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Abstract Available climatological information of Distrito
Federal does not satisfy the requirements for detailed climate
diagnosis, as they do not provide the necessary spatial resolu-
tion for water resources management purposes. Annual and
seasonal climatology (1971–2000) of precipitation from 6me-
teorological stations and 54 rain gauges from Central Brazil
were used to test eight different spatial interpolation methods.
Geographical factors (i.e., altitude, longitude and latitude) ex-
plain a large portion of precipitation in the region, and there-
fore, multivariate models were included. The performance of
estimations was assessed through independent validation
using mean square error, correlation coefficient and Nash–
Sutcliffe efficiency criterion. Inverse distance weighting
(IDW), ordinary kriging (OK) and the multivariate regression
with interpolation of residuals by IDW (MRegIDW) and OK
(MRegOK) have performed the lowest errors and the highest
correlation and Nash–Sutcliffe efficiency criterion. In general,
interpolation methods provide similar spatial distributions of
rainfall wherever observation network is dense. However, the
inclusion of geographical variables to the interpolation meth-
od should improve estimates in areas where the observation
network density is low. Nevertheless, the assessment of

uncertainties using a geostatistical method provides supple-
mentary and qualitative information which should be consid-
ered when interpreting the spatial distribution of rainfall.

1 Introduction

Spatial distributed climate data is essential information to
many questions addressing water resources (Dingman et al.
1988; Phillips et al. 1992; Martínez-Cob 1996; Lanza et al.
2001; Tveito et al. 2008; WMO 2008; Wagner et al. 2012). A
challenging task for climatologists is to provide information
about climate for any place at any time (Tveito et al. 2008).
Most climatological parameters are, in the long-term, tradi-
tionally measured at point locations, such as meteorological
stations and rain gauges. An accurate estimation of the spatial
distribution of these parameters requires a very dense network
of instruments as well as remote sensing methods (e.g. precip-
itation-radar) and process-oriented simulation, requiring large
installation and operational costs (Frei and Schär 1998;
Goovaerts 2000; Mair and Fares 2010). Spatial distributed
data from radar and satellites have a great potential of appli-
cation in hydrological studies. However, both require valida-
tion and corrections. The first using rain gauges (Anagnostou
et al. 1999), while the second using radar data as reference
(Habib and Krajewski 2002). Nevertheless, the available pe-
riod of record frequently does not meet the needs of end users.
For instance, radar data in Central Brazil is available from
2012 (CPTEC-INPE 2014) while the Tropical Rainfall
Measuring Mission (TRMM, Simpson et al. 1988) data starts
in 1997.

As an alternative, spatial distribution of climate variables
can be estimated by applying interpolation methods from sur-
rounding point stations. Spatial interpolation is a method or
mathematical function that estimates the values at locations
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where no measured values are available (Lanza et al. 2001;
Tveito et al. 2008; Di Piazza et al. 2011). There are many
methods for interpolation of climatological information; how-
ever, the choice of the technique depends on the aim of the
study, the climatological variable in concern, time scale, the
spatial resolution wanted, and territorial context of the model
region, such as network density, topography, etc.
(Wackernagel 2003; Renard and Comby 2006; Tveito et al.
2008). Traditional methods are based on distance criteria, such
as the Thiessen polygons, which correspond to defined homo-
geneous areas where the climate variable is assumed to be
constant (Thiessen 1911). More sophisticated methods, such
as artificial neural networks, have been applied to estimate the
non-linear spatial variability of climatic variables (Demyanov
et al. 1998; Di Piazza et al. 2011). Nowadays, geographical
information systems (GIS) gives a variety of possibilities for
the integration, analysis and visualization of climatological
data (Dobesch et al. 2007). Geostatistical tools of GIS en-
hanced the capacity of deriving detailed spatial representa-
tions of climatological data. Basically, the spatial correlation
between neighbouring observations is taken into account in
order to estimate values at unsampled locations (Tabios and
Salas 1985; Phillips et al. 1992). In general, geostatistical
methods perform better than traditional methods, such as
Thiessen polygons and inverse distance weighting (IDW)
(Chua and Bras 1982; Tabios and Salas 1985; Pardo-
Igúzquiza 1998; Goovaerts 2000; Apaydin et al. 2004;
Coulibaly and Becker 2007; Haberlandt 2007; Gan et al.
2010; Wagner et al. 2012). Moreover, the inclusion of explan-
atory variables, such as elevation, can potentially increase the
reliability of rainfall estimates, especially in areas with low
network density (Tabios and Salas 1985; Phillips et al.
1992). Several authors (e.g., Goovaerts 2000; Haberlandt
2007; Portalés et al. 2010; Di Piazza et al. 2011; Wagner
et al. 2012; Delbari et al. 2013) demonstrate the
outperformance of multivariate methods compared to
univariate techniques.

Software packages have been specifically developed for
climatology, such as PRISM (Parameter Regression on
Independent Slopes Model, Daly et al. 1994) and MISH (me-
teorological interpolation based on surface homogenized data
basis, Szentimrey et al. 2005). The first method includes ex-
planatory variables such as terrain orientations, shape and dis-
tance to the coast. It seems to be a potential alternative in
regions where the station network is unrepresentative for the
variation in topography (Tveito et al. 2008). The MISH pack-
age combines deterministic and stochastic models by using a
set of terrain characteristics together with several meteorolog-
ical information such as remote sensing data. More recent
studies have also incorporated information from radar and
TRMM data to interpolation methods (e.g. Haberlandt 2007;
Wagner et al. 2012); however, those methods require a mas-
sive amount of data which is often not available for users.

