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Abstract Statistical downscaling model (SDSM) was applied
in downscaling precipitation in the three climatic regions of
Nepal. The study includes the calibration of the SDSM model
by using large-scale atmospheric variables encompassing
National Centers for Environmental Prediction (NCEP) reanaly-
sis data, the validation of the model, and the outputs of down-
scaled scenarios A2 and B2 of the HadCM3 model for the future.
The average R* value during validation period was 0.84, indicat-
ing the good applicability of SDSM for simulating precipitation.
Under both scenarios A2 and B2, during the prediction period of
20102099, the change of annual mean precipitation in the three
climatic regions would present a tendency of surplus of precipi-
tation as compared to the mean values of the base period. On the
average for all three climatic regions of Nepal, the annual mean
precipitation would increase by about 13.75 % under scenario
A2 and increase near about 11.68 % under scenario B2 in the
2050s. The model showed better performance over humid re-
gion; moreover, simulated results for the peak monsoon months
seem to be overestimated over subhumid and arid regions.

1 Introduction

The Earth’s temperature has increased by 0.74 °C between 1906
and 2005 due to increase in anthropogenic emissions of
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greenhouse gases according to the Fourth Assessment Report
(AR4) of the Intergovernmental Panel on Climate Change
(IPCC 2007). The use of fossil fuels has caused an increase in
the concentration of greenhouse gases contributing to an incre-
mental warming of the temperature of the Earth’s atmosphere
and oceans. Global warming will have significant impact on
local and regional precipitation and hydrological regimes, which
in turn will affect ecological, social, and economical systems of
human, such as health of ecosystems and fish resource manage-
ment, industrial and agricultural water supply, resident living
water supply, water energy exploitation, and other sectors.

The implications of climatic trends are driving modeling
efforts to understand the future of the Earth’s climate. Recent
studies have shown that general circulation models (GCMs)
can adequately predict global temperature trends and changes
in the spatial and temporal distribution of precipitation
(Koukidis and Berg 2009). Global warming resulting from
increased concentrations of atmospheric greenhouse gases is
usually estimated with GCMs, and there have been remark-
able advances in the development of these models over the
past 20 years (Huntingford et al. 2006). However, raw output
from GCMs is inadequate for assessing impacts of climate
change on hydrological responses at regional scales. To re-
solve the coarse spatial scale of GCMs better, many tech-
niques have been designed to downscale GCM output data
to predict future regional climatic variables such as tempera-
ture and precipitation. Generally, two groups of techniques,
regional climate models (RCMs) and statistical downscaling,
have emerged within the literature as suitable approaches to
relate global-scale predictor values to regional- to local-scale
weather station data (Koukidis and Berg 2009).

Downscaling methods can be broadly divided into two
classes: dynamical downscaling (DD) and statistical
(empirical) downscaling (SD). In DD, the GCM outputs are
used as boundary conditions to drive a regional climate model
(RCM) or limited area model (LAM) and produce regional-
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scale information of up to 5-50 km; this method responds in
physical consistent ways to different external forcing.
However, DD requires higher computational cost and depends
strongly on the boundary conditions provided by GCMs.
RCMs may be as fine as tens of kilometers; however, for
impact assessment applications, it often requires point-
specific climate projections in order to capture fine-scale cli-
mate variations, particularly in regions with complex topogra-
phy, in coastal or island locations, and in areas of highly het-
erogeneous land cover. Therefore, a gap exists between what
climate models can predict about future climate change and
the information relevant for environmental studies. Statistical
downscaling models are commonly used to fill this gap
(Timbal et al. 2009).

SD produces local- or station-scale meteorological time
series by appropriate statistical or empirical relationships with
predictor variables; this method is cheap, readily transferable,
and computationally undemanding, and it has been widely
used in climate change risk or uncertainty assessments.
However, a disadvantage of SD is that building the appropri-
ate statistical relationship needs historical observed data hav-
ing sufficient length (Wilby et al. 2002). Statistical downscal-
ing model (SDSM) is a hybrid of a regression method and
weather generator. Many comparative studies (Fowler et al.
2007; Wilby et al. 1998; Khan et al. 2006; Harpham and
Wilby 2005; Dibike and Coulibaly 2005) have shown that this
method is simple to handle and has, by and large, superior
capability and is therefore widely applied (Wilby and Harris
20006).

