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Abstract Understanding vegetation dynamics provides infor-
mation on changes in land cover that can directly be related to
regional changes in the climate system. In data-sparse regions,
i.e. northwest Morocco studies are limited by the availability
of comprehensive information on precipitation. We extracted
precipitation data of high spatiotemporal resolution (2 km,
1 day) from the Northwest Africa Reanalysis (NwAR) and
gridded Normalized Difference Negetation Index (NDVI) of
the Moderate Resolution Imaging Spectroradiometer (MODIS)
that cover northwest Morocco over ten hydrological years
(September 2000 to August 2010). The results are based on a
sequence of linear regression analyses. The mean precipitation
of different input timeframes is systematically applied as the
predicting variables to the mean NDVI of the growing seasons.
Results show that 73 % of the variance in mean NDVI is
explained by the variance in mean precipitation at the begin-
ning of the growing season (November to the end of
December). The results also show that 75 % of the variance
in the mean NDVI of agriculturally used areas is explained by

the variance in mean precipitation of beginning September to
the end of December. Potentially irrigated land cover of low to
medium explained variance but of a high seasonal range in
NDVI cover about 14% of the study region. We conclude that
a considerable part of agricultural used areas are still poten-
tially rain-fed. The applied methods and especially the re-
analysed precipitation data of high spatiotemporal resolution
open a new quality of analysis valuable for, e.g. monitoring
aspects, policy decisions or regulatory actions.

1 Introduction

In arid and semiarid environments, precipitation is the limiting
factor for plant growth (Al-Bakri and Suleiman 2004), and
thus, knowledge of the relationship between precipitation and
vegetation is important for efficient resource management
(e.g. food security, water management, trading aspects as
export of high-value agricultural goods).

The relationship between precipitation and the Normalized
Difference Vegetation Index (NDVI; Sellers 1985) as an indi-
cator of plant growth (Fang et al. 2005) has been thoroughly
investigated in arid and semiarid regions (e.g. Jobbagy et al.
2002; Chu et al. 2007; Iwasaki 2009). Regarding the African
continent, most studies related to this topic focus on the
Sahelian zone (e.g. Hielkema et al. 1986; Nicholson et al.
1990; Proud and Rasmussen 2011) or south Africa (e.g.
Gaughan et al. 2012). Other studies were done for Somalia
(e.g. Omuto et al. 2010) or across larger regions, namely the
African continent (Sahel, south Africa and east Africa, Zhang
et al. 2005), the sub-Saharan Africa (e.g. Vanacker et al. 2005)
and the 200 to 600 mm annual rainfall belt (Martiny et al.
2005). A good summary about Africa-related studies
concerning the relationship between NDVI and precipitation
can be found in Chamaille-Jammes et al. (2006).
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Hielkema et al. (1986) state that in the Mediterranean zone,
the relationship between the primary production and precipi-
tation is quite different from that in the Sudano-Sahelian zone.
While precipitation occurs in the Sudano-Sahelian zone in the
high-temperature season (summer rainfall), it occurs in the
Mediterranean zone during the low-temperature season (win-
ter rainfall). Besides, the Mediterranean climate has a smaller
annual temperature range and photosynthetic activity, as rep-
resented by the NDVI, follows precipitation rather than tem-
perature (Richard and Poccard 1998).

Semiarid regions of winter rainfall and Mediterranean cli-
mate as present in Morocco have been investigated for the
western Mediterranean (e.g. Puigdefabregas and Mendizabal
1998), Jordan (Al-Bakri and Suleiman 2004), Israel (Schmidt
and Gitelson 2000; Penuelas et al. 2004), the Iberian
Peninsula (Udelhoven et al. 2009) and for southwest
Australia (Timbal and Arblaster 2006). Focussing on
Morocco, Balaghi et al. (2008) used precipitation data,
NDVI and temperature to assess wheat grain yields. NDVI
data (annual average) were also applied in Morocco by
Sobrino and Raissouni (2000) for evaluating the regional
response of soil-vegetation systems to climate and to
monitor land degradation. Jarlan et al. (2013) found statistical
relations between NDVI and climate information within the
study region, which they propose to apply for a seasonal
prediction model as a contribution to the implementation of
an agricultural early warning system.

Response of NDVI to precipitation depends on the distri-
bution of precipitation throughout the growing season and the
intensity of individual precipitation events (Hielkema et al.
1986). It also depends on vegetation types, e.g. with different
water storage capacities (Fang et al. 2005; Gaughan et al.
2012), and varies depending on the geographical region and
topography such as valleys, slopes or hillsides (Tanaka et al.
2000). Further factors are soil type (Nicholson and Farrar
1994), soil fertility, water retention and management practices
such as burning and stocking (Hielkema et al. 1986; Wang
et al. 2001).