Essentially, precipitation in Central Brazil is influenced by
large-scale atmospheric circulation systems from the Amazon
region (Alves 2009). Intensive rainfall, which occurs between
November and March, is carried from the Equatorial Atlantic
region by low-level east winds when deviated from northwest
towards southeast due to the Andes barrier (Virji 1981; Gan
et al. 2004; Vera et al. 2006). The inclusion of variables
representing the drivers of precipitation has a potential to in-
crease the estimation power of interpolation schemes. Several
studies demonstrate the correlation of precipitation with geo-
graphical factors, such as height above sea level, longitude
and latitude (e.g. Price et al. 2000; Apaydin et al. 2004;
Lhotellier 2005; Dobesch et al. 2007; Tveito et al. 2008;
Portalés et al. 2010; Gan et al. 2010). Longitude and latitude
may represent the influence of the atmospheric circulation
systems coming from the west and northwest (i.e. Amazon
basin). Although the study area is characterized by non-
complex terrain, the elevation ranges from ca. 300 to
1500 m above sea level (Fig. 1). Under these topographic
conditions, orographic precipitation may also contribute to
the spatial distribution of rainfall (Alter 1919; Barrows
1933; Spreen 1947; Smith 1979; Phillips et al. 1992; Daly
et al. 1994; Frei and Schär 1998).

Facing the urgency to take actions that will guarantee the
water supply of Distrito Federal (DF), the project called
IWAS/Água-DF (International Water Research Alliance
Saxony) intends to develop an Integrated Water Resources
Management (IWRM) system wherein climate is comprised
as natural boundary condition (Lorz et al. 2012). Available
climate studies in Central Brazil are restricted and do not fulfil
the requirements for detailed climate diagnosis (Borges et al.
2014). Ramos (2009) developed a Brazilian climatology atlas
(i.e. 1961–1990) for several climatological variables.
However, the number of stations used is limited to those under
the auspices of the National Institute of Meteorology
(INMET), and the spatial resolution provided does not meet
the requirements for water resource management in Distrito
Federal. This study aims to identify the interpolation
method(s) that performs the most realistic spatial distribution
of seasonal and annual precipitations for the climatological
period 1971–2000 in Distrito Federal. For that, we evaluate
the performance of deterministic, probabilistic, and combined
methods through independent validation. Visual analysis and
statistical measures are applied as criterion to identify the fin-
est estimates.

2 Database

The data used in this study comprises daily observations pro-
vided by the Brazilian Hydrological Information System
(HIDROWEB, http://hidroweb.ana.gov.br/) and INMET.
Additional datasets were obtained from Brazilian Enterprise
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for Agricultural Research (EMBRAPA) and the regional wa-
ter supplier, Environmental Sanitation Company of the
Distrito Federal (CAESB). In order to avoid incorrect esti-
mates along the political border of Distrito Federal, the
databank also includes surrounding stations. This study con-
siders time series of 6 weather stations and 54 rain gauges
located in the Central Brazil area (longitude: −44° to −51°;
latitude: −14° to −18°) (Fig. 1). As demonstrated in a previous
study (Borges et al. 2014), verification of suspicious values,
errors and outliers were performed after (Dixon 1950).
Homogeneity was tested using graphical (i.e. Craddock test,
double sum analysis, quotient criteria and difference in limits)
and numerical techniques (i.e. Abbe, Buishand and
Alexandersson tests). Topographic data comprises the 30×
30 m resolution ASTER Global Digital Elevation Model
(DEM) V001 (http://asterweb.jpl.nasa.gov/gdem.asp).

3 Methods

Climatological normals are essential information to classify a
region’s climate (Nalder and Wein 1998; Perčec Tadić 2010).
Normals are widely applied as an indicator of the climate
conditions likely to be experienced in a given region.
Additionally, they can be used as a benchmark to be compared
against certain condition (e.g., current conditions or projec-
tions) (WMO 1996). WMO (1989) establishes general proce-
dures to calculate monthly and annual 30-year standard nor-
mals for climate data. The standard period suggested is 1961–
1990; however, most of the observations in Central Brazil
were only initiated towards the end of sixties. In order to
consider a reasonable observation network density, we use

the 1971–2000’s period for the calculation of climatological
normals. A large variety of interpolationmethods are available
for climatology (Dobesch et al. 2007; Tveito et al. 2008).
Before selecting the proper one, it is necessary to consider
the purpose of the interpolation, the characteristics of the phe-
nomena and the assumptions and limitations of the technique
(Nalder and Wein 1998; Goovaerts 2000; Tveito et al. 2008).
The complexity of the appropriated spatial interpolation mod-
el is a function of the time scale and spatial resolution wanted.
As time aggregation and station density decreases, uncer-
tainties associated with predictions increase considerably, de-
manding therefore more complex models (Tveito et al. 2008).
The network density for the whole study area is ca. one station
per 5000 km2, while one station for ca. 400 km2 in Distrito
Federal. This study focuses on the spatial representation of
seasonal and annual long-term means (1971–2000) of accu-
mulated rainfall. At this level of time aggregation, the spatial
variance of precipitation is likely to decrease (Nalder and
Wein 1998; Tveito et al. 2008; WMO 2008). In order to guar-
antee a plausible model complexity and to satisfy the needs for
water resources studies, we apply the DEM of 1-km grid res-
olution (Borga and Vizzaccaro 1997; Agnew and Palutikof
2000; Goovaerts 2000; Jarvis and Stuart 2001; Hong et al.
2005; Perčec Tadić 2010; Bárdossy and Pegram 2013).
Several categories of interpolation methods are available,
and they are classified according to their fundamental mathe-
matics. The most frequent applications for establishing spatial
representations of precipitation rely on the principle of ordi-
nary kriging (OK) or inverse distance weighting—IDW
(Phillips et al. 1992; Li and Heap 2011). Current studies
(e.g., Phillips et al. 1992; Nalder and Wein 1998; Goovaerts
2000; Ninyerola et al. 2000; Apaydin et al. 2004; Hong et al.

Fig. 1 Distribution of the station
network and topography of the
model area of Central Brazil
which includes parts of the federal
state of Goiás (GO) and Minas
Gerais (MG), and the entire
Distrito Federal (DF)
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2005; Ninyerola et al. 2007; Gan et al. 2010; Di Piazza et al.
2011; Bostan et al. 2012) make use of terrain characteristics,
such as elevation, geographic position, land use and water
bodies, to describe spatial representations of precipitation.
Several authors (e.g. Martínez-Cob 1996; Nalder and Wein
1998; Goovaerts 2000; Ninyerola et al. 2000; Lhotellier
2005; Portalés et al. 2010; Di Piazza et al. 2011) demonstrated
the reliability of regression models combined with residual
interpolation, also referred as “detrended” interpolation. In
order to identify the most appropriated interpolation method
in estimating precipitation at season and annual scale in
Distrito Federal, eight different methods are evaluated.

3.1 Interpolation methods

3.1.1 IDW

A type of deterministic method widely applied in spatial
modelling. The estimation is based upon weighted averages,
which are proportional to the inverse of the distance between
the interpolated and measured points (Shepard 1968). The
general formula is expressed as

bZ s0ð Þ ¼
Xn
i¼1

λiZ sið Þ ð1Þ

where Ẑ(s0) is the estimate value of Z in s0, Z(si) is the mea-
sured value located in si, λi is the weight of Z(si) and n is the
number of measurements used for the estimate. And the
weights are calculated as follows:

λi ¼ 1

dPi

 !.
Σn

i¼1

1

dPi

 !
ð2Þ

where di is the distance between s0 and si, P is a power pa-
rameter and n represents the number of sampled points used
for the estimation. The main factor affecting the accuracy of
IDW is the value of the power parameter. As the distance
increases, weights diminish, especially when the value of the
power parameter rises. Nearby stations have a heavier weight
and, therefore, more influence on the estimation (Isaaks 1989;
Nalder and Wein 1998; Johnston 2004). The optimal power
value (i.e. 1.5) was determined by minimizing the prediction
error calculated from the cross-validation procedure available
in the Geostatistical Analyst tool of ArcGIS®9.

3.1.2 Spline tension (Spline)

Spline is classified as a deterministic method and belongs to
the radial basis functions (RBF) group. RBF encloses a series

of exact interpolation techniques, where the spatial predictions
must go through each measured sample value (Hutchinson
and Gessler 1994; Apaydin et al. 2004; Johnston 2004; Di
Piazza et al. 2011). The predictor is a linear combination of
functions,

bZ s0ð Þ ¼
Xn
i¼1

ωiφ si−s0kkð Þ þ ωnþ1 ð3Þ

where φ (r) is a radial basis function (see formula 4), r=||si−
s0|| is Euclidean distance between the prediction location s0
and each data location si, and {ωi: i=1, 2,…, n+1} are weights
to be estimated. As opposed to IDW, Spline methods can
predict values above the maximum and below the minimum
measured values. Spline is normally used for calculating
smooth spatial distributions from a large number of data
points. The technique may not be appropriate when there are
large changes in observation values within a short horizontal
distance (Hutchinson and Gessler 1994; Johnston 2004). In a
previous task, all splinemethods available in the Geostatistical
Analyst tool of ArcGIS®9 were tested. From that, spline ten-
sion with smoothing parameter 2.0×10−4 revealed a slightly
better performance than the other spline methods, and its func-
tion is described as

φ rð Þ ¼ ln σ⋅r
.
2

� �
þ K0 σ⋅rð Þ þ CE0 ð4Þ

where σ is the smoothing parameter, K0(x) is the modified
Bessel function, and CE′ is the Euler constant.

3.1.3 OK

The kriging family, also known as geoestatistical methods, is
based on the idea that values measured at near locations tend
to be statistically more related than values measured at other
locations (Tveito et al. 2008). Similar to IDW, kriging also
uses a weighting; however, as a probabilistic method, kriging
depends on spatial and statistical relationships to predict un-
measured points. The empirical semivariogram providemeans
for assessing the spatial autocorrelation of datasets (Tabios
and Salas 1985; Phillips et al. 1992; Goovaerts 2000;
Dobesch et al. 2007). Pairs that are closer are expected to
differ less than those distant from one another. To model the
spatial autocorrelation of the data, statistical functions are test-
ed to best fit the semivariogram. A kriging equation is based
on spatial optimal linear prediction, where the unknown mean
of the random process is estimated through the best linear
unbiased estimator (B.L.U.E.). The estimator is “unbiased”
because the mean of error is 0; “linear” since the estimated
values are weighted linear combinations of the available data;
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and “best” because the estimator aims to minimize the vari-
ance of the errors (Goldberger 1962; Cressie 1990). The ordi-
nary kriging performed the lowest errors among the other
kriging methods (e.g., simple and disjunctive kriging) in a
previous cross-validation procedure. The prediction of ordi-
nary kriging is a linear combination of measured values where
the constant mean (μ) is assumed to be unknown (Isaaks
1989; Cressie 1990; Dobesch et al. 2007). The ordinary
kriging representation for spatial stochastic process Z(s) is

Z sð Þ ¼ μþ δ sð Þ ð5Þ

where μ is unknown expected value of random process, δ(s) is
a zero mean intrinsically stationary random process with
existing semivariogram γ(H). The estimator Ẑ(s0) can be
expressed as the formula (1). Linear coefficients λi, i=1,…,
n are calculated under the condition for uniformly unbiased
predictor as

E bZ s0ð Þ
� �

¼ E Z s0ð Þð Þ;
Xn
i¼1

λi ¼ 1 ð6Þ

and under the restriction of minimal prediction error variance
σ2(s0) at location s0 as

σ2 s0ð Þ ¼ E Z s0ð Þ−bZ s0ð Þ
� �2

ð7Þ

The Geostatistical Analyst tool of ArcGIS®9 offers a
range of functions to fit the empirical semivariogram.
Among them, the spherical function shows the lowest es-
timation errors and a linear behaviour at the origin which
is plausible to the semivariogram (Fig. 2). The spherical

model is one of the most commonly used models
(Johnston 2004) and it is written as

γ Hð Þ ¼ θ0 þ θs⋅ 1:5⋅
h

θr
−0:5⋅

h

θr

� �3
" #

for 0≤h≤θr ð8Þ

γ Hð Þ ¼ θs for θr < h ð9Þ

where H is the lag vector, h is the length of H (distance be-
tween two points), θ0 is the nugget, θs≥0 is the partial sill
value and θr is the range of the model. As suggested by
Johnston (2004), the lag size is the average distance between
neighbouring samples (i.e. 30 km) and the number of lags is
set as 12. Moreover, at an infinitesimally distance, the
semivariogram exhibits a nugget effect. The nugget effect
can be attributed to measurement errors at distances smaller
than the data interval (Goovaerts 2000). The spherical model
presents a nugget effect of ca. 0.07×10−5 and partial sill (sill
minus nugget) of 0.36×10−5.

3.1.4 CoOK

CoKriging (CoOK) is an extension of kriging where more
than one auxiliary variable can be added to the prediction
scheme (Isaaks 1989; Stein et al. 1991; Phillips et al. 1992;
Nalder and Wein 1998). In a conventional kriging model, a
response is assumed to be a spatial random process with sta-
tionary covariance function, which implies that the smooth-
ness of a response is fairly uniform in each region of the
domain area (Goovaerts 1997). However, cases are common
where the level of smoothness of a response could change
considerably due to geographical characteristics. In such situ-
ations, CoKriging is a regularly used technique wherewith
interpolations are improved by adding secondary attributes
that may drive the spatial distribution of the variable con-
cerned, for instance longitude, latitude and elevation (Stein
et al. 1991). CoKriging is most effective when the covariates
are highly correlated (Nalder and Wein 1998). Here, we apply
elevation as the auxiliary variable. According to Cressie
(1993), supposing the data as k×1 vectors (variables) mea-
sured on n locations, the multivariate process can be written
with the n×k matrix:

Z j ¼ Z j s1ð Þ;…; Z j snð Þ� �0 ð10Þ

With (i, j)th element Zj(si) of j=1,…,k variables in i=1,…,n
locations. The aim is to predict the Z1(s0) based not only on
Z1=(Z1(s1),…,Z1(sn)) ′ but also on the covariables (Eq. 10
with j≠1). The same assumptions as by ordinary kriging are
expected for each of the k variables. The kriging predictor of

Fig. 2 The semivariogram and optimal fitted model (i.e. spherical) of the
ordinary kriging function for 30-year (1971–2000) average of annual
precipitation in Central Brazil

Comparison of spatial interpolation methods 339



Z1(s0) is a linear combination of all available data values of all
k variables:

bZ1 s0ð Þ ¼
Xn
i¼1

Xk
j¼1

λi jZ j sið Þ ð11Þ

Assuming a uniformly unbiased predictor with the
conditions:

Xn
i¼1

λ1i ¼ 1 ;
Xn
i¼1

λ ji ¼ 0 j ¼ 2 ; … ; k ð12Þ

Therefore, the best linear unbiased estimator is obtained by
minimizing

E Z1 s0ð Þ−
Xn
i¼1

Xk
j¼1

λi jZ j sið Þ
 !2

ð13Þ

The spherical function (see Eq. 8) was applied for all var-
iable pairs of interest (autocorrelations and cross-correlation).
The model parameters of the semivariogram of precipitation
pairs are the same as OK. The spherical function fitting the
semivariogram of altitude pairs does not present a nugget ef-
fect and the partial sill is 1.00×10−5. The model of the
semivariogram between precipitation and altitude pairs does
not present a nugget effect and the partial sill is ca. 0.32×10−5.
The lag size and number of lags are the same as for OK. The
Fig. 3 illustrates the assumptions concerning to the CoOK
model. The empirical semivariogram of altitude pairs is well
fitted by a spherical model (Fig. 3a). Figure 3b shows the
empirical cross-covariance for all pairs of locations between
precipitation and altitude as well as the fitted function. In

general, the spatial covariance between precipitation and alti-
tude is low at the origin and tend to increase with the distance.

3.1.5 DUK

The detrended universal kriging (DUK) is a generalized case
of kriging where the trend is modelled as a function of the
coordinates. The method can add substantial value to esti-
mates in case of a spatial trend, whichmight be true for rainfall
in Central Brazil (see Fig. 5c, d). The deterministic component
of the plane is represented by a mathematical formula while
the random process is estimated by the function fitting the
semivariogram of the “detrended” data (Tveito et al. 2008).
In fact, the deterministic component uses the spatial coordi-
nates as the explanatory variables whereas the residuals are
modelled assuming an autocorrelation function (Johnston
2004). The DUK assumes the model

Z sð Þ ¼ μ sð Þ þ ε sð Þ ð14Þ

where μ(s) is a deterministic function and ε(s) are the errors
which are assumed to be random. In this case study, a first-
order polynomial trend was detected and, therefore, assumed
as the deterministic function. The empirical semivariogram
and fitted function (i.e. spherical) of the “detrended” data is
illustrated in Fig. 4. The lag size and number of lags are the
same as for OK. The nugget effect is 0.05×10−5 and partial sill
0.11×10−5.

3.1.6 MReg

Multiple linear regression (MReg) is a deterministic method
which expresses the relation between a predicted variable and
explanatory variables (Tveito et al. 2008). In a linear manner,
we assume that the spatial distribution of rainfall in Distrito
Federal is dependent on location (i.e. longitude and latitude)
and terrain elevation. Figure 5 illustrates the spatial

Fig. 3 The CoOK assumptions. a The empirical semivariogram and fitted spherical function of altitude pairs and b the empirical cross-covariance and
fitted spherical function between 30-year average of annual precipitation and altitude
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distribution of the explanatory variables and their linear rela-
tionship (i.e. scatterplot) with annual precipitation. A limita-
tion of the technique is the risk of the estimation turning into
extrapolation due to its dependence on the fit of the regression
model and distribution of the input datasets (Bostan et al.
2012; Bárdossy and Pegram 2013). On the other hand, the
simplicity of the multiple regression method can produce rea-
sonable estimates, and its analysis may significantly improve
the GIS techniques for elaborating an objective mapping
(Ninyerola et al. 2000; Naoum and Tsanis 2004; Mair and

Fares 2010). In its simplest form, it is used to fit a straight line
through points scattered in a plane. The mathematical back-
ground is described as

bZ sð Þ ¼ β0 þ β1⋅x1 sð Þð Þ þ β2⋅x2 sð Þð Þ þ…þ βp⋅xp sð Þ� �ð15Þ
where Ẑ is the predicted variable at location s; x1, x2,…, xp are
explanatory variables at the point of interest; and β0 is the
intercept and β1, β2,…, βp are coefficients of linear
combination.

3.1.7 Residual interpolation (MRegIDWand MRegOK)

The residual interpolation can be classified as a combined
method (Tveito et al. 2008). The first-order trend component
(i.e. multiple linear regression model) is removed from the
observations before a spatial interpolation technique is ap-
plied. The resulting gridded estimates are then added to the
gridded regression model, as demonstrated by many authors
(e.g. Martínez-Cob 1996; Nalder and Wein 1998; Goovaerts
2000; Ninyerola et al. 2000; Lhotellier 2005; Ninyerola et al.
2007; Portalés et al. 2010; Di Piazza et al. 2011; Bostan et al.
2012). The most preferred methods for the interpolation of the
residual field are geostatistical methods, inverse distance
weighting and various spline techniques (Dobesch et al.
2007). We opted for applying both a deterministic method
(i.e. IDW) and a geostatistical method (i.e. OK), also referred

Fig. 4 The semivariogram and optimal fitted model (i.e. spherical) of the
detrended universal kriging function for 30-year (1971–2000) average of
annual precipitation in Central Brazil

Fig. 5 The a spatial distribution of altitude and the linear relationship (scatter plot) of annual precipitation with b altitude, c longitude and d latitude

Comparison of spatial interpolation methods 341



as kriging with an external drift or residual kriging. The basic
formula is defined as

Z sð Þ ¼ bZ sð Þ þ ε
IDW

.
OK

sð Þ ð16Þ

where Ẑ is the predicted variable at location s as demonstrated
in formula (Eq. 15). The εIDW is the result of the interpolated
residuals at location s using IDW with power value equal to 2
and εOK uses OK as residual interpolator. The semivariogram
of the residual distribution is illustrated in Fig. 6. The fitting
model is spherical and the lag size and number of lags are the
same as for OK. The nugget effect is 0.03×10−5, and partial
sill is equal to 0.10×10−5.

3.2 Calculation and validation

All calculations were performed using the Geostatistical
Analyst tool of ArcGIS®9. Multiple linear regression
equations were derived with a standard statistical pro-
gramme and computed by using map calculator func-
tions in ArcGIS®9. Before producing spatial distribution
maps, the accuracy of estimations must be assessed.
Cross-validation and validation may assist the decision
to which model provides the best predictions (Tveito
et al. 2008). The calculated statistics provides diagnos-
tics to whether the model and/or its associated parame-
ter values are reasonable (Johnston 2004). Cross-
validation is probably the most widely applied method
within climatology. In a cross-validation technique, one
data point is left out of the data sample at a time while
all the other data points are used to estimate the value

for the point of interest left. This procedure is repeated
until a value is estimated for all original data points
(Isaaks 1989). One objection to using cross-validation
is that the whole data sample is often used to define
the interpolation model, and that the validation therefore
might be considered to not be totally independent
(Tveito et al. 2008). In order to avoid the limitation of
using cross-validation, we opted for using an indepen-
dent validation procedure that consists of splitting the
data sample into two parts. Hence, 51 stations were
used for interpolation purposes, while the remaining
15 % (9 stations) were used for independent validation
(Fig. 1).

Four measures were used for the comparison:

(1) Visual analysis according to the physical plausibility and
consistency of the spatial estimates. It is expected that
methods should capture local variations, especially those
influenced by terrain characteristics. Nevertheless,
methods are subject of inconsistent estimates due to the
non-uniformity of the spatial distribution of the observa-
tion network. Deterministic methods may produce isolat-
ed “islands”, while geostatistical models can create dis-
continue edges.

(2) Mean square error (MSE) measuring the difference be-
tween observed (z) and modelled (ẑ) in its average of the
squares. This error measure is usually used as a criterion
to compare the results of interpolation methods and
should be as low as possible (Tveito et al. 2008);

MSE ¼

Xn
i¼1

bz xið Þ−z xið Þ
� �2

n
ð17Þ

(3) Correlation coefficients (r), also referred to as Pearson’s
coefficient, is a measure of the linear dependence be-
tween two variables, in this case, the observed (z) and
modelled (ẑ) (Tveito et al. 2008);

r ¼

Xn
i¼1

zi−z
� � bzi−bz� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

zi−z
� �2vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

bzi−bz� �2
vuut ð18Þ

(4) Nash–Sutcliffe efficiency criterion (NSE; Nash and
Sutcliffe 1970): although widely applied for validating
hydrological models, the NSE criterion can also be ap-
plied to assess the performance of interpolation methods
in climatology (Zoccatelli et al. 2010; Wagner et al.

Fig. 6 The semivariogram and optimal fitted model (i.e. spherical) of the
ordinary kriging function for the residual derived from the multivariate
regression model. The data is a 30-year (1971–2000) average of annual
precipitation in Central Brazil
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2012). This approach gives more weight to the real quan-
tities than the correlation coefficient and therefore might
be appropriated for the validation of rainfall.

NS ¼ 1−

Xn
i¼1

zi−bzi� �2
Xn
i¼1

zi−z
� �2 ð19Þ

3.3 Assessment of uncertainties

No matter which interpolation technique is used, the interpo-
lation values are only estimates of what the real values should
be at a particular location. For any analysis of interpolated
observed data, the level of uncertainty must be considered.
The spatial distribution of uncertainty is essential to inform
the reliability of the estimates to potential end users (Martínez-
Cob 1996; Chiles 1999; Bárdossy and Pegram 2013).
Geostatistical methods use the statistical properties of the
measured data to estimate surfaces. The kriging assumes that
the spatial variation can be modelled by random processes
dependent on certain spatial autocorrelation. The statistical
background allows not only the estimates of surfaces but also
the quantification of uncertainties. In this study, a general as-
sessment of the uncertainties is expressed in terms of the stan-
dard error of the prediction derived from the ordinary kriging
method.

4 Results

Following the visual analysis, all methods have shown similar
pattern on the spatial distribution of rainfall. Figure 6 illus-
trates the heterogenic distribution of annual rainfall where
higher amounts are observed over the northwest and western
parts of Distrito Federal. However, IDW, spline, OK, CoOK
and DUK (Fig. 7a–e) do not capture local variations the way
the multiple regression models do (Fig. 7f–h). Since MReg,
MRegIDW and MRegOK take geographical factors into ac-
count, the distribution of rainfall over space is directly related
to the spatial variability of the explanatory variables, especial-
ly topography. Moreover, spatial and temporal distribution of
precipitation can be explained by its dependence on the
Amazonian atmospheric circulation system, located to the
northwest of the study region. The upper-tropospheric anticy-
clone, named the Bolivian High, causes strong convective
heating of the atmosphere in the Amazon during the austral
summer (Virji 1981). Low-level winds from the North

Tropical Atlantic converge to the southeast due to Andes
Cordillera bringing increasing temperature and humidity from
the Amazon basin to Central Brazil (Gan et al. 2004). During
the same period, a band of cloudiness and moisture is ob-
served which extends over Amazon region to the
Subtropical Atlantic Ocean, with the orientation northwest-
southeast, denominated the South Atlantic Convergence
Zone—SACZ (Carvalho and Jones 2009). Topography also
plays a significant role on rainfall mechanisms by forcing the
air lift in higher areas, as in the west of the Distrito Federal,
creating greater convective activity compared to areas down-
wind of these natural heights (Vera et al. 2006). Following the
literature, the multiple regression model (MReg), using geo-
graphical position and altitude as explanatory variables, has
given reliable results showing fairly the same distribution pat-
terns as the other methods. Figure 8 shows that spatial vari-
ance of precipitation is highly explained by longitude at annu-
al scale, as well as for summer (December, January and
February—DJF) and autumn (March, April and May—
MAM). Latitude does not influence the precipitation to the
same high degree as longitude, while altitude can add explan-
atory information to the model for winter (June, July and
August—JJA) and spring (September, October and
November—SON). The results support the inclusion of geo-
graphical variables in the spatial interpolation approach. The
multiple regression model (MReg) was able to explain 67 %
of the annual precipitation variance, and 60 % for summer
(DJF), 77 % for autumn (MAM), 49 % for winter (JJA) and
60 % for spring (SON). Additionally, any kind of residual
interpolation (i.e. MRegIDW and MRegOK) is very
likely to increase the predictive performance of the re-
gression model. The results achieved are in close agree-
ment with several studies. For instance, Goovaerts
(2000) and Haberlandt (2007) highlight the importance
of topography in estimating spatial distribution of rain-
fall. Agnew and Palutikof (2000) and Portalés et al.
(2010) demonstrated the added value of geographic in-
formation (e.g. longitude and latitude) when incorporated to
interpolation methods.

Tables 1 and 2 show the mean square error and cor-
relation coefficient between measured and estimated
values, respectively. Spatial interpolation for summer
(DJF) rainfall has the lowest error and highest correla-
tions when MRegOK method is applied while MReg has
the highest error and lowest correlation. Except for
spline, all methods demonstrated low errors/high correla-
tion in autumn (MAM). The DUK method performs the
lowest errors/highest correlation in winter (JJA), while
MRegIDW gives the poorest results. However, the rain-
fall average in JJA is very low (less than 30 mm), and
therefore, statistical validation measures might not signif-
icantly influence the choice of the proper interpolation
method. For spring (SON), the OK, IDW, MRegOK
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and MRegIDW have the lowest error/highest correlation,
while MReg performs the worst. The MRegIDW method
has demonstrated the finest results in representing the
distribution of annual rainfall, while spline gives the

poorest results. Table 3 exhibits the results according to
the NSE criterion where CoOK, followed by IDW and
OK have performed the finest estimates while spline and
MReg demonstrate inferior performance.

Fig. 7 Spatial estimates of 30-
year (1971–2000) annual
precipitation for Distrito Federal
using eight different interpolation
methods
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In general, differences between methods are low and de-
crease as observation network increases. The raster statistics
reveals that, over the Distrito Federal domain, the spatial av-
erage of annual precipitation varies from 1426 mm (spline) to
1450 mm (MReg). The standard deviation of the spatial dis-
tribution lies between 40.4 mm (MReg) and 80.5 mm (spline).
The uncertainty, which is also a function of observation den-
sity, is addressed in this study. The representativeness of the
observation network is a very challenging issue within clima-
tology (Dobesch et al. 2007). Observation networks usually
have an irregular spatial distribution and are mostly located in
populated areas and lower altitudes (Dobesch et al. 2007;
Tveito et al. 2008). The representativeness of observations
can be described by standard error maps, such as from
geostatistical methods. Figure 9 illustrates quite clearly the
problems that arise with an irregular observation network.
Low uncertainties are located mainly in the Distrito Federal
domain area and populated areas in Goiás state, for instance,
in the capital Goiânia and its surroundings. Remote areas in
the north and northeast, where most of the observations are
only available from the 1980s due to later settlement, are

under high uncertainties. The map illustrates the spatial distri-
bution of the standard error of the prediction in terms of per-
centage of the OK estimates. Assuming that the random pro-
cess of the OK is normally distributed, there is a 95 % of
confidence that the true value is within the interval of ±2 times
the standard error (Johnston 2004). For instance, in a specific
point in DF (longitude −47.9° and latitude −15.8°), the value
estimated by the OKmethod is 1455mmwith a standard error
of 6.7 %. That means that in 95 % of the cases in the random
process of OK, the true prediction is a value between 1260 and
1650 mm. For a remote location in northeast of the Central
Brazil area (longitude −45.0° and latitude −14.5°), the uncer-
tainty of the OK estimate is very high. The standard error is
19.2 % and, hence, the true prediction is a value between 724
and 1626 mm. Analogous to other studies (e.g. Martínez-Cob
1996; Borga and Vizzaccaro 1997; Bárdossy and Pegram
2013), the performance of the interpolation methods is highly
dependent on the density of the observation network. Some
methods may be more appropriated for areas with sparse ob-
servation networks and specific topographic conditions.
Given these findings, the inclusion of explanatory variables,

Table 1 Mean square error (mm) between measured and predicted
values

DJF MAM JJA SON Annual

IDW 1141.5 327.0b 10.3 197.5 3334.5

Spline 1251.3 478.3a 9.2 245.8 4950.0a

OK 1256.2 374.7 5.7 180.3b 3681.2

CoOK 1204.8 330.7 5.7 190.2 3393.4

DUK 1509.9 348.4 5.6b 202.8 4602.4

MReg 1786.0a 428.6 6.5 314.4a 3833.0

MRegIDW 1244.5 391.4 13.4a 223.6 2512.0b

MRegOK 1059.4b 352.1 12.1 213.1 2956.9

a Highest errors
b Lowest errors

Fig. 8 Explained variance (i.e. square of the Pearson’s correlation
coefficient) of each potential explanatory variable in the linear
regression model of seasonal and annual precipitation (1971–2000)

Table 3 Nash–Sutcliffe criterion between measured and predicted
values

DJF MAM JJA SON Annual

IDW 0.88 0.87b 0.55 0.90 0.89

Spline 0.86 0.81a 0.60 0.88 0.84a

OK 0.86 0.85 0.75b 0.91b 0.88

CoOK 0.87 0.85 0.75b 0.91b 0.89

DUK 0.84 0.87b 0.75b 0.90 0.85

MReg 0.81a 0.83 0.72 0.85a 0.87

MRegIDW 0.87 0.85 0.42a 0.89 0.92b

MRegOK 0.89b 0.86 0.47 0.90 0.90

a Lowest value
bHighest value

Table 2 Correlation coefficient between measured and predicted
values

DJF MAM JJA SON Annual

IDW 0.95b 0.93 0.81 0.96b 0.95

Spline 0.94 0.90a 0.82 0.94 0.92a

OK 0.94 0.92 0.89b 0.96b 0.94

CoOK 0.94 0.93 0.88 0.95 0.94

DUK 0.92 0.93 0.89b 0.95 0.92

MReg 0.92a 0.93 0.87 0.92a 0.95

MRegIDW 0.94 0.93 0.79a 0.96b 0.97b

MRegOK 0.95b 0.94b 0.81 0.96b 0.96

a Lowest correlation
bHighest correlation
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such as location and topography, to the interpolation model
should assist estimates of rainfall in areas with low observa-
tion density in Central Brazil.

5 Conclusions

Eight univariate and multivariate techniques are compared for
the estimation of seasonal and annual precipitation climatology
(1971–2000) in DF. According to existing literature, regional
precipitation is very likely to be dependent on atmospheric cir-
culation patterns originating from the Amazon region andmight
be increased due to orography. The dependence of long-term
accumulated rainfall on regional geographical characteristics
was confirmed. The explanatory variables used, particularly lon-
gitude, could explain a large portion of precipitation. In order to
assess the performance of the methods tested, a validation ap-
proach based on visual analysis and basic statistics was applied.
Visual examination reveals that the multiple linear regression
models provide more detailed spatial variability than others.
The MSE, correlation coefficient and NSE criterion confirmed
the reliability of IDW, OK and residual interpolation
(MRegIDWandMRegOK) in estimating rainfall in DF. In gen-
eral, for the resolution wanted (i.e. 1 km), interpolation methods
provide similar spatial distributions wherever observation net-
work is dense. In remote areas, a general assessment illustrates
the large uncertainties associated to the geostatistical methods.
The inclusion of geographical factors to the interpolation meth-
od demonstrates a potential to improve estimates in areas where
observation density is low. The use ofMRegIDWandMRegOK
is preferred; however, the deterministic component of these
methods does not allow the assessment of prediction errors. It
is, therefore, recommended to use the standard error maps of

geoestatistical methods as supplementary and qualitative infor-
mation for further applications of the methods suggested.

Nevertheless, before applying this climate information to
any water-related study, it is recommended to test the sensi-
tivity of the target system to the spatial variability of rainfall
derived from a range of plausible but distinct interpolation
methods. The sensitivity analysis is a common approach ap-
plied in hydrological modelling studies. The main objective is
to understand the behaviour of a system to alterations in its
major driving forces (e.g. spatial distribution of rainfall). In
the case of DF, water planners should consider more than one
method to assess the uncertainties associated to the interpola-
tion of point data, for instance the methods recommended in
this study. If the system under concern is substantially sensi-
tive to the interpolation method applied, the ensemble of these
methods is likely to be the most appropriated estimate
(Strauch et al. 2012). Additionally, several statistical down-
scaling methods are limited to single site projections. As im-
pact modellers may be interested in the multi-site information,
the investigations conducted in this study may support the use
of the recommended methods in providing plausible distribu-
tions of future climate projections over DF.

Further research should investigate whether other environ-
mental variables (e.g. direction of winds and slope orientation)
allow increase in explanatory power of the regression models.
The use of auxiliary rainfall information, such as radar and
satellite data, is likely to increase the reliability of estimates.
This might well be the case for lower time-aggregated data,
such as monthly data. Furthermore, following this study, we
recommend evaluating the performance of the residual inter-
polation methods using the same number of stations for pe-
riods where the observation network is higher, for instance for
1981–2010.

Fig. 9 Uncertainties of
interpolation demonstrated by
prediction standard error [%] map
of ordinary kriging for annual
accumulated precipitation in
Central Brazil
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