate AR model pa-
rameters using the relationship between original and trans-
formed moments through the moment-generating function.
Finally, we compared our proposed method with the tradition-
al parameter estimation method from the transformed domain.

This paper is organized as follows: we present the mathe-
matical description in Section 2, followed by data description
and application methodology in Section 3. The results are
shown in Section 4. Finally, the summary and conclusions
are presented in Section 5.

2 Mathematical description

The model we applied to describe the daily rainfall process
had the following form:

Y ¼ X ⋅Z ð1Þ

where Y represents a positive intermittent variable of the daily
rainfall process, X is the occurrence variable, and Z is the
amount variable. X and Z are assumed to be independent and
periodic on a monthly basis.

2.1 Modeling the amount of precipitation

We applied a simple first-order AR-1 model because daily
precipitation data do not present long-term memory and

involve intermittency (Hannachi 2012). We tested two-
parameter estimation methods, the traditional direct method
(M1) and the indirect method (M2), each month to determine
how well key statistics were preserved on daily, monthly, and
yearly scales.

2.1.1 AR-1 model with direct parameter estimation (M1)

Katz and Parlange (1995) applied anARMAmodel to account
for the time dependency of precipitation events; because rain-
fall amount is highly positively skewed, these data are nor-
malized. Power and log transformations are generally used.
Katz (1999) applied a power transformation to daily rainfall
amount. This transformation enables choosing of the most
appropriate power value to match the magnitude of skewness.

The following equations describe the AR-1 model with the
power transformation for the daily rainfall variable at time t
(Zt):

Nt ¼ Zt
1=C ð2Þ

Nt ¼ μN þ ϕ1;N Nt−1−μNð Þ þ εt ð3Þ

where μN, σε, and ϕ1,N are the model parameters indicating the
mean, standard deviation of the random component, and the
first-order autocorrelation coefficient, respectively, for the
transformed domain variable N. εt represents the white noise
or error term with a normal distribution N(0,σε

2), where σε
2 is

the unexplained variance from the autoregressive model in
Eq. (3). Additionally, c represents the power exponent, for
which only an integer number is generally used (i.e., c=1,2,
3,…).

Note that the transformed variable Nt is assumed to be
normal with the condition that precipitation occurs (i.e., Xt=
1). Therefore, the parameters are also conditional. For exam-
ple, the mean μN is E(Nt|Xt=1) rather than E(Nt). The condi-
tion was not included in the notation for simplification in the
current work.

The model parameters have been estimated through the
method of moments, which uses the following relationship
between model moments and calculated moments from ob-
served data (Salas 1993):

bμN ¼ 1

n

X n

t¼1
Nt ð4Þ

bσ2

N ¼ 1

n−1

X n

t¼1
Nt−bμN

� �2
ð5Þ

bϕ1;N ¼ bρ1;N ¼
1

n−1

X n

t¼2
Nt−μNð Þ Nt−1−μNð Þ
bσN2

ð6Þ
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bσ2

ε ¼ 1−bϕ2

1;N

� �bσ2

N ð7Þ

Note that model parameters were estimated each month;
i.e., a different parameterization was applied each month.

Parameters estimated from Eqs. (4)–(7) are used to gener-
ateNt in the simulation. The generatedNt data should be back-
transformed to obtain Zt=Nt

c. Finally, Zt is multiplied by Xt to
obtain Yt.

2.1.2 AR-1 model with the indirect parameter estimation
method (M2)

Bias in key statistics has been reported when using M1 for the
AR-1model. In this section, we describe an indirect method to
estimate model parameters from the relationship between the
Z and N processes. This relationship is explicitly described by
Katz (1999) as follows:

E Ztð Þ ¼ E Nc
t

� � ð8Þ

E Z2
t

� � ¼ E N2c
t

� � ð9Þ

E ZtZtþlð Þ ¼ E Nc
t N

c
tþl

� � ð10Þ
where l=0, 1, 2,… is the time lag. Note that the proposed
method is only valid for cases in which the exponent c in
Eq. (2) is an integer.

