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Abstract Evaporation is one of the most important compo-
nents of the hydrological cycle, but is relatively difficult to
estimate, due to its complexity, as it can be influenced by
numerous factors. Estimation of evaporation is important for
the design of reservoirs, especially in arid and semi-arid areas.
Artificial neural network methods and support vector ma-
chines (SVM) are frequently utilized to estimate evaporation
and other hydrological variables. In this study, usability of
artificial neural networks (ANNs) (multilayer perceptron
(MLP) and radial basis function network (RBFN)) and ε-
support vector regression (SVR) artificial intelligence
methods was investigated to estimate monthly pan evapora-
tion. For this aim, temperature, relative humidity, wind speed,
and precipitation data for the period 1972 to 2005 from
Beysehir meteorology station were used as input variables
while pan evaporation values were used as output. The
Romanenko and Meyer method was also considered for the
comparison. The results were compared with observed class A
pan evaporation data. In MLP method, four different training
algorithms, gradient descent with momentum and adaptive
learning rule backpropagation (GDX), Levenberg–
Marquardt (LVM), scaled conjugate gradient (SCG), and re-
silient backpropagation (RBP), were used. Also, ε-SVR mod-
el was used as SVRmodel. The models were designed via 10-
fold cross-validation (CV); algorithm performance was
assessed via mean absolute error (MAE), root mean square
error (RMSE), and coefficient of determination (R2).
According to the performance criteria, the ANN algorithms

and ε-SVR had similar results. The ANNs and ε-SVR
methods were found to perform better than the Romanenko
and Meyer methods. Consequently, the best performance
using the test data was obtained using SCG(4,2,2,1) with
R2=0.905.

1 Introduction

Because of the complexity between the components of land,
plant, water surface, and atmosphere system, evaporation is
perhaps the most difficult and complicated parameter to esti-
mate among all the components of the hydrological cycle
(Singh and Xu 1997). Estimation of evaporation is important
in all areas associated with water resources because it affects
the reservoir capacity, rainfall-runoff modeling, river basin
yield, irrigation water management for the calculation of crop
water requirements and its scheduling, etc. In areas with little
rainfall, evaporation losses can represent a significant part of
the water budget for a lake or reservoir and may contribute
significantly to the lowering of the water surface elevation
(McCuen 1998).

The actual measurement of evaporation is almost impossi-
ble, but evaporation can be estimated using several methods.
There are two general approaches to the estimation of evapo-
ration: direct and indirect methods. Direct methods include the
application of class A pan measurements, class U pan, lysim-
eter, and other types of measurements; indirect methods com-
prise models based on meteorological variables, such as
Penman–Monteith, Priestley–Taylor, Blaney–Criddle, and
Thornthwaite equations; catchment water budget approach;
energy budget method; and mass transfer method (Terzi
2013).

It is impractical to place evaporation pans at every point
where there is a planned or existing reservoir and irrigation
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project. It is also highly impractical in inaccessible areas,
where accurate instruments cannot be established or main-
tained. A practical means of estimating the amount of pan
evaporation where no pans are available is of considerable
significance to hydrologists, agriculturists, and meteorologists
(Kisi 2009).

The indirect methods of evaporation estimation that were
proposed by some researchers often require some forms of
input data that are not readily available. Also, the evaporation
process is highly nonlinear, and so, simple models cannot
satisfactorily describe the nonlinear behavior of the process
via the available data (Shiri and Kisi 2011).

The artificial intelligence methods such as artificial neural
network (ANN) and support vector machines (SVM) have
been successfully utilized to a number of areas of civil engi-
neering (Ahmad et al. 2007; Shahin et al 2004; Yavuz et al.
2014; Goh and Goh 2007; Ulengin and Topcu 2000; Cheng
and Cao 2014; Koroglu et al. 2012; Goyal 2014; Kisi 2012,
etc). The natural behavior of hydrological processes is appro-
priate for the application of artificial intelligence methods
(McCuen 1998).

In recent years, ANNs and SVM have been extensively
used to model numerous nonlinear hydrological processes
such as rainfall (Goyal 2014), precipitation (Hamidi et al.
2014), rainfall-runoff modeling (Modarres 2009), evaporation
(Terzi 2013; Samui and Dixon 2012; Kisi 2013; Kim et al
2014), temperature (Ertac et al 2014), water quality (Kalin
et al 2010), streamflow (Kisi and Cimen 2011), water level
(Cimen and Kisi 2009) and suspended sediment (Kisi 2012),
etc.