Statistical downscaling methods have not been document-
ed for the climate research in Nepal. So the research based on
SDSM is on early stage. The main objectives of this paper are
to evaluate the application of SDSM over Nepal and to gen-
erate local-scale precipitation scenarios in three climatic re-
gions of Nepal under future emission scenarios. This study
may be an important reference for researchers who will apply
SDSM inside Nepal and vicinity.

2 Study area and data set

Dominated by summer monsoon precipitation, Nepal has a
variety of climate from lowland Terai plains to High
Himalaya region. Based on the landscape, Nepal can be divid-
ed in to five physiographic regions: Terai, Silwalik, Middle
Mountain, High Mountain, and High Himalaya from south to
north (Kansakar et al. 2004). In this study, we have used three
stations representing a cross section over central Nepal. These
stations are located on three climatic zones—arid, humid, and
subhumid regions—based on rainfall distribution and agro-
ecological classification; the classification was also applied
by Williams et al. (2004). Jomsom station falls under arid
region (region-1) having an annual rainfall of below
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300 mm. Pokhara station comes under humid region
(region-2) having an annual rainfall of above 3000 mm, and
Bhairahawa station lies in the subhumid region (region-3)
with an annual rainfall of around 1500 mm. Details about
these stations can be seen in Table 1 and Fig. 1.

3 Data

The observed daily precipitation data of Department of
Hydrology and Meteorology, Government of Nepal, starting
from January 1961 to December 2000 is utilized for this study.
However, for two stations Bhairahawa and Pokhara, data is
available from January 1969. The missing data of 1 day or
2 days were replaced by the average precipitation values of the
neighboring stations using single best estimator method
(Eischeid et al. 2000). The reanalysis data set of National
Centers for Environmental Prediction (NCEP)/National
Center for Atmospheric Research (NCAR) was used in this
study, and this data set is the daily series for 1961-2000 at a
spatial scale of 2.5°%2.5°, which includes 26 atmospheric
variables. GCM output data set of scenarios A2 (high green-
house gas emission scenarios) and B2 (low greenhouse gas
emission scenarios) derived from the Hadley Center’s coupled
ocean/atmosphere climate model (HadCM3) has a resolution
of 3.75° (longitude) x 2.5° (latitude), which includes the same
atmospheric variables as NCEP data, and it should be interpo-
lated in order to adjust its resolution to that under scenarios A2
and B2 of HadCM3 model. The transformed GCM data for
1961-2099 was directly downloaded from the internet (http://
www.cics.uvic.ca/scenarios/sdsm/select.cgi). The HadCM3
grid boxes selected can be referred to in Fig. 1.

4 Methodology

The SDSM is an accepted SD technique in practice for the
construction of climate scenarios for various related impact
studies. The technique is mainly based on multivariate regres-
sion method. It is designed to simulate sequences of daily
climate data for present and future periods through combina-
tions of regression and weather generators by extracting sta-
tistical parameter from observed data series. It combines a

Table 1  Description on study area

Region Station Latitude Longitude Elevation (m) Climate

Jomsom 28.78° 83.71° 2744 Arid
Pokhara 28.21°  84° 827 Humid
3 Bhairahawa 27.51° 83.43° 120 Subhumid
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Fig. 1 Study area within Nepal 050
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stochastic weather generator approach and transfer function
model that needs two types of daily data (Wilby et al. 2002).
The first type corresponds to local predictands of interest (e.g.,
temperature and precipitation) and the second type corre-
sponds to the data of large-scale predictors (NCEP and
GCM) of a grid box closest to the study area (Hashmi et al.
2010).

During downscaling with the SDSM, a multiple linear
regression model is derived from a few selected large-
scale predictor variables and local-scale predictands such
as temperature and precipitation. Large-scale relevant pre-
dictors are selected by the results of correlation analysis,
partial correlation analysis, and scatter plots, and the phys-
ical sensitivity between selected predictors and predictand
should also be considered in study. SDSM provides two
means of optimizing the model—dual simplex and ordi-
nary least squares (Wilby and Dawson 2007)—and both
approaches give comparable results; ordinary least squares
is much faster. The model is structured as monthly model
for both daily precipitation and temperature downscaling,
in which case, 12 regression equations are derived for
12 months using different regression parameters for each
month equation.

The output of SDSM is daily series, when the model is
established; the daily data of NCEP and GCM is used to con-
struction of current and future daily weather series. Generally,
the application of SDSM contains five steps (Wilby et al. 2002;
Wilby and Harris 2006): (1) selection of predictors, (2) model
parameter calibration, (3) simulation, (4) model validation, and
(5) generation of future series of the predictand.

200 700 2000 2500

5 Results and discussion
5.1 Screening of variables

The most relevant predictors are screened with a multiple
correlation analysis between the gridded predictors and
predictand variables such as station precipitation. Daily data
of 26 large-scale predictor variables derived from the
NCEP reanalysis data sets are used to investigate the per-
centage variance produced by each predictand-predictor
pair. In general, the correlation between the predictor vari-
ables and each predictand is low in the case of daily pre-
cipitation (Huang et al. 2011). Final predictor choice is
made by considering whether the identified variables and
relationship are physically sensible for particular experiment
or study site. In this study, in selecting the most relevant
predictor variables, the correlation matrix and partial corre-
lation coefficient between the daily observed precipitation
and individual NCEP predictors were identified for individ-
ual stations and based on p-value and partial correlation
appropriate predictor were selected. The predictors are pre-
sented in Table 2. At region-1, the selected predictors were
surface-specific humidity, near-surface relative humidity,
500-hPa divergence, 500-hPa wind direction, and 500-hPa
meridional velocity. Similarly, predictors were surface zonal
velocity, 500-hPa airflow strength, 500-hPa zonal velocity,
500-hPa geopotential height, 500-hPa wind direction, and
850-hPa geopotential height for the region-3. Mean sea level
pressure, 500-hPa airflow strength, 500-hPa geopotential
height, 500-hPa wind direction, 850-hPa geopotential
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Table 2 List of 26 NCEP predictor variables and selected predictors for the calibration (in bold)

Predictors Description Predictors Description

ncepmslpas Mean sea level pressure ncepp8_fas 850-hPa airflow strength
ncepp_fas Surface airflow strength ncepp5zhas 500-hPa divergence
ncepp_uas Surface zonal velocity ncepp8 uas 850-hPa zonal velocity
ncepp_vas Surface meridional velocity ncepp8 vas 850-hPa meridional velocity
ncepp_zas Surface vorticity ncepp8 zas 850-hPa vorticity

ncepp_thas Surface wind direction ncepp850as 850-hPa geopotential height
ncepp_zhas Surface divergence ncepp8thas 850-hPa wind direction
ncepp5_fas 500-hPa airflow strength ncepp8zhas 850-hPa divergence
ncepp5_uas 500-hPa zonal velocity ncepr500as Relative humidity at 500 hPa
ncepp5_vas 500-hPa meridional velocity ncepr850as Relative humidity at 850 hPa
nceppS_zas 500-hPa vorticity nceprhumas Near-surface relative humidity
ncepp500as 500-hPa geopotential height nceptempas Mean temperature at 2 m
nceppSthas 500-hPa wind direction ncepshumas Surface specific humidity

height, 850-hPa divergence, and surface-specific humid-
ity were the chosen predictors over region-2.

5.2 Calibration

The observed data series for 1961-2000 were split into two
periods, 1961-1990 and 1991-2000, used for model calibra-
tion and validation, respectively. At region-2 and 3, the cali-
bration period is from 1969 to 1990. Figure 2 shows the
monthly precipitation of the three climatic regions during the
calibration period. Following the user manual of SDSM 4.2,
when using NCEP reanalysis data as predictors, threshold of
wet day was set as 0 mm, a fourth root transformation was
applied to the original precipitation series to convert it to a
normal distribution (Wilby et al. 2002), and the ordinary least
squares was used for optimization. SDSM provided several
statistical indicators such as the percentage of explained vari-
ance and the standard error (SE) to reflect calibration results
(Wilby et al. 2002). In this paper, the percentage of explained
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—fli—Bhairahawa (sub humid)-3

Jomsom (arid)-1
600 -

300 -
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0" — e )
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Fig. 2 Observed mean monthly precipitation during calibration period in
the three climatic regions
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variance of downscaling experiment in each region ranged
from 7 to 16.4 %, and the SE ranged from 0.36 to 0.57. For
heterogeneous and random variables such as daily precipita-
tion occurrence/amounts, percentage of explained variance is
more likely less than 40 % (Wilby et al. 2002). The calibration
is probably seriously biased by the large number of zero
values entered in the multiple regressions, and the underlying
surface factors are not considered in SDSM.

5.3 Bias correction

According to Salzmann et al. (2007), the bias correction ap-
proach is used to eliminate the biases from the daily time
series of downscaled data. Bias correction is applied to the
downscaled data obtained from the two SDSMs using
HadCM3 predictors, in order to obtain a more realistic and
unbiased data of future climate. Bias correction is performed
using following equation:

Pdeb = Pscen * (Pobs/Pcont)

Where, Py, is de-biased (corrected) daily precipitation for
future period, Pyen is SDSM generated daily time series pre-
cipitation for future period, P.q, is the long-term average of
monthly precipitation for the control period simulated by
SDSM, and P, is the long-term average monthly observed
value of precipitation.

Before applying it on the future downscaled data, bias cor-
rection was first validated for the period of 1991-2000. For
this purpose, the mean monthly biases are obtained from the
period of 1981-1990 because these biases have to be adjusted
for the validation period that is also of 10-year duration by
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utilizing downscaled data of SDSM (Mahmood and Babel
2013) and observed data at each region. These biases are then
adjusted to the downscaled daily data by SDSM in the period
of 1991-2000. The corrected downscaled data is compared
with the observed data by calculating the above mentioned
statistical indicators. After successful validation, bias correc-
tion is applied to the future downscaled data. Mean monthly
value of observed, simulated, and bias-corrected results are
presented in Table 3.

5.4 Validation

To validate the SDSM model, three sets of atmospheric
data were used, i.e., from NCEP, as well as scenarios A2
and B2 from HadCM3 model (noted as H3A2 and H3B2,
respectively). Monthly mean (p), determination coefficient
(R?), relative error (RE), and root mean standard error
(RMSE) were used to qualify the simulation results of
monthly precipitation series in each region. In this study,
the validation periods for precipitation were 10 years from
1991 to 2000; the results for the validation period showed
obvious difference in different regions. Statistical parame-
ters and validation results are presented in Table 3. It
could be seen that the monthly precipitation series after
adjusting the bias simulated from NCEP, H3A2, and
H3B2 with the mean R” values being higher than 0.6,
and the mean RE between observed and downscaled data
did not exceed 22 % over region-1. On the other regions,
also the values are comparable or better; on average, over
three region R” values reached 0.84. This shows the good
applicability of future precipitation downscaling.
Figure 3a—c shows the observed and downscaled variables

after bias correction for the period of 1991-2000. In some
months like July, the model prediction seems to be highly
overestimated at region-1 and region-3; for the remaining
months, difference between observed and downscaled is
lower. On the whole, the precipitation series simulated
by SDSM with three sets of atmospheric data had more
or less acceptable linear relationship with that of observed,
but there was a noticeable deviation of amount between
them. While observing the values from Table 3, it can be
noticed that at region-1, simulated precipitation results
have been slightly underestimated. In region-2, simulated
result of NCEP is underestimated while those of H3A2
and H3B2 were slightly overestimated. In region-3, simu-
lated results of H3A2 and H3B2 were overestimated. In
general, after bias correction, the bias has been remarkably
reduced with respect to observed ones. The simulation
results derived from NCEP were better than from H3A2
and H3B2 as the SDSM was calibrated with NCEP data;
therefore, the built parameters had biases when the model
was driven by the H3A2 and H3B2 data which was also
mentioned by Huang et al. (2011).

5.5 Future precipitation downscaling scenarios

In this study, the period of 1961-1990 was taken as the base
period as was used in most impact studies worldwide, and the
future period was divided into 2020s (2010-2039), 2050s
(2040-2069), and 2080s (2070-2099). The patterns of change
about future precipitation scenarios compared to base period
were then analyzed, using only H3A2 and H3B2 data. Taking
the simulation results of SDSM in the modeling precipitation
of current period (1991-2000) into account, the change of

Table 3  Comparison of observed and downscaled values of statistical indices during the validation period of 1991-2000

Without bias correction

After bias correction

R’ RMSE (mm) RE (%) p (mm) R? RMSE (mm) RE (%) W (mm)

Region-1 observed 22.5

NCEP 0.62 9.49 —22.5 18.94 0.7 8.93 -16.29 20

H3A2 0.4 9.66 -11.33 18.63 0.66 9.63 —-14.61 20.14

H3B2 0.42 9.44 -9.95 18.97 0.61 10.34 -11.38 20.7
Region-2 observed 333.49

NCEP 0.99 57.5 —1.84 306.72 0.97 389 -1.02 301.86

H3A2 0.86 46.8 23.07 356.32 0.97 349 10.1 324.97

H3B2 0.86 47.6 25.83 353.26 0.96 36.5 7.63 325.34
Region-3 observed 136.02

NCEP 091 28.14 25.2 134.96 0.9 222 9.03 143.27

H3A2 0.92 74.9 0.1731 215.77 0.87 389 11.75 157.96

H3B2 091 75.9 0.019 214.05 0.89 355 19.1 151.6

RMSE root mean standard error, RE relative error, NCEP National Centers for Environmental Prediction
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Fig. 3 a Monthly values of observed and downscaled bias-corrected
(NCEP, H3A2 and H3B2) precipitation during validation period of
1991-2000 at region-1. b Monthly values of observed and downscaled
bias-corrected (NCEP, H3A2, and H3B2) precipitation during validation
period of 1991-2000 at region-2. ¢ Monthly values of observed and
downscaled bias-corrected (NCEP, H3A2, and H3B2) precipitation dur-
ing validation period of 19912000 at region-3

seasonal and annual mean precipitation of three regions under
scenarios H3A2 and H3B2 were discussed in this paper for
illustrative purposes.

The changes of seasonal and annual mean precipitation
(compared to base period 1961-1990) at three regions of
Nepal under scenarios H3A2 and H3B2 are shown in
Figs. 4, 5, and 6. It is seen that under scenario H3A2, the
changes of annual mean precipitation of future periods
(2020s, 2050s, and 2080s) in region-1 (arid region) would
be 19.27, 16.6, and 14.76 %, respectively (Fig. 4a); as to
region-2 (humid region), the changes would be 4.3, 4.7, and
4.8 %, respectively (Fig. 5a), while for region-3 (subhumid
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Fig. 4 a Future precipitation scenario for H3A2 during 2020s, 2050s,
and 2080s with respect to base period at region-1. b Future precipitation
scenario for H3B2 during 2020s, 2050s, and 2080s with respect to base
period at region-1

region), the changes would be 16.6, 19.8, and 13.4 %, respec-
tively (Fig. 6a).

Under scenario H3B2, the changes of annual mean precip-
itation of future periods (2020s, 2050s, and 2080s) in region-1
would be 9.2, 14.2, and 13 %, respectively (Fig. 4b); as to
region-2, the changes would be 5.4, 7, and 5.1 %, respectively
(Fig. 5b), while for region-3, the changes would be 18.7, 13.6,
and 21.7 %, respectively (Fig. 6b).

The changes of seasonal mean precipitation in the three
regions under scenarios H3A2 and H3B2 would present ob-
vious differences in different seasons. Under scenario H3A2,
the seasons in which changes of seasonal mean precipitation
would be most remarkable in the future periods (2020s, 2050s,
and 2080s) in region-1 were winter (December—February)
42.34 % and autumn (September—November) 13.41 %, re-
spectively, which in region-2 were summer (June—August)
9.04 % and spring (March-May) 5.28 %, respectively; over
region-3, the ones were autumn 30.63 % and winter 22.1 %,
respectively. Similar trends are found more or less for the
results under scenario H3B2 with the difference in changing
magnitude and percentage only.
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Fig. 5 a Future precipitation scenario for H3A2 during 2020s, 2050s,
and 2080s with respect to base period at region-2. b Future precipitation
scenario for H3B2 during 2020s, 2050s, and 2080s with respect to base
period at region-2

6 Conclusion

SDSM was applied to downscale the precipitation in the three
climatic regions of Nepal as a case study under H3A2 and
H3B2 scenarios. SDSM is well known for its simplicity and
also widely used as a decision support tool. The downscaling
of precipitation scenarios is important to understand the im-
pact of climate change and hydrological processes in the local
scale. The validation results are found to be improved with the
application of bias correction on the downscaled data. The
simulation from NCEP is better than from H3A2 and H3B2
in the validation period, partly because SDSM is fitted using
the NCEP data. The monthly precipitation between observed
and simulated by SDSM with R? values ranges from 0.61 to
0.97 which showed the applicability of downscaling.

The model results of future precipitation showed that when
compared to the base period, the annual mean precipitation of
future periods would show different change patterns under
scenarios H3A2 and H3B2. An increase in mean annual pre-
cipitation under H3A2 and H3B2 is expected for all three
future periods (2020s, 2050s, and 2080s). Annually, on

Fig. 6 a Future precipitation scenario for H3A2 during 2020s, 2050s,
and 2080s with respect to base period at region-3. b Future precipitation
scenario for H3B2 during 2020s, 2050s, and 2080s with respect to base
period at region-3

average, for the H3A2 scenario, the region-1 arid region has
the highest change (18.53 %) in precipitation percentage com-
pared to base period. For the H3B2 scenario, the region-3
subhumid region has the most remarkable (18.07 %) change
in precipitation percentage.

Seasonally, on average, for the H3A2, winter has the most
remarkable, 42.34 %, increases in precipitation at region-1.
Autumn has the lowest, 1.64 %, change of precipitation at
the region-2. As for the case of H3B2, winter has the highest
change of 39.17 % in future precipitation at region-3 and
autumn has the lowest value of precipitation change of
1.55 % at region-2. Within three climatic regions, there would
be increase of 13.4 and 11.14 % of mean annual precipitation
for the H3A2 and H3B2 in 2020s. Similarly, increase reaches
to 13.75 and 11.68 % for the H3A2 and H3B2 in 2050s.
During the 2080s, there would be increases of 8.28 and
13.30 % under H3A2 and H3B2, respectively, compared to
the base period.

From this study, we noticed that this model can be more
applicable to predict mean monthly precipitation rather than
monthly and seasonal calculations. The performance of model
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for the heavy precipitation month was found to be
overestimated on arid and subhumid region. While concerning
on climatic conditions of arid, humid, and subhumid regions,
the model showed better performance on the humid region.
This study was carried out as a case study to evaluate the
performance of SDSM; however, further study can be useful
to verify these results along Nepal. In addition, a more exten-
sive study has been planned over the river basins of Nepal.
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