The moment relationship between variables Z and N can be
derived from the moment generating function of a bivariate
normal distribution with two dummy random variablesU1 and
U2:

MU1U2
μ1; u2ð Þ ¼

exp μ1u1 þ μ2u2 þ
1

2
σ2
1u

2
1 þ σ2

2u
2
2 þ 2ρσ1σ2u1u2

� �� 	
ð11Þ

The product moments are denoted as follows:

γ j; kð Þ ¼ E U j
1;U

k
2

� � ð12Þ

The repeated partial differentiation of Eq. (11) with u1=
u2=0 yields the following two-dimensional recursion:

γ j; 0ð Þ ¼ μ1γ j−1; 0ð Þ þ j−1ð Þσ21γ j−2; 0ð Þ ð13Þ

γ 0; kð Þ ¼ μ1γ 0; k−1ð Þ þ k−1ð Þσ2
2γ 0; k−2ð Þ ð14Þ

γ 1; kð Þ ¼ μ2γ 1; k−1ð Þ þ σ1σ2ργ 0; k−1ð Þ þ k−1ð Þσ2
2γ 1; k−2ð Þ

ð15Þ

γ j; kð Þ ¼ μ1γ j−1; kð Þ þ kσ1σ2ργ j−1; k−1ð Þ þ j−1ð Þσ21γ j−2; kð Þ
ð16Þ

The initial condition for this recursion is γ(0,0)=1,γ(1,
0)=μ1,γ(0,1)=μ2,γ(1,1)=μ1μ2+σ1σ2ρ. Equations (13) and
(14) will provide the univariate moments, while Eqs. (15)
and (16) will provide the lagged correlation. By substituting
the derivatives of Eqs. (13)–(16) into Eqs. (8)–(10), the high
moments of the power transformed variable, N, are described
as follows:

E Ztð Þ ¼ E Nc
t

� � ¼ γ c; 0ð Þ ¼ μNγ c−1; 0ð Þ þ c−1ð Þσ2
Nγ c−2; 0ð Þ

ð17Þ

E Z2
t

� � ¼ E N 2c
t

� � ¼ γ 2c; 0ð Þ
¼ μNγ 2c−1; 0ð Þ þ 2c−1ð Þσ2

Nγ 2c−2; 0ð Þ
ð18Þ

E Zt; Ztþ1ð Þ ¼ E Nc
t ;N

c
tþ1

� � ¼ γ c; cð Þ ¼ μNγ c−1; cð Þ
þ cσ2Nρ1;Nγ c−1; c−1ð Þ þ c−1ð Þγ c−2; cð Þ

ð19Þ

Fig. 1 Time series of daily (top panel) and monthly (middle panel)
precipitation for 1999 and yearly (bottom panel) precipitation for all
data (1950–2003)

Precipitation simulation and applied to climate change analysis 93



Note that from the relationship between Z andN,N variable
statistics, such as the mean, standard deviation, and autocor-
relation, can be estimated from Z variable statistics. To com-
plete the relationship in Eqs. (17)–(19), recursion is required;
that is, γ(c−2,0) and γ(c−1,0) are required for γ(c,0), γ(c−3,
0) and γ(c−2,0) are required for γ(c−1,0), and so on. The
moments of the Z variable can be estimated from the arithmet-
ic mean of sampled data with the given formulation.

Instead of using moments, common statistics such as var-
iance and autocorrelation coefficients can be used for the re-
lationship, as follows:

σ2
Z ¼ EZ2− EZð Þ2 ¼ E N2c

� �
− E Ncð Þð Þ2 ¼ γ 2c; 0ð Þ− γ c; 0ð Þð Þ2

ð20Þ

ρ1;z ¼
Cov Nc

t ;N
c
tþ1

� �
Var Nc

t

� � ¼ E Nc
t ;N

c
tþ1

� �
− E Nc

t

� �� �2
E N 2c

t

� �
− E Nc

t

� �� �2
¼ γ c; cð Þ− γ c; 0ð Þð Þ2

γ 2c; 0ð Þ− γ c; 0ð Þð Þ2

ð21Þ

where bμN , bσN , and bρN are estimated from the moment
relationship.

Note that to perform the stochastic simulation of daily rain-

fall, bμN ;
bϕ1;N ; and bσ2

ε are required. bμN is estimated from nu-

merically solving Eqs. (17) and (20) as well as bσ2
N . bϕ1;N is

calculated from Eq. (21). bϕ2

ε is estimated from bσ2
N and bϕ1;N as

in Eq. (7). One example of c=2 is presented in Appendix 1 for
further clarification.