Samui et al. (2011) used support vector machine (SVM)
and relevance vector machine (RVM) to predict rainfall of
Vellore town in Tamil Nadu State, India. Goyal (2014) inves-
tigated the usability of wavelet regression models for monthly
rainfall prediction using the rainfall data from 21 stations in
Assam, India and to compare them with the performance of
artificial neural network models. Consequently, the
performances of wavelet regression models are found to be
more successful than the ANN models. Hamidi et al. (2014)
compared two machine learning techniques, artificial neural
network (ANN), and support vector machines (SVM) for
modeling monthly precipitation. They used the monthly pre-
cipitation data of two synoptic stations in the central area of
Hamadan (Airport and Nojeh), the west of Iran. According to
the results, the SVM models are found to be better than the
ANN models in order to predict monthly precipitation.
Modarres (2009) studied an effective ANN model for
rainfall-runoff modeling of the Plasjan Basin in the western
region of the Zayandehrud watershed, Iran. Ertaç et al. (2014)
carried out nonlinear time series analysis and partial least
square (PLS) to estimate monthly mean temperature using
meteorological variables like temperature, humidity, and rain-
fall from 54 meteorology observation stations of Istanbul in

Turkey and compared with artificial neural networks (ANNs).
Kim et al. (2014) used a multilayer perceptron neural net-
works model (MLP-NNM) and a cascade correlation neural
networks model (CCNNM) for predicting daily pan evapora-
tion using five-input models for inland and coastal stations in
the Republic of Korea. Terzi (2013) assessed the performance
of gene expression programming (GEP) and adaptive neural-
based fuzzy inference system (ANFIS) for the estimation daily
pan evaporation from Lake Egirdir. Consequently, it was
found that the GEP model was better than the ANFIS model.
Kisi (2013) examined the accuracy of a least square support
vector machines (LSSVM) to estimate reference evapotrans-
piration (ET0) and compared empirical models (Priestley–
Taylor, Hargreaves, and Ritchie methods) and ANN. It was
seen that the LSSVM models performed better than the
empirical and ANN models for modeling ET0. Samui and
Dixon (2012) used support vector machine (SVM) and rele-
vance vector machine (RVM) to predict evaporation losses in
reservoirs and compared ANN models. The results show that
SVM and RVMmodels can be used as practical tool to predict
evaporation. Cimen and Kisi (2009) investigated the usability
of SVM and ANN techniques to predict surface water level
changes of Van and Egirdir Lakes in Turkey.

The objective of this study was to investigate usability of ε-
support vector regression (SVR), radial basis function net-
work (RBFN), and multilayer perceptron (MLP) methods
for estimating monthly pan evaporation using meteorological
data such as rainfall, wind speed, relative humidity, and tem-
perature. In MLP method, four different training algorithms,
gradient descent with momentum and adaptive learning rule
backpropagation (GDX), Levenberg–Marquardt (LVM),
sca led conjuga te grad ien t (SCG) , and res i l i en t
backpropagation (RBP) were used.

2 Material and methods

2.1 Case study

Monthly data were obtained from Beysehir meteorology sta-
tion operated by the General Directorate of State
Meteorological Affairs, located near Lake Beysehir in the
southwestern part of Turkey. Beysehir observation station is
one of the three meteorology stations which make class A pan
evaporation observations and represent the evaporation on
lake surface area in Beysehir Lake catchment area and its
immediate surroundings.

Lake Beysehir is the largest freshwater lake and drinking
water reservoir in Turkey and located (37° 40′ 54″ N, 31° 43′
22″ E) between Beysehir (Konya) and Sarkikaraagac (Isparta)
provinces. It has a surface area of approximately 650 km2, is
45 km long and 20 km wide, with a maximum depth of 10 m,
and has a precipitation area of 3095 km2. It carries the same
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name as the principal urban center of the region, Beysehir.
Lake Beysehir is the most important drinking and irrigation
water source for Central Anatolia. The water level in the lake
often fluctuates by year and by season. Lake Beysehir is also a
national park.