High explained variances between NDVI and precipitation
appear for the Sahelian region with a time-lag of 1–3 months
(Malo and Nicholson 1990; Nicholson et al. 1990; Davenport
and Nicholson 1993), for south Africa with a time-lag of 1–
2 months (Richard and Poccard 1998; Chamaille-Jammes
et al. 2006) and for Spain with a time-lag of 1–3 months
(Udelhoven et al. 2009). A linear relationship between
NDVI and precipitation has been shown for Namibia (du
Plessis 1999) and for the western Sahel where the annual
precipitation lies approximately between 150 and 1000 mm
(Nicholson et al. 1990). For the eastern Sahel/east Africa, the
relationship has been shown to be log-linear (Davenport and
Nicholson 1993). Eklundh (1998) detected no strong relation
between precipitation and NDVI in Kenya, while Nicholson
and Farrar (1994) proved a linear relationship for the

Kalaharian of Botswana up to a saturation level of
~500 mm/year (for further thresholds, see Richard and
Poccard 1998). For the study region, Höpfner and Scherer
(2011) detected a time-lag of 1.5 months by means of lagged
correlations.

For comparisons with precipitation, NDVI values have
been calculated over different time periods such as annual or
growing season NDVI (e.g. Li et al. 2004), monthly NDVI
(e.g. Herrmann et al. 2005) or 10-day NDVI (e.g. Eklundh
1998) using different calculation rules like mean, maximum,
range or integrated NDVI.

Analogously, different precipitation values such as the ratio
between the annual and the growing-season precipitation (e.g.
Richard and Poccard 1998), trimonthly precipitation (e.g.
Nicholson et al. 1990), bimonthly precipitation (e.g. Richard
and Poccard 1998), monthly precipitation or 10-day precipi-
tation (e.g. Al-Bakri and Suleiman 2004) were used either as
totals or means. Some authors also consider precipitation
frequency (e.g. Fang et al. 2005). Precipitation values in most
of the cited studies originate from station measurements (e.g.
Kerr et al. 1989; Hess et al. 1996), while recently, more and
more studies apply estimates based on remote sensing (e.g.
Proud and Rasmussen 2011; Gaughan et al. 2012). The spatial
resolution of remotely sensed estimates was highest with
0.25° (e.g. Iwasaki 2009; Gaughan et al. 2012).

On one hand, remote sensing for monitoring vegetation is
becoming more and more sophisticated with regard to spatial
and temporal resolution, time length and availability. On the
other hand, it remains difficult to obtain precipitation data of
similar quality in particular for data-sparse regions such as
northwest Africa. Here, e.g. rain gauge data are only available
for a relatively small number of locations, which are mostly
located close to cities, airports and along coast lines
(Schneider et al. 2013) and therefore are not representative
of inland areas. This study is conducted for a winter rainfall
region located in a semiarid African region north of the Sahel
and south of the Mediterranean Sea that is rarely in the focus
of other related studies due to the above-stated shortcomings
in observational data. The constantly improving capabilities of
numerical weather prediction (NWP) models offer the oppor-
tunity to reduce this problem by providing precipitation fields
and other meteorological variables as gridded data sets of high
spatial and temporal resolution. Longer time periods of years
to decades can be simulated by NWP models by successive
model runs of shorter periods driven by large-scale atmo-
spheric datasets (e.g. Bromwich et al. 2005; Maussion et al.
2011). For example, Maussion et al. (2014) used the Weather
Research and ForecastingModel (WRF) to dynamically down-
scale global final analysis data with a daily reinitialisation
strategy to produce the High Asia Reanalysis, at spatial reso-
lutions of 30 and 10 km.

The high spatiotemporal resolution of the NWP data rep-
resents a major step ahead compared to the precipitation data
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used in other comparable studies. Data derived from NWP
enables us to investigate the relationship between precipitation
and the NDVI at almost any timeframe (e.g. 16 days to
seasonal), region (e.g. NW-Morocco), high spatial resolution
(e.g. 2 km) and thematically focused scope (e.g. single type of
land cover). Thus, corresponding to Gaughan et al. (2012), we
are able to address in detail the following research questions:

1. What is the relationship between NDVI and precipitation
in the study region during the decade 2001–2010?

2. Howmuch variance of the NDVI is explained by variance
in different timeframes of precipitation within the decade
2001–2010?

3. Which relationships exist between different land cover
types and precipitation?

The manuscript is structured as follows. First, we provide a
detailed description of the materials applied including basic
characteristics of the study region, data pre-processing and the
regression analyses. This is followed by a presentation of
results and a discussion. Finally, conclusions are drawn.