2.2 Modeling precipitation occurrence

Several models have been developed to simulate the occur-
rence process (X) of daily rainfall. Gabriel and Neumann
(1962) applied a binary occurrence process for wet and dry
days by Discrete ARMA (DARMA(p,q)). The simple DARM
A(1,0) is described as follows:

X t ¼ V tX t−1 þ 1−V tð ÞWt ð22Þ

Table 1 Estimated parameters from the AR-1model for method 1 (M1)
and method 2 (M2)

Month M1 M2

μN σε ϕ1,N μN σε ϕ1,N

1 1.029 0.152 0.005 1.027 0.164 0

2 1.054 0.153 0.033 1.059 0.151 0

3 1.095 0.171 0.179 1.074 0.18 0.448

4 1.127 0.191 0.006 1.127 0.197 0

5 1.12 0.204 0.204 1.131 0.201 0.273

6 1.101 0.182 0.31 1.096 0.196 0.303

7 1.114 0.205 0.074 1.125 0.207 0.023

8 1.087 0.201 0.113 1.098 0.187 0.427

9 1.104 0.186 0.12 1.117 0.18 0.041

10 1.126 0.191 0.152 1.151 0.155 0.362

11 1.099 0.168 0.157 1.119 0.137 0.339

12 1.055 0.147 0.169 1.027 0.184 0.129

Fig. 2 Key statistics of
precipitation amount for historical
(DIA station, dotted line with
cross mark) and M1 simulated
(boxplot) data. The box represents
the interquartile range (IQR),
whiskers are maximum and
minimum, and the horizontal line
is the median for 100 simulations
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where all variables represent binary processes, i.e.,Wt, Vt, and
Xt∈{0,1},

Pr Wt ¼ 1½ � ¼ ξ and Pr V t ¼ 1½ � ¼ λ ð23Þ

Therefore, the process Xt can be written as follows:

X t ¼ X t−1 with probability λ
Wt with probability 1−λ



ð24Þ

The DARMA(1,0) model is equivalent to the Markov
Chain, which has been applied broadly to model the rainfall
process since Gabriel and Neumann (1962). The Markov
Chain model is expressed with the following transition prob-
ability matrix:

P ¼ p00 p01
p10 p11

����
���� ð25Þ

where pab=Pr[Xt=b|Xt−1=a] and a,b∈{0,1}, with the limiting
distributions p0=Pr[Xt=0] and p1=Pr[Xt=1].

Fig. 3 Key statistics of
precipitation amount for historical
(DIA station, dotted line with
cross mark) and M2 simulated
(boxplot) data. The box represents
the interquartile range (IQR),
whiskers are maximum and
minimum, and the horizontal line
is the median for 100 simulations

Fig. 4 Transition and limiting
probabilities of precipitation
occurrence for historical (DIA
station, dotted line with cross
mark) and M1 and M2 simulated
(boxplot) data. The occurrence
process (X) model was the same
for M1 and M2, making the
results the same. The box
represents the interquartile range
(IQR), whiskers are maximum
and minimum, and the horizontal
line is the median for 100
simulations
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These two models (DARMA(1,0) and Markov Chain) are
equivalent to the following parametric relationship:

p00 p01
p10 p11

����
���� ¼ λþ 1−λð Þ 1−ξð Þ 1−λð Þξ

1−λð Þ 1−ξð Þ λþ 1−λð Þξ
����

���� ð26Þ

The components of the transition probability matrix are
estimated using maximum likelihood (Marani 2003) from pre-
cipitation occurrence data as follows:

bpab ¼ n a; bð Þ
n að Þ ð27Þ

Fig. 6 Key statistics of monthly
precipitation for historical (dotted
line with cross mark) and M2
simulated (boxplot) data. The box
represents the interquartile range
(IQR), whiskers are maximum
and minimum, and the horizontal
line is the median for 100
simulations

Fig. 5 Key statistics of monthly
precipitation for historical (dotted
line with cross mark) and M1
simulated (boxplot) data. The box
represents the interquartile range
(IQR), whiskers are maximum
and minimum, and the horizontal
line is the median for 100
simulations
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where n(a, b) is the number of times that rainfall in state a
transitions to state b, and n(a)=n(a,0)+n(a,1).