2.2 Data

Monthly data for the period 1972 to 2005 were used for train-
ing and testing ANN models. Of the entire data set (227
monthly series), 150 were used for training the ANN and ε-
SVRmodels and 77monthly values were used for testing. The
meteorological data used in this study were divided as input
and output for the ANN and ε-SVR to determine the effects of
meteorological factors on evaporation. Months for which
there were inadequate data were removed. Input data were
mean air temperature (T), mean relative humidity (RH), wind
speed (WS), and total rainfall (R); output data was class A pan
evaporation (E). The monthly statistical parameters of the cli-
matic data are given in Table 1; Xmin, Xmax, Xmean, Sx, Cv, and
Csx symbolize the minimum, maximum, mean, standard devi-
ation, variation coefficient, and skewness, respectively.

Statistical analysis of the meteorological parameters given
in Table 1 indicated that rainfall data demonstrated the highest
variation (1.03) and skewness (1.41), whereas the relative hu-
midity showed the lowest variation (0.14) and skewness
(0.10); since temperature is the most effective factor for evap-
oration (correlation coefficient 0.94), evaporation increases as
temperature increases; the relative humidity and rainfall ex-
hibited significantly higher negative correlations (−0.70 and
−0.56, respectively) with evaporation; the wind speed had a
negligible effect on evaporation, with the lowest correlation
coefficient of 0.12.

2.3 Artificial neural networks

Artificial neural networks are inspired by biological neuron
processing and are utilized in many studies of various disci-
plines such as mathematics, statistics, computer science, and
engineering to realize many tasks—modeling, time series
analysis, signal processing, pattern recognition, and classifi-
cation (Haykin 1999). ANNs are distributed, adaptive, gener-
ally nonlinear learning machines that are built from many

different nonlinear processing elements called Bneurons,^
each of which receives connections from other neurons or/
and itself according to the training algorithm. The signals
flowing on the connections are scaled by adjustable parame-
ters known as weights (Principe et al. 2000).

2.3.1 Multilayer perceptron

Gradient descent with momentum and adaptive learning rule
backpropagation algorithm The GDX is a backpropagation
method that uses a gradient descent technique to train the
supervised, layered, feed-forward network. The architecture
of the method is designed with one input layer, one or more
hidden layers, and one output layer.

The number of hidden layers and the number of neurons on
each layer differ between applications (Skapura 1996).

In this method, before training, the training patterns, target
output patterns, and other network parameters (learning rate,
minimum error, transfer functions of each layer’s neurons, the
number of hidden neuron, and maximum iteration) are deter-
mined according to the application. The number of input- and
output neurons is dependent on the application and is auto-
matically assigned. The connection weightings between neu-
rons in the input, hidden, and output layers and biases are
initially randomized small values, which are modified as the
process of training the network proceeds (Haykin 1999;
Fausett 1994).

The training process begins with the presentation of an
input pattern to ANN, through which the propagation of the
input pattern was performed using neurons until an output
value is produced. Finally, each neuron modifies its input
connection weights slightly in a direction that reduces the
error signal, and the process is repeated for the next pattern
(Fausett 1994).

Scaled conjugate gradient algorithm In the traditional
backpropagation algorithm, the weights are modified in the
steepest descent direction; in an SCG algorithm, a search is
conducted along conjugate directions (Principe et al. 2000).

Each of the conjugate gradient algorithms requires a line
search in each iteration. These algorithms start with the gradi-
ent descent direction and search for the minimum along a line.
However, this method is time-consuming because it requires

Table 1 Statistical characteristics of the data used in the study

Data Xmin Xmax Xmean Sx Cv (Sx/Xmean) Csx Correlation (with E)

Evaporation, E (mm/month) 4.40 294.70 140.29 59.34 0.42 −0.25 1.00

Wind speed, WS (m/s) 0.00 2.20 0.80 0.47 0.59 0.60 0.12

Relative humidity, RH (%) 36.00 76.00 57.52 8.19 0.14 0.10 −0.70
Temperature, T (°C) 3.90 24.60 16.63 4.79 0.29 −0.55 0.94

Rainfall, R (mm) 0.00 147.20 26.87 27.62 1.03 1.41 −0.56
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the network responses to all training inputs to be computed
several times for each search (Principe et al. 2000; Moller
1990).