2 Materials

2.1 Study region

The study region (Fig. 1) includes the cities of Casablanca,
Rabat and Meknès and covers an area of ~38,000 km2 ashore

from N 32° 37′ 50′ to N 34° 18′ 56′ latitude and fromW 5° 30′
6′ to W 8° 21′ 56′ longitude. The Atlantic Ocean to the north-
west and the Middle Atlas to the south-east are natural bor-
ders. The mean elevation is about 484 m a. s. l., and the
maximum elevation about 1767 m a. s. l. in the Atlas
Mountains. Precipitation normally occurs during the winter
months with roughly 75 % occurring in November to March.
The hydrological year starts in September of the previous year
and ends in August. The total mean of annual precipitation in
Casablanca (Nouasseur) is 369 (289) mm, ranging between 66
(50) mm and 665 (563) mm (NCDC data September 1980–
August 2010). The climate near the coast is moderate due to
the Canary current. The 30-year mean annual air temperature
in Casablanca is 18.1 °C (NCDC data, September 1980–
August 2010, Casablanca station).

2.2 Data sets and pre-processing

Annual data sets cover the time period from September 2000
to August 2010, i.e. the hydrological years 2001–2010.

2.2.1 NDVI time series data

The gapless NDVI time series dataset of MOD13Q1 product
(collection 5) from the Moderate Resolution Imaging
Spectroradiometer (MODIS) has been acquired from the
Warehouse Inventory Search Tool (WIST Warehouse
Inventory Search Tool available at: https://wist.echo.nasa.
gov/~wist/api/imswelcome/. Accessed 21 February 2011). It

Fig. 1 Study region in northwest Morocco: cities (squares), water mask (blue areas), mayor river basins (grey lines) and stations (triangles) of the
“Global Summary of the Day” (GSOD) provided by the National Climatic Data Center (NCDC). GSOD stations are used for validation
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consists of 230 single NDVI 16-day composites cover-
ing a time period of ten years from 2001 to 2010. The
National Aeronautics and Space Administration (NASA)
provides accurate, cloud-free, continuous and consistent
NDVI data of high quality (Huete et al. 1999). We re-
project NDVI raster data into resized WRF Lambert
conformal (WGS 84, spatial resolution of 250 m×
250 m, hereafter “MODIS-grid”). Hence, one pixel of
the NDVI raster data represents the NDVI value for an
area of 250 m×250 m. This is different to the applied
precipitation data set, which has grid points representing
values only for single points and not areas. However,
we speak hereafter of grid points for both data sets to
facilitate readability and easier understanding.

Grid points in the Atlantic Ocean near the coast are elim-
inated applying a water mask derived from the ASTER global
digital elevation model data. The water mask also includes
reservoirs ashore, which were masked using Landsat data of
2004.

We apply the algorithm of Chen and Dudhia (2001) as
described in Höpfner and Scherer (2011) to smooth NDVI
data of each grid point on the temporal scale. This smoothing
algorithm assumes that NDVI is always depressed but never
overrated by noise. Its application reduces impact of single
contaminated data points and keeps the upper envelope of
NDVI data.

After smoothing, we deduce five phenologic metrics
(Reed et al. 1994) from NDVI data for each grid point
and year (Fig. 2). The phenologic metrics describe the
annual phenology of vegetation by its intra-annual
NDVI characteristics. We use the phenologic metrics
to run annual land cover classifications for the entire
study region. The applied land cover scheme (Table 1)

is in particular helpful to describe vegetation in regions
where the majority of the land cover is unknown and
ground truth data are scarce. The multi-temporal classi-
fication compensates this disadvantage and allows
partitioning of the land cover in five different land
cover types based on intra-annual time series of NDVI
data. However, the scheme is developed for remote-
sensing data (MODIS-NDVI) and does not allow for a
distinction between specific land-use categories although
the phenologic metrics of green vegetation might be
very similar to e.g. stocking. Thus, areas with similar
phenologic metrics are summarised in one land cover
type even if its land use might be different (see Table 1,
more details in Höpfner and Scherer 2011). Figure 3
shows the mean land cover of the study region from
2001 to 2010.

Nevertheless, land use can be evaluated indirectly by an
evaluation of the vegetation response to precipitation (e.g.
degradation in Li et al. 2004). For response analyses, we apply
primarily the phenologic metric MeanV (mean NDVI value
between onset and offset of the growing season, Fig. 2). For a
better readability and understanding, we speak hereafter of
meanNDVIwhere meanNDVI of 2001 describes for instance
the mean NDVI value of the growing season between
September 2000 and August 2001. Figure 4 (top left) shows
images of spatial distributed data of mean NDVI for 2001–
2010. The highest values occur not only for forested areas due
to their perennial vegetation but also for some high-productive
vegetated areas, e.g. southern of Casablanca. The respective
coefficients of variation of mean NDVI (Fig. 4, top right) are
lowest near the coast, in cities, and in most of the areas
showing a high mean NDVI.

Fig. 2 Derived phenologic metrics according to Reed et al. (1994):
MaxV (maximum NDVI value within the vegetation period), MeanV
(mean NDVI value of the vegetation period), OnV (NDVI value at the
beginning of the vegetation period), EndV (NDVI value at the end of the
vegetation period), RanV (range between maximum value within the
vegetation period and minimum of OnV and EndV, Höpfner and
Scherer 2011)

Table 1 Land cover types corresponding to Höpfner and Scherer
(2011)

Land cover type Description

Very sparsely
vegetated

Maximum value of NDVI within growing season
lower than 0.2 (no vegetation or very little
vegetation, e.g. bare ground, dense city quarters)

Sparsely
vegetated

Mean value of NDVI within growing season lower
than 0.25 (sparse vegetation, e.g. grass on bare
soils, trees along streets in cities)

Forest NDVI within growing season higher than 0.4 and
mean value of NDVI within growing season higher
than 0.45 (evergreen perennial canopy, e.g. forest)

High-productive
vegetation

NDVI range between minimum and maximumwithin
the growing season higher than 0.4 (mainly
agriculture, also grassland on good soils or with
good water supply)

Low-productive
vegetation

NDVI range between minimum and maximumwithin
the growing season less or equal 0.4 (rain-fed
agriculture in hardscrabble areas, grassland or
shrub lands)
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2.2.2 Precipitation data

In this study, we used precipitation data from a new data
set covering ten hydrological years between 2001 and
2010: the Northwest Africa Reanalysis (NwAR), gener-
ated by dynamical downscaling of a large-scale meteo-
rological dataset following the methodology presented by
Maussion et al. (2014). The NWP model used to gener-
ate the NwAR is the WRF (Skamarock and Klemp
2008), version 3.2.1. The model configurations are
summarised in Table 2. The data set consists of consecu-
tively reinitialized model runs of 36 h time integration.
Each run starts at 12:00 UTC, and the first 12 h from
each run are discarded for spin-up. The remaining 24 h
of model output provide 1 day of the 10-year-long time
series of meteorological variables (e.g. precipitation,
temperature, pressure, geopotential, wind direction, wind
speed). Using a very short integration time ensures that
the model output remains constrained by observations,
while the conditions at the Earth’s surface influencing
atmospheric processes (e.g. topography, land cover),
particularly in the boundary layer, are described by the
model at higher spatial detail. Thus, our methodology
provides a re-analysed state of the atmosphere at high
spatial (2 km) and temporal (hourly) resolution. For

model initialisation and definition of boundary condi-
tions, we have used data from the operational model
global tropospheric analyses (final analyses, FNL; data
set ds083.2), which are available every 6 hours and
have a spatial resolution of 1°. Three domains (Fig. 5)
are defined with spatial resolutions of 30, 10 and 2 km.
The northwest Africa domain is the largest domain in
which the Morocco domain is nested as second-level
domain. The smallest domain covering the region of
Casablanca-Rabat is nested in the Morocco domain as
a third-level domain. We use the two-way nesting cas-
cading approach defined by Maussion et al. (2011),
such that every child domain of higher resolution bene-
fits from the two-way nesting option (the information
exchange between parent and child domain is bidirec-
tional) while avoiding inconsistencies in the parent do-
mains occurring in the presence of the child domain.
First, the large northwest Africa domain is computed
alone. Then, the Morocco domain is computed using a
two-level, two-way nesting within the northwest Africa
domain. Finally, the Casablanca-Rabat domain is com-
puted using a three-level, two-way nesting within the
two larger domains of the NwAR. Further details for
the modelling strategy as well as for sensitivity analyses
can be found in Maussion et al. (2011, 2014).

Fig. 3 Mean land cover of the study region based on thresholds derived from NDVI data of the Moderate Resolution Imaging Spectroradiometer
(MODIS) between 2001 and 2010
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For the present study, we use precipitation data
(NwAR precipitation) from the smallest domain (hereaf-
ter “WRF-grid”). To ensure that NwAR precipitation
data are of suitable accuracy for the purpose of our

study, we compared it with rain gauge precipitation
records (NCDC data) from the “Global Summary of
the Day” (GSOD) provided by the National Climatic
Data Center (NCDC) as described in “Section 3”.

Fig. 4 10-year mean of annual mean NDVI and 10-year mean of annual
mean precipitation (left) and coefficients of variation of the corresponding
ten annual values (right). The marked area covers the political district of

the Wilaya of Grand Casablanca. NDVI-related data refers to theMODIS
grid and precipitation data to the WRF-grid

Table 2 Overview on the configuration of the weather research and forecasting (WRF) model used for the computation of the Northwest Africa
Reanalysis (NwAR) consisting of three different nested domains, i.e., the northwest Africa, Morocco and the Casablanca-Rabat domains

Northwest Africa Morocco Casablanca-Rabat

Domain extent (west-east × south-north) 7500 km×6900 km 1500 km×1500 km 280 km×200 km

Grid spacing 30 km 10 km 2 km

Grid points (west-east × south-north) 250×230 150×150 140×100

Vertical layers 28 28 28

Integration time step 150 s 50 s 10 s

Storage interval 3 h 1 h 1 h

Short-wave radiation Dudhia scheme (Dudhia 1989)

Long-wave radiation Rapid radiative transfer model (Mlawer et al. 1997)

Microphysics WRF single-moment 3-class scheme (Hong et al. 2004) Thompson scheme (Thompson et al. 2008)

Planetary boundary layer Mellor-Yamada-Janjic TKE scheme (Janjic 2002)

Cumulus parameterization Grell 3D scheme (Grell and Devenyi 2002) none

Land surface model (LSM) Noah LSM (Chen and Dudhia 2001)

Urban canopy model (UCM) none none Single-layer UCM (Kusaka et al. 2001)
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TheWRF-grid has a size of 140×100 grid points and a grid
spacing of 2 km. We first remove four grid points from each
border as artefacts because of possible border effects from the
multilevel approach. Then, we transfer the already applied
water mask of the MODIS-grid to the spatial resolution of
the WRF-grid (2-km grid spacing, i.e. spatial up-scaling).
Each grid point of the WRF-grid contains 64 grid points of
the MODIS-grid due to the different spatial resolutions. We
mask all grid points of the WRF-grid that have less than 58
(90 %) valid grid points in the MODIS-grid. The threshold of
90 % is applied to account for variations of water level,
especially in the reservoirs within the study region. By doing
so, 9401 grid points (~37,600 km2) remain as input for the
analyses in the study region.

For the analyses, we use mean NwAR precipitation
per day as unit (mm/day) for all aggregations of precip-
itation over different timeframes. To avoid misunder-
standing, we speak hereafter of mean precipitation
where this terminology always refers to a specific
timeframe of temporal aggregations (e.g. mean precipi-
tation per month expressed in millimetres per day).

A temporal up-scaling of the NwAR precipitation data is
realised through aggregation from an hourly to a daily tem-
poral resolution, and in a second step to the 230 timeframes of
NDVI 16-day composites. Höpfner and Scherer (2011) used
lagged correlations and proved that vegetation response in the
study region has a time-lag of about 1.5 months. Therefore, it
is necessary to calculate the mean precipitation for the two 16-
day composites covering August 2000, which are missing in
the NwAR precipitation data set. To get both values, we use in
each case the mean value of the ten corresponding composites
of August 2001–2010.

3 Methods

For the analyses of the vegetation response to precipitation,
we first validate the NwAR precipitation data (see results).
Here, we describe the methods applied for the response anal-
yses. For all analyses (validation and response analyses), we
use the 5 % significance level.

Fig. 5 Overview on the configuration of the Weather Research and Forecasting Model (WRF) used for the computation of the Northwest Africa
Reanalysis (NwAR) consisting of three different nested domains (the biggest domain equates to the entire map as shown)

Assessing vegetation response to precipitation in northwest Morocco 29



For the response analyses, we first upscale mean NDVI
from the MODIS-grid to the WRF-grid using spatial averag-
ing. Speaking hereafter of grid points, we always refer to
WRF-grid, and exceptions will be marked explicitly. In the
same way, we speak of precipitation data referring to NwAR
precipitation data. The workflow for the response analyses is
shown in Fig. 6.

In a first step, we run multi-temporal linear regression
analyses. For it, we use the ten annual values of mean NDVI
(2001–2010) as proxy of vegetation response. As precipitation
input data of the 10 years, we systematically apply mean
precipitation, which is calculated for different input
timeframes. These timeframes shift systematically from
32 days up to the entire hydrological year using a lag of
16 days. By doing so, it is possible to extract the timeframe
of precipitation whose variance best explains the variance in
mean NDVI during the decade. The application of a lag of 16-
day steps (hereafter composites) corresponds to the timeframe
of an NDVI composite. For the aggregation of precipitation
data, a minimum length of two composites (32 days approx.
1 month) is applied as shortest input timeframe to minimise
noise and the attested uncertainties in the precipitation data
when using shorter aggregation time periods (see results of the
validation).

Each timeframe of precipitation input for regression anal-
yses is defined by a start composite and the length of the
aggregation period (number of composites). If both are set,
the mean daily precipitation for the corresponding ten annual
timeframes can be computed at each grid point.

Defining the start composites, it is additionally necessary to
include precipitation that occurs just before the beginning of
each hydrological year because of the time-lag of nearly
1.5 months (~3 composites) between vegetation response
and precipitation in the study region (Höpfner and Scherer
2011). Thus, regarding each year as a time series of 23
composites (keys 0–22), we define the first start composite
at key “−2” which covers the beginning of August, i.e.
1 month before the start of the respective hydrological year
(September). We use the two August composites of each
previous hydrological year and the first 14 composites of the
current hydrological year as different starting composites of
the aggregation periods. Thus, the last starting composite is at
the end of March. Once the start composite is set, we stepwise
add one composite to enlarge the length for the calculation of
the mean precipitation until the end of the hydrological year is
included (end of August). By doing so, the maximum length
of the aggregation period of mean precipitation is 25
composites.

Focussing on research questions one and two, a se-
quence of linear regression analyses is conducted based
on ten mean NDVI values and ten mean precipitation
values of the different input timeframes at each grid
point between 2001 and 2010. To extract the mean
response of vegetation to precipitation in the study
region, we run the linear regression analyses first with
spatial means of NDVI and precipitation data. Then, we
run linear regression analyses for each single grid point
to get spatially distributed response information.

Fig. 6 Workflow applied for
response analyses
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In a second step, we focus on research question three. We
first extract the maximum of significantly (5 % confidence
level) explained variance (r2) in mean NDVI for each grid
point from spatially distributed response information. This
allows locating areas of high (0.6≤r2<0.8), medium (0.4≤r2

<0.6) or low (0.2≤r2<0.4) explained variance. Then, we
focus on all grid points having a maximum r2 greater than or
equal to a defined threshold. This threshold is changed step-
wise to examine different clusters of grid points and their land
cover composition. The results of the ten annual land cover
classifications are the basis for determining shares of land
cover types for each respective cluster of grid points. This is
possible because of the different spatial resolutions of both
grids (250 m and 2 km). Thus, we gain evidence of the land
cover composition of grid points with high, medium or low
explained variance in mean NDVI.

In Morocco, considerable agricultural areas are irrigated.
Since irrigation unlinks vegetation response to precipitation,
we assume that these areas do not show high explained
variances of mean NDVI. Further, we assume that irrigation
is mainly related to agricultural land use. To extract such areas,
we use the classification thresholds of the land cover type
‘high-productive vegetation’, which is designed to denote
agricultural lands showing a high range value of NDVI within
the vegetation period (RanV≥0.4, Höpfner and Scherer 2011).
We extract all grid points with a low to medium explained
variance (r2<0.6) that contain a high mean range value of
NDVI within the 10 years (RanV≥0.4) to map potentially
irrigated agriculture.

In addition, we run a sequence of linear correlations using
annual spatial means of precipitation input and yearly spatial
means ofmeanNDVI based on each single land cover type.We
only use MODIS-grid points of the specific land cover to
upscale mean NDVI to WRF-grid. Grid points without values
(e.g. no MODIS-grid point has this land cover type, or a WRF-
grid point is masked) are excluded from analysis. Throughout
this procedure, we can specify the mean relation of each land
cover type to precipitation in the study region. A first impres-
sion of the mean seasonal cycle of precipitation and NDVI of
the different land covers is depicted in Fig. 7. Corresponding to
Al-Bakri and Suleiman (2004), we use re-analysed precipita-
tion data as an independent variable and mean NDVI as a
dependent variable for all linear regression analyses.

4 Results

4.1 Validation of NwAR precipitation

The spatial distribution of mean annual precipitation during
the decade indicates a gradient of decreasing values towards
the south and increasing values towards the eastern higher
altitudes of the Atlas (Fig. 4, down left). The general pattern of

the coefficient of variation of the mean annual precipitation
(Fig. 4, down right) shows that variability of mean annual
precipitation is higher in mountainous areas than that in coast-
al areas of the study region. However, the results of linear
regression analyses between measured and NwAR precipita-
tion are statistically significant for all four GSOD stations
(Table 3).

First, we extract the NwAR precipitation time-series of the
WRF-grid point next to the location of the corresponding
NCDC station. Then, we applied several predefined sets of
temporal aggregation to compute the mean precipitation be-
fore running the corresponding linear regression analyses:

& Daily base (no temporal aggregation),
& Two-day, 5-day and 10-day base (mean daily precipitation

for these time-steps),
& Sixteen-day base (mean daily precipitation corresponding

to composite length of NDVI data),
& Monthly base (mean daily precipitation per month),
& Seasonal base (mean daily precipitation corresponding to

the four seasons September–November (autumn),
December–February (winter), March–May (spring),
June–August (summer)),

& Annual base (mean daily precipitation per hydrological
year).

For linear regression analyses, we used NwAR precipita-
tion data as independent variable and the measured precipita-
tion data as dependent variable.

Generally, the validation results show increasing r2 values,
the more days are aggregated to the mean precipitation, except
on an annual base (Table 3). Focussing on the results from the
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four stations, in average 50 % of the variance in measured
precipitation can be explained by variance in NwAR precip-
itation using a basis of 10 days for regression analysis. This
averaged explanation in variance increases to 56 % for a base
of 16 days, 65 % for a base using months, 78 % using seasons
as a base and 56.0 % using hydrological years as a base.

The increase of r2 values is explained by the general
framework of modelling or re-analysing precipitation:
On the one hand, it is possible to assess precipitation
as one of several variables of the climate system in a

quite similar temporal pattern, but on the other hand,
the congruity of precipitation data also depends on the
exact point in time and the exact amount of precipita-
tion. Therefore, it is possible that precipitation occurs in
another amount than measured or with a temporal shift
(e.g. 1 day later than assessed). This assumption is
underlined by the almost doubled r2 values when
switching from a daily base (16 % explained variance
in average) to a 2-day base (30 % explained variance in
average) and nearly tripled switching from a daily base

Table 3 Validation results of re-analysed precipitation data compared to station measurements (GSOD) at different aggregations (base) between 2001
and 2010

Casablanca Meknès Nouasseur Rabat-Salé

Station code 601550 601500 601560 601350

Erased days (due to heavy distrust) August 25, 2001 May 31, 2006 April 2, 2002 September 11, 2007,
September 27, 2008

Valid days (of 3652) 3404 3586 3540 3607

Base, days

r2 0.15 0.16 0.12 0.20

Degrees of freedom 3402 3584 3538 3605

p value <0.01 <0.01 <0.01 <0.01

Base, 2 days

r2 0.30 0.32 0.21 0.37

Degrees of freedom 1754 1820 1811 1823

p value <0.01 <0.01 <0.01 <0.01

Base, 5 days

r2 0.35 0.43 0.37 0.50

Degrees of freedom 715 729 729 728

p value <0.01 <0.01 <0.01 <0.01

Base:, 10 days

r2 0.48 0.49 0.46 0.58

Degrees of freedom 359 364 364 363

p value <0.01 <0.01 <0.01 <0.01

Base, 16-day composites

r2 0.55 0.52 0.57 0.58

Degrees of freedom 226 228 228 228

p value <0.001 <0.001 <0.001 <0.001

Base, months

r2 0.68 0.60 0.67 0.64

Degrees of freedom 117 118 118 118

p value <0.001 <0.001 <0.001 <0.001

Base, seasons

r2 0.82 0.72 0.79 0.79

Degrees of freedom 38 38 38 38

p value <0.01 <0.01 <0.01 <0.01

Base, hydrological years

r2 0.71 0.47 0.62 0.44

Degrees of freedom 8 8 8 8

p value 0.0023 0.0297 0.0072 0.0360
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to a 10-day base (50 % explained variance in average).
This effect decreases, the more days are aggregated and
saturates at a certain level, which is indicated at the
seasonal base (78 % explained variance in average).
Following this hypothesis, the final drop of r2 values
applying an annual base is surprising at first. We ex-
plain this with a second effect influencing the results,
i.e. by heavy rain events that were not re-analysed
correctly in terms of intensity. If such a heavy rain
event occurred, one of the input values for linear re-
gression analysis would be strongly out of line. This is
not crucial if the quantity of values is high enough, but
if the number is rather small as on an annual base (10
values in all), one value out of line will have a signif-
icant impact on the explained variance of the mean
NDVI. Through this, r2 values decrease again using a
certain time length for aggregation.

In all, the validation shows that the NwAR precipi-
tation reproduces measured precipitation well but not in
every exact detail in terms of extent and timing of
precipitation. This is the case when validation is con-
ducted at seasonal subsets as annual precipitation input.
Here, no correlation at all can be found between NwAR
and GSOD for mean precipitation in summer (JJA in
Table 4), but with high correlations for all other (wetter)
seasons (e.g. DJF in Table 4). However, precipitation in
summer seasons is, in general, low (Fig. 7), and precip-
itation in winter is known to be of higher significance
for vegetation response (Höpfner and Scherer 2011).

4.2 Vegetation response analyses

The results of multiple regression analyses using annual
spatial means show that the variance in mean NDVI is
best explained (r2=0.73) by the variance in mean pre-
cipitation between the middle of November and end of
December (Fig. 8). Using other starting composites and
keeping the end of December for precipitation input, r2

values are slightly lower but also high (0.65<r2<0.73).
This is indicated by the diagonal of orange and red
rectangles in Fig. 8 and is similar for input timeframes
ending in the middle of January (diagonal above).
Results become insignificant using a starting composite

after the end of November, which results in a gap after
end of November (remaining white rectangles in Fig. 8).

By applying spatially distributed data and running multiple
regression analyses for each grid point individually, we find
statistically significant high or very high explained variance in
mean NDVI (r2≥0.6) for approximately 61 % of the grid
points within the study region (Fig. 9).

Examining the composition of land cover types at
grid points that represent r2 values above defined
thresholds, we discover a decreasing spatial percentage
of ‘forest’ and ‘low-productive vegetation’ with increas-
ing thresholds (Fig. 10). This is opposite to the percent-
age of land cover type ‘high-productive vegetation’
which increases with increasing thresholds. The percent-
age of land cover type ‘sparsely vegetated’ increases up
to a threshold of approximately 0.83 and decreases
applying higher thresholds.

The identification approach of potentially irrigated areas
reveals a cluster of grid points covering nearly 14.1 %
(~5300 km2) of the study region (Fig. 11). The spatial shares
of land cover types of this cluster are presented in Table 5.

Land cover type specific analyses show no statistically
significant result for the land cover type ‘very sparsely vege-
tated’. The results of the other four land cover types are
displayed in Fig. 12. The highest explained variance in mean
NDVI for the two land cover types high-productive vegetation
and low-productive vegetation occurred for precipitation be-
tween beginning of September and end of December (r2=0.75
and r2=0.67, respectively). For the land cover type sparsely
vegetated, results show that the variance in mean NDVI is
explained best by the variance in precipitation between the
beginning of November and middle of March (r2=0.62).
The results for the land cover type forest show that the
variance in mean NDVI is best explained by the variance in
precipitation between the beginning of October and end of
the hydrological year (r2=0.48). It is apparent and com-
mon for the four land cover types that the explained vari-
ance in mean NDVI becomes statistically insignificant
when applying precipitation of input timeframes that start
after the end of November (Fig. 12). Using the overlap of
the land cover type specific timeframes of highest ex-
plained variance in mean NDVI, precipitation between
November and December is emphasised.

Table 4 Validation results of re-
analysed precipitation data
compared to station
measurements (GSOD) for
different seasons of the
hydrological year (September–
August) from 2001 to 2010

Casablanca Nouasseur Rabat-Sale Mekeness

Season r2 p value r2 p value r2 p value r2 p value

SON 0.70 <0.01 0.55 0.01 0.62 0.01 0.65 <0.01

DJF 0.67 <0.01 0.72 <0.01 0.73 <0.01 0.81 <0.01

MAM 0.92 <0.01 0.65 <0.01 0.48 0.03 0.19 0.21

JJA 0.02 0.72 <0.01 0.90 0.03 0.63 0.02 0.70
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In addition, we also analysed with respect to high influence
of precipitation in autumn, if precipitation is autocorrelated,
which means that precipitation from September to December
triggers the precipitation of January to April. We therefore

compared the ten spatial means of annual precipitation from
September to December with those of January to April using a
linear regression analysis. As a result, we found no statistically
significant relationship. This means that precipitation between

Fig. 8 Results of multiple
regression analyses using annual
spatial means of the study region
and systematically changing
timeframes for calculation of
mean precipitation. The x-axis
describes the first input composite
and the y-axis, the number of
input composites to define the
length of the timeframe for
calculation of mean precipitation.
For each input timeframe of
precipitation, the explained
variance in mean NDVI is
displayed as long as the result is
significant on the 5 %
significance level. Vegetation
input for analyses was the spatial
mean NDVI of each year. The
diagonals explain identical end
composites having different start
composites and varying input
lengths. The maximum r2 is
marked (x)

Fig. 9 Highest explained variance (r2) in mean NDVI on the 5 % significance level considering all examined timeframes
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January and April is not triggered by precipitation between
September and December.

5 Discussion

Spatial information is aggregated to one value for each year by
spatial averaging. Thus, local effects are reduced, and it be-
comes possible to describe the mean condition of the study
region. Using spatial means as input for linear regression
analyses, the general relationship between mean precipitation
and mean NDVI shows higher values of the explained

variance (r2) in mean NDVI by the variance in mean precip-
itation up to the end of December (Fig. 8). If later precipitation
is included, the explained variance is lower and not signifi-
cant. This and the fact that results become insignificant when
using a start composite after the end of November underline
the high influence of variances in the mean precipitation
between November and December on mean NDVI in the
study region.

The land cover type specific results of response studies
using spatial means have to be interpreted by the applied land
cover scheme. The vegetation and the land use of the five land
cover types can be quite heterogeneous as explained.

Fig. 10 Spatial shares of land
cover types focussing only on
grid points above a defined
threshold of explained variance in
mean NDVI

Fig. 11 Grid points which are not
very sensitive to precipitation (r2

<0.6) but have a high mean range
of NDVI within the growing
period (RanV≥0.4)
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Especially, the land cover type low-productive vegetation is
the most heterogeneous of all land cover types, because it
consists of vegetation of agricultural land use on the one hand

(high human influence) and of vegetation of grasslands or