3 Data description and application methodology

3.1 Observational data

We used daily precipitation data measured between 1950 and
2003 from the Denver International Airport (DIA) station
(39.83° N, 104.66° W); we did not consider more recent data
because the station had been moved. Ayear-long daily precip-
itation time series is presented in the top panel of Fig. 1;
monthly and annual precipitation for all the data are shown
in the middle and bottom panels, respectively. Daily precipi-
tation indicates higher occurrence and amount during the sum-
mer (days 150–250). Therefore, we used different parameters
eachmonth to account for this annual cycle while applying the

same power transformation exponent (c) for Eq. (2). Monthly
precipitation data show a similar annual cycle, whereas yearly
precipitation shows stationary variation.

3.2 Employed climate scenario

A climate scenario was used to illustrate how our parameter
estimation method applies to climate change analysis. We se-
lected RCP 8.5 from the Coupled Model Intercomparison
Project phase 5 (CMIP5) from NOAA’s Geophysical Fluid
Dynamics Laboratory (GFDL) to validate the performance
of our method. The Bias-Correction Constructed Analogue
(BCCA) method (Maurer et al. 2010) was applied for the

Fig. 7 Cumulative distribution
function (CDF) of annual
maximum daily precipitation for
historical (dashed red line) and
M1 (solid black line) and M2
(dotted gray line) simulated data.
Note that longer series were used
for the simulation (i.e., 500
instead of 51 years; equal to the
historical record length) to
evaluate the overall CDF
behavior. Simulation CDFs are
averaged over 100 simulated
CDFs

Fig. 8 Annual maximum dry days from historical (solid line) and
simulated (dashed line) data

Table 2 Percent differences in the mean and standard deviation of
precipitation data between the reference period (1950–1999) and three
future periods (period 1, 2010–2039; period 2, 2040–2069; and period 3,
2070–2099)

Mean Standard deviation

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3

Mon1 34.1 29.6 53.6 55.1 32.6 51.3

Mon2 −1.0 22.0 32.6 −16.5 12.2 51.4

Mon3 18.8 31.4 20.1 9.3 1.7 4.1

Mon4 5.3 28.9 19.4 17.4 31.6 27.8

Mon5 21.7 8.9 29.0 26.8 −1.8 25.7

Mon6 −13.0 −7.8 −14.4 −15.8 −15.3 −15.3
Mon7 −12.4 −0.7 6.1 −13.6 −0.4 −6.1
Mon8 1.2 23.3 13.4 −3.5 2.1 −10.0
Mon9 15.4 4.2 −3.9 23.6 21.1 −5.8
Mon10 2.3 24.5 −5.9 22.5 36.1 16.8

Mon11 11.4 6.1 26.6 10.0 2.1 22.5

Mon12 28.9 51.0 104.2 31.4 51.3 77.4
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downscaled precipitation data of RCP 8.5 (Brekke et al. 2013)
(http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/).

The variation in mean and standard deviation statistics was
estimated from the climate scenario as follows:

Aθ %ð Þ ¼ ϕfuture−θre f
θre f

� 100 ð28Þ

where θ is the statistic for the future (θfuture) and reference (θref)
period. The reference period is the portion of the observed
climate with which climate change information is combined
to create a climate scenario; we selected 1950–1999 as our
reference period. The future period, 2010–2099, was separated
into the following three parts: period 1, from 2010–2039; peri-
od 2, from 2040–2069; and period 3, from 2070–2099.

Fig. 9 Key statistics of monthly
precipitation for historical (DIA
station, dotted line with cross),
climate change scenario (RCP
8.5, solid line with circle), andM2
simulated (boxplot) data for
2010–2039 (period 1). The box
represents the interquartile range
(IQR), whiskers are maximum
and minimum, and the horizontal
line is the median for 100
simulations

Fig. 10 Key statistics of monthly
precipitation for historical (DIA
station, dotted line with cross),
climate change scenario (RCP
8.5, solid line with circle), andM2
simulated (boxplot) data for
2040–2069 (period 2). The box
represents the interquartile range
(IQR), whiskers are maximum
and minimum, and the horizontal
line is the median for 100
simulations
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3.3 Application methodology

To validate the performance of our model, we simulated 100
sets of daily precipitation data with the same record length as
the historical data.We compared the mean, standard deviation,
skewness, lag-1 correlation, and marginal and transition prob-
abilities of the occurrence process for historical and simulated
daily precipitation data. We also compared the monthly and
yearly aggregated levels of historical and simulated data for
validation.