The SCG algorithm has fully automated line search includ-
ing user-independent parameters and was developed by
Moller (1990) to avoid time-consuming line search per learn-
ing iteration. The convergence criterion of SCG produces a
speed increase of at least one order of magnitude relative to
backpropagation (BP). SCG uses second-order information
from the neural network but requires only O(N) memory us-
age. In comparison with BP, SCG involves twice as much
calculation work per iteration, since BP has a calculation com-
plexity of O(N) per iteration (Moller 1990).

Resilient backpropagation algorithm The RBP is a successful
training algorithm that manages a direct adaptation of the
weight step with local gradient information. An individual
update value (Δij) for each weight determines the size of the
weight update. During the learning process, this adaptive up-
date value changes depending on its local sight on the error
function E, according to the following learning rule
(Riedmiller and Braun 1993):

Δ tð Þ
i j ¼

ηþ �Δ t−1ð Þ
i j ; if

∂E t−1ð Þ

∂wi j
� ∂E tð Þ

∂wi j
> 0

η− �Δ t−1ð Þ
i j ; if

∂E t−1ð Þ

∂wi j
� ∂E tð Þ

∂wi j
> 0

Δ t−1ð Þ
i j ; else

8>>>>><
>>>>>:

ð1Þ

where 0<η−<1<η+

In this algorithm, the sign of the partial derivative of error
function (E) with respect to the corresponding weight changes
(wij) is used to determine the direction of the weight update.
However, the magnitude of the derivative does not affect the
weight update (Riedmiller and Braun 1993).

After the update value for each weight is computed, the
weight update is realized with a simple rule: if the derivative
is positive (increasing error), the weight is decreased by its
update value, and if the derivative is negative, the update value
is added. Furthermore, the update value remains the same
when the derivative is zero (Riedmiller and Braun 1993). If
the weight oscillates, the weight change is reduced. Whenever
the weight continues to change in the same direction for sev-
eral iterations, then, the magnitude of the weight change will
be increased (Kisi and Uncuoglu 2005).

The Levenberg–Marquardt algorithm The LVM algorithm is
observed to be more effective than simple gradient descent
and many other conjugate gradient methods in a wide variety
of problems. LVM presents local search properties of Gauss–
Newton with consistent error decrease using a gradient

descent algorithm. The training of a feed-forward network
based on LVM is considered as an unconstrained optimization
problem. The crucial disadvantages of the LVM algorithm are
the requirement of increased memory capacity to calculate the
Jacobian matrix of the error function and that it is not guaran-
teed to find global optimum. If the solution is unacceptable,
the whole training process should be restarted (Mukherjee and
Routroy 2012).

LVM represents a simplified version of Newton’s method
which is a well-established numerical optimization technique
with quadratic speed of convergence. An obvious problem
with Newton’s method is the computational requirement in-
volved in calculating the inverse of a Hessian matrix. Even for
moderate-sized neural networks, the complexity of the algo-
rithm limits its practical use. LVMoffers a viable alternative to
Newton’s method, but has approximately the same conver-
gence speed and significantly less complexity. To apply
LVM, the problem of training the MLP has to be formulated
as a nonlinear optimization (Ham and Kostanic 2001).

In the gradient descent algorithm, a momentum is integrat-
ed to assist potential overshooting of local minima. By this
approach, the local approximation of the cost function is as-
sumed to be a quadratic and expanded second-order Taylor
series. The main drawback of this algorithm is the computa-
tional complexity of calculating the matrix inversion with sev-
eral thousand variables (Mukherjee and Routroy 2012).

2.3.2 Radial basis function network

Similar to MLP, RBFN is an example of a nonlinear layered
feed-forward network, which can be used for both classifica-
tion and functional approximation. For classification, the net-
work can determine how close the given input is to the center
of the Gaussian kernel by the response of the corresponding
hidden unit (Haykin 1999; Fu 1994). The main difference
between the RBFN network and the backpropagation network
is their transfer functions—the radial basis function deals with
only the small regions whereas the sigmoid function adopts
non-zero values over an infinitely large region of input space
(Fu 1994). The RBFN is principally designed as three layers
with entirely different roles: the input layer comprised of
source nodes connects the network to its environment, the
linear output layer supplies the response of the network to
the activation pattern applied to the input neurons, and the
only hidden layer between the input and output layers applies
a nonlinear transformation from input to hidden (Haykin
1999; ASCE Task Committee 2000). A RBFN network is
generally preferred due to its rapid training ability and general
applicability (Han and Felker 1997).