The statistics from the simulated data are presented with a
boxplot, in which the box displays the interquartile range
(IQR), and the whiskers extend to both extrema, with horizon-
tal lines at the maximum and minimum of the estimated sta-
tistics of the 100 generated sequences. The horizontal line
inside the box indicates the median of the data. In addition,
the value of the statistic corresponding to the historical data is
represented with a cross marker.

4 Results

4.1 Validation with observed data

To apply our method, we needed to choose an exponent for
Eq. (2). We tested several exponents; B6^ most reliably
reproduced the key daily statistics of the observed data, includ-
ing skewness. The power transformation was applied to elim-
inate the skewed distributional behavior of daily precipitation
data; our results were produced with an exponent of c=6.

We used two different parameter estimation methods (i.e., a
direct method (M1) and an indirect method (M2)). The esti-
mated parameters are presented in Table 1 for M1 and M2.
Key statistics for the amount variable (Z) of historical and
simulated data are presented in Figs. 2 and 3 for M1 and
M2, respectively. Figure 2 shows that the mean, standard de-
viation, and lag-1 correlation for the simulated data are
underestimated for almost all months with M1. In contrast,
Fig. 3 shows that with M2, the mean and standard deviation
are well reproduced. Skewness is not well preserved with
either method. We tested several other exponents to improve
skewness modeling unsuccessfully; there may not be a param-
eterization for skewness that resolves this bias.

Figure 4 shows the transition and limiting probabilities for
the occurrence variable; the occurrence process is well ex-
plained by the model. Note that using different parameter
estimation methods for the amount process does not affect
the occurrence process because the occurrence (X) and amount
(Z) processes are modeled independently (see Eq. (1)).

As shown in Fig. 5, underestimation of daily statistics from
M1 propagates to the monthly time scale. The mean and stan-
dard deviation of simulated monthly data from M1 are signif-
icantly underestimated in mostmonths. Nonetheless, the mean
and standard deviation from M2 are well explained even for
aggregate time scale (monthly) precipitation data, as presented
in Fig. 6. Note that neither method explains the lag-1 correla-
tion of historical monthly data.

Figure 7 shows the cumulative distribution functions
(CDFs) estimated for annual maximum daily precipitation
for historical and simulated data. We used theWeibull plotting
position formula to estimate corresponding CDFs for annual

Fig. 11 Key statistics of monthly
precipitation for historical (DIA
station, dotted line with cross),
climate change scenario (RCP
8.5, solid line with circle), andM2
simulated (boxplot) data for
2070–2099 (period 3). The box
represents the interquartile range
(IQR), whiskers are maximum
and minimum, and the horizontal
line is the median for 100
simulations
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maximum daily precipitation. M2 reproduces the historical
CDF shape better than M1, specifically the tail, whereas the
CDF produced byM1 is shifted to the left. We believe that the
significant underestimation of daily mean and standard devi-
ation statistics may have caused this shift. Figure 8 shows the
CDF of maximum run days for historical and simulated data,
indicating that the simple occurrence model properly explains
the extreme statistics of the upper level time scale (i.e.,
annual).

4.2 Downscaled climate precipitation data simulation

As mentioned, the change of the mean and standard devi-
ation in the future downscaled climate scenario (RCP8.5)
was estimated with the reference period of 1950–1999.
Table 2 shows the differences in the mean and standard
deviation between the reference and future periods. There
is an increase in the mean and standard deviation of the
future compared to the reference period, except in summer
months (months 6 and 7) and month 2. The variations of

the mean and standard deviation are similar for all pe-
riods. Mean differences are significantly increased during
the winter months (months 11, 12, 1, and 2) in later future
periods.

Figures 9, 10, and 11 show the historical, future, and
simulated (M2) statistics of the mean and standard de-
viation for periods 1, 2, and 3, respectively. The
targeted future statistics are estimated by applying ob-
servational statistics to the reference statistics as fol-
lows:

θfuture ¼ Δθ
.
100� θobs−θobs ð29Þ

Note that the traditional parameter estimation method (M1)
cannot reproduce the targeted future climate statistics because
the parameters inM1 are estimated from the transformed data.
When Eq. (29) is applied to the transformed parameters, the
back-transformed data cannot be used because they produce
inadequate values, such as those too large to be precipitation
values (data not shown).

Fig. 12 Mean (a-1, b-1, and c-1)
and standard deviation (a-2, b-2,
and c-2) of monthly precipitation
for historical (DIA station, dotted
line with cross) and M2 simulated
(boxplot) data for (a) period 1,
2010–2039; (b) period 2, 2040–
2069; and (c) period 3, 2070–
2099. The box represents the
interquartile range (IQR),
whiskers are maximum and
minimum, and the horizontal line
is the median for 100 simulations
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These figures indicate that our parameter estimation meth-
od adequately models key statistics (especially the mean and
standard deviation) of the climate change scenario. The lag-1
correlation, which should not differ from that of the reference
period, is reproduced well in all future periods. Skewness is
still not modeled correctly. A significant increase in the mean
is seen in winter months, especially for period 3 (see Fig. 11).

Figure 12 shows the mean and standard deviation of
monthly precipitation data for future periods. There is a sig-
nificant increase in the mean and standard deviation, com-
pared to historical statistics, for month 5 of periods 1 and 3;
there is no difference for period 2. The increase seen during
winter months for daily precipitation (see Table 2) is not
noticeable.

5 Summary and conclusions

We compared rainfall simulation models to DIA data. To ad-
equately capture the intermittency of daily rainfall, the daily
rainfall (Yprocess) is modeled separately from the occurrence
(X) and amount (Z) processes. A simple Markov Chain is
applied to the X process, and we focus mainly on the amount
process, Z. We used the AR-1 model for each month of the
study, applying a power transformation to normalize data. We
compared the traditional parameter estimation method (M1)
from transformed data with the indirect parameter estimation
method (M2) from the relationship between the original and
transformed moments.

We modeled historical precipitation data from DIA, CO, to
test the performance of M1 and M2. Data simulated with M1
underestimate the mean, standard deviation, and lag-1 corre-
lation, whereas the M2 simulated data model those statistics
fairly well.

Further investigation for the applicability of M1 and M2 to
climate change analysis was performed using downscaled
RCP 8.5 data. The proposedM2 parameter estimation method
models future climate statistics fairly well. M1 cannot be ap-
plied in the climate change study because it requires estimat-
ing parameters in the transformed domain, but the values pro-
duced are highly inadequate.

The M2 method is comparable to M1 in preserving key
historical statistics and surpasses M1 in the climate change
analysis. Additionally, M2 can also be applied to higher order
ARMA models as well as to seasonal ARMA models. Al-
thoughM2was applied to daily precipitation data, it can easily
be extended to other applications that use ARMAmodels with
the power transformation.
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Appendix 1: Example of M2 parameter estimation
procedure

As an example, the parameter estimation procedure of M2 for
the exponent c=2 is presented below. Themean, variance, and
lag-1 correlation for the original variable Z can be expressed
as:

μZ ¼ E Ztð Þ ¼ E N 2
t

� � ¼ γ 2; 0ð Þ ¼ μNγ 1; 0ð Þ
þ 2−1ð Þσ2

Nγ 0; 0ð Þ ¼ μ2
N þ σ2

N

ðA1Þ

σ2
Z ¼ EZ2− EZð Þ2 ¼ E N4

� �
− E N2

� �� �2 ¼ γ 4; 0ð Þ− γ 2; 0ð Þð Þ2

¼ μNγ 3; 0ð Þ þ 3σ2
Nγ 2; 0ð Þ− μ2

N þ σ2
N

� �2 ðA2Þ
ðA2Þ

ρ1;z ¼
γ 2; 2ð Þ− γ 2; 0ð Þð Þ2
γ 4; 0ð Þ− γ 2; 0ð Þð Þ2 ðA3Þ

γ 2; 2ð Þ ¼ μNγ 1; 2ð Þ þ 2σ2
Nρ1;Nγ 1; 1ð Þ þ γ 0; 2ð Þ ðA4Þ

Here, μz, σZ
2, and ρ1,z are known values from the original

amount data employing Eqs. (4)–(6), but for the original data

before transformation. bμN and bσ2
N are estimated with two

known values of μZ and σZ
2 by numerically solving

Eqs. (A1) and (A2). Note that Eq. (A2) is a function of μZ
and σZ

2.
Furthermore, ρ1,N is numerically solved with Eqs. (A3) and

(A4) after estimating bμN and bσ2
N . Additionally, bσ2

ε is estimated
from Eq. (7).
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