The Gaussian function, the most common activation func-
tion chosen for RBFN in the hidden layer, produces a local-
ized response to the input. The training process of RBFN can
be evaluated in two phases. In the first phase, learning is
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performed using unsupervised methods such as a k-means
clustering algorithm in the hidden layer, and the learning pro-
cess uses supervised methods such as the least mean square
(LMS) algorithm for the output layer in the second phase (Fu
1994).

2.4 Support vector machines

The decision support systems which are called machine learn-
ing method were put forward to solve classification (SVM)
and then regression (SVR) type problems by Vapnik for the
first time in 1995 (Vapnik 1995). In both classification and
regression operations, the learning problem is represented in
the form of an optimization problem with quadratic objective
function. SVM is a next-generation learning method oriented
under the roof of statistical learning theorem which can be
learned from high dimensional and small number of training
data (Shen 2005), and the general structure of SVM is seen in
Fig. 1. The SVR function is given in Eq. 2.

f xð Þ ¼
X
i¼1

Nd

α*
i K xi; xð Þ þ b ð2Þ

where αi
* is Lagrange multipliers, K(xi,x) is the kernel func-

tion, and b is the bias value. As ϕ (xi)
T and ϕ(x) feature vec-

tors, the general structure of the kernel function is denoted as
in Eq. 3.

K xi; xð Þ ¼ ϕ xið ÞTϕ xð Þ ð3Þ

The selection of the kernel function to be used and of mod-
el parameters plays a vital role to determine the SVR perfor-
mance. However, there is no any determinant criterion with

respect to selection of either kernel function or model param-
eters (Lin 2006).

Three factors which are effective in SVR performance are ε
error term, C configuration factor, and type of kernel function,
thereby the parameter of the kernel function (Ekici 2007). The
kernel functions commonly used in SVR applications are give
in Table 2.

The SVR applications can be performed in two different
models such as ε-SVR and υ-SVR. In this study, ε-SVRmod-
el and radial basis kernel function commonly preferred in
SVR applications in the literature as a kernel function are
used.

The program known as ORANGE Software has been used
to estimate by the SVR method the evaporation amount in
Beysehir Lake, and the applications for ANN are performed
by MATLAB 2010b.

2.5 Romanenko method

This equation, developed by Romanenko (1961), is one of the
empirical equations used for monthly evaporation amount es-
timation and is stated as follows:

E ¼ 0:0018 25þ Tað Þ2 100 − RHð Þ ð4Þ

where

E Evaporation amount (mm/month)
Ta Air temperature (°C)
RH Relative humidity (%).

2.6 Meyer method

Meyer method, used for the estimation of evaporation amount
from water surface and developed by Meyer (1915), is given

Fig. 1 General structure of
support vector machines
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below.

E ¼ 11⋅ es−eð Þ 1þ WS

16

� �
ð5Þ

where

E Evaporation amount (mm/month)
es Saturated vapor pressure at (mmHg)
e Vapor pressure (mmHg)
WS wind speed (km/h).

RH, es parameter used in Eq. 5 as relative humidity, is
calculated with equations below.

RH ¼ e

es
ð6Þ

es ¼ 6:11exp 17:3T
.

237:3þ Tð Þ
h i

ð7Þ

2.7 k-fold cross-validation

In the k-fold cross-validation method, data are separated into k
partitions/folds (approximately equal), and each of the parti-
tions in the turn is used for test while the rest is used for
training. Thus, k-1 partitions of the k parts are worked for
training and the remaining one (the kth hold-out part) is used
for testing.

This procedure is repeated k times, so that every sample is
exercised strictly once during the test process. The average
error of all k periods is then calculated. Thus, the confidence
of classifier and data was demonstrated using cross-validation
(CV) (Lehmann et al. 2007).

2.8 Performance criteria

The performance criteria of root mean square error (RMSE),
mean absolute error (MAE), and coefficient of determination
(R2) were used to evaluate the results. Here, the strength of the
relationship between two variables was measured with R2;

various types of information about the estimation capabilities
of the model were provided by RMSE and MAE, and since
MAE yields a more balanced perspective of the goodness-of-
fit at moderate evaporation, the goodness-of-fit related to high
evaporation values was measured by RMSE (Karunanithi
et al. 1994). RMSE and MAE are defined as follows:

MAE ¼ 1

N

XN
i¼1

Eiobserved− Eiestimatej j ð8Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Eiobserved−Eiestimateð Þ2
vuut ð9Þ

in which N is the number of data set and Ei is the monthly
evaporation.

3 Results and discussion

In this study, before applying ANNs and SVM to data, the
input and output values were normalized in the range of [0,
1] using Eq. 10 in order to remove disparities related to the
differing units used to represent the parameters.

X norm ¼ X−Xmin

Xmax−Xmin
ð10Þ

where Xnorm, X, Xmin, and Xmax are the normalized value, ob-
served value, minimum value, and maximum value,
respectively.

Initially, many trials were carried out to determine the most
appropriate network models, by using different numbers of
hidden layer neurons and iterations for all the training ANN
methods and, additionally, by changing the learning rate and
momentum coefficient for MLP.

Furthermore, many trials were made for various transfer
functions to determine the most appropriate network structure
for the learning algorithms except the RBFN method. As a
result of trials, the appropriate transfer functions were deter-
mined as hyperbolic tangent function and logarithmic sigmoid
function for the hidden layer neurons and output layer neu-
rons, respectively. Using different iterations, trials between
500 and 10,000 were conducted for LVM, GDX, and RBP,
and between 25 and 1000 for SCG algorithms. The most ap-
propriate values were determined as 2000, 2000, 50, and 1000
for the LVM, GDX, SCG, and RBP algorithms, respectively.

Table 2 Commonly used kernel functions

Kernel type Kernel function

Linear K(xi,x)=xi
Txj

Polynomial K(xi,x)=(γxi
Txj+r)

d

Radial basis function K(xi,x)=exp(−γ‖xi−xj‖2)
Sigmoid K(xi,x)=tanh(γxi

Txj+r)
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According to the trials, the performance criteria for LVM
increased when a greater number of iterations were used, and
the best results were obtained with 10,000 iterations. When
these results were compared with those obtained using 2000
iterations, the R2 values remained the same. An improvement
of 0.1 was obtained for other performance criteria. However,
this improvement was disregarded because of the increased
processing time required. In conclusion, it was determined
that 2000 iterations were more appropriate for LVM.

Additionally, two important parameters for determining the
optimum network topology of MLP, learning ratio (lr) and
momentum coefficient (mc), were tried for different combina-
tions within the range of 0.1 and 1, at an interval of 0.01. The
most appropriate values of lr and mc were acquired as 0.4 and
0.2, respectively. For RBFN, the parameter of spread was
scanned within the range of 0.01 and 3, at an interval of
0.01. The maximum number of neurons was scanned within

the range of 1 and 25. The most appropriate values of spread
and the number of neurons were 2.58 and 14, respectively.

The best results were obtained in topologies with two hid-
den layers for all ANN algorithms except RBFN. As a result
of trials, which examined the number of neurons in hidden
layers, iteration number, and values of lr and mc, the most
successful network topologies were determined as LVM(4,1,
5,1), GDX(4,6,20,1), RBP(4,2,7,1), and SCG(4,2,2,1).

During the application of ε-SVR model, the most success-
ful ε-SVR (C, ε, γ) architecture has been determined as ε-
SVR (512, 0.05, 0.5) along with the values such as 0.05 for
error term (ε), 512 for configuration factor (C), and 0.5 for γ
parameter of the radial basis kernel function, as a result that
the data set used is subjected to 10-fold cross-validation.

The performance criteria for these most successful network
topologies of ANN and ε-SVR models, which were designed
to estimate evaporation, are shown in Table 3 which indicates
that the algorithms had similar performance.

Evaporation data obtained with both Romanenko and
Meyer empirical equations and ANN and SVR were com-
pared with the evaporation data taken into consideration and
observed with the dividing of training and test periods. MAE
and RMSE values of all methods used are shown in Table 3,
while R2 values are shown in Fig. 2. According to Table 3, the
best estimation achievement was reached with LVM algo-
rithm, MAE=10.721 mm/month and RMSE=14.621 mm/
month values in training data and with ε-SVR method
MAE=17.485 mm/month and RMSE=22.647 mm/month
values in test data.

If an evaluation is made according to the R2 values in
Fig. 2, when all methods used are compared, ANN models
have been more successful than both ε-SVR method and
Meyer and Romanenko equations with higher R2 values.
Among ANN models, LVM algorithm with R2=0.932 value
in training data and GDX algorithm with R2=0.908 value in
test data have reached the highest achievement. According to
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RBFN

e-SVR

Meyer

Romanenko

M
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d
e
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testing 0.905 0.904 0.9 0.908 0.902 0.868 0.847 0.813

training 0.916 0.925 0.932 0.929 0.924 0.907 0.881 0.853

SCG RBP LVM GDX RBFN e-SVR Meyer Romanenko

Fig. 2 Determination
coefficients (R2) values of the
most successful models for all
methods used

Table 3 MAE and RMSE values of the most successful models for all
methods used

Methods Models Training Testing

MAE
(mm/
month)

RMSE
(mm/
month)

MAE
(mm/
month)

RMSE
(mm/
month)

ANN SCG 12.340 16.052 27.512 31.770

RBP 11.692 15.258 25.745 30.308

LVM 10.721 14.621 25.845 30.754

GDX 11.501 14.894 22.754 26.996

RBFN 11.652 15.401 24.546 28.652

ε-SVR (C,
ε, γ)

ε-SVR
(512,
0.05, 0.5)

12.320 16.968 17.485 22.647

Meyer 28.739 33.525 60.367 24.497

Romanenko 17.512 66.131 31.720 37.394

Italic values indicate the best results
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Fig. 3 The scatter diagrams and time series of ANNs, ε-SVR, Meyer, and Romanenko models in test period
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R2 values, Meyer method with its R2=0.847 value obtained
for test data is more successful than Romanenko method by
which R2=0.813 value was obtained. However, both
Romanenko and Meyer methods underperformed compared
with ANNs and ε-SVR methods in estimating evaporation.

Figure 3 shows the scatter diagrams (a) where the monthly
evaporation estimated via ANNs, ε-SVR, Meyer, and
Romanenko models are compared with observed evaporation
and time series (b). According to the scatter diagrams, the

equations obtained from all algorithms present similar gradients,
and the time series reveal nearly the same tendency for observed
and estimated data. While the proposed models generated lower

Table 5 Test performance criteria for each fold for GDX and SCG
algorithms

Fold number GDX SCG

MAE RMSE R2 MAE RMSE R2

1 1.567 7.349 0.814 1.702 7.984 0.868

2 0.177 0.830 0.875 0.959 4.500 0.950

3 0.830 3.895 0.929 0.080 0.375 0.937

4 0.689 3.229 0.909 0.453 2.125 0.912

5 0.016 0.077 0.896 0.024 0.111 0.917

6 0.067 0.315 0.921 0.492 2.308 0.936

7 0.840 3.941 0.795 0.053 0.250 0.833

8 0.410 1.922 0.959 0.281 1.318 0.964

9 0.652 3.059 0.953 0.277 1.297 0.958

10 0.572 2.685 0.881 0.836 3.923 0.858

Mean 0.582 2.730 0.893 0.516 2.419 0.913

Italic values indicate the best results

Table 4 Performance criteria obtained via 10-fold cross-validation

ANN
models

Training Testing

MAE
(mm/
month)

RMSE
(mm/
month)

R2 MAE
(mm/
month)

RMSE
(mm/
month)

R2

SCG 14.840 2.034 0.896 0.516 2.419 0.913

RBP 13.219 1.833 0.912 0.671 3.147 0.914

LVM 13.191 2.007 0.911 0.635 2.978 0.907

GDX 12.820 1.793 0.915 0.582 2.730 0.893

RBFN 13.285 2.268 0.910 0.607 2.847 0.913

Italic values indicate the best results
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values than the maximum peaks of the observed data, they be-
came more successful in obtaining minimum peaks.

In addition, 10-fold CVwas used to prevent overfitting and
to check the reliability of the ANN algorithms. The network
architectures which obtained optimum results (Table 3) were
implemented while applying the CV method. At first, the data
set was divided into 10 partitions in order to use CV.

One of these partitions was used as a test, and the others for
training at every step. Therefore, each data set was used both
as training data and test data. Then, the average of the perfor-
mance criteria obtained in all folds was calculated for each
ANN algorithm (see Table 4).

Investigating the training results in Table 4, GDX gave the
best results according to all performance criteria. While the
SCG algorithm was the most successful in terms of MAE and
RMSE in testing, RBP was the best one regarding R2.

However, since there was no significant difference between
SCG and RBP in terms of R2, SCG was accepted to be the
most successful algorithm according to the test results.

When the results in Table 3 and the results obtained via
application of CV to the data set (Table 4) were compared,
the optimum results were obtained in different ANN algo-
rithms for both testing and training. When evaluated accord-
ing to R2 values, all of the algorithms performed similarly.

This result demonstrated the usability of all the utilized
ANN algorithms in estimating evaporation data for the
Beysehir observation station.

While the most successful algorithm was GDX (Table 3)
before the application of CV via the hold-out method, SCG
was determined as the most successful algorithm after the
application of CV method (Table 4). Therefore, the results of
the test performance criteria of each fold, obtained as a result
of 10-fold CV application, are given in Table 5 only for the
SCG and MLP models.

As seen in Table 5, both MLP and SCG algorithms per-
formed differently for each fold. Especially in fold 1, both
algorithms resulted in failure in terms of MAE and RMSE.
In addition, it is observed that the lowest R2 value was obtain-
ed in the seventh fold for both algorithms. The high error
value and low R2 values obtained via CV negatively affect
the average performance of the model. GDX gave an R2 value
less than 0.9 in five folds, compared with only three folds for
SCG. This resulted in low average performance of R2 in the
MLP model. As a result, the SCG algorithm gave the best
average performance in estimating evaporation using 10-fold
CV.

Figure 4a shows the evaporation data obtained by combin-
ing the test values at the end of each fold for the SCG(4,2,2,1)
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Fig. 4 a The time series of all
data generated by the
SCG(4,2,2,1) model established.
b The scatter diagram
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model; a corresponding scatter diagram is shown in Fig. 4b.
As seen in Fig. 4a, the estimated and observed evaporation
values converged, with the exception of some peak values.

This is also observed in the scatter diagram in Fig. 4b. The
coefficient of determination for all test data was calculated as
0.854. This value is an adequate achievement in terms of
usability of the proposed model in situations where evapora-
tion cannot be determined via direct or indirect methods.

4 Conclusions

In this study, usability of ANNs (MLP and RBFN) and ε-SVR
artificial intelligence methods in the estimation of evaporation
amount has been studied. In the formation of ANN models,
four different ANN algorithms consisting of GDX, LVM,
SCG, and RBP were used in the MLP method. The obtained
results were compared with the results of empirical Meyer and
Romanenko equations used in the estimation of evaporation
amount. With this purpose, temperature, relative humidity,
wind speed, and precipitation parameters of factors affecting
evaporation were used as inputs and class A pan evaporation
values were used as outputs. Data used belongs to Beysehir
meteorology observation station.

Beysehir observation station is one of the three meteorolo-
gy stations which make class A pan evaporation observations
and represent the evaporation on lake surface area in Beysehir
Lake catchment area and its immediate surroundings. As a
result of the comparison of all obtained model performances,
it was observed that all ANNmodels are more successful than
ε-SVR and empirical Meyer and Romanenko methods.
Nonetheless, both in ε-SVR and Meyer and Romanenko
methods, an achievement of over 80%was reached compared
to R2.

The best performance among utilized ANN algorithms was
displayed with R2=0.905 value in test period by the model
which had SCG(4,2,2,1) network structure. Model results ob-
tained by using the data belonging to Beysehir observation
station have shown that artificial intelligence methods such
as ANN and SVR have achieved considerable success in the
estimation of air evaporation amount. The success of Meyer
and Romanenko methods which estimate evaporation by
using less parameter is also very close to that of ANN and
SVR methods.

As the estimation of evaporation amount from water sur-
face is quite difficult due to the complexity of evaporation
mechanism and the abundance of factors affecting evapora-
tion, the success of models obtained from such artificial intel-
ligence methods is significant.

When the obtained results are evaluated, with models to be
developed by using the data belonging to other two observa-
tion stations which are situated in Beysehir Lake Basin along
with Beysehir observation station and which represent the

evaporation on water surface, estimation of evaporation
amount of Beysehir Lake, which holds great importance in
providing both drinking water and irrigation water, shall be
possible. Therefore, in terms of water potential of the lake
reservoir, the capacity to estimate the evaporation amount is
of considerable significance to take precautions against water
shortages and develop strategies beforehand. Moreover, with
these models to be formed, it shall be possible to make various
hydrologic analyses and, hence, conduct studies with the pur-
pose of improving water resources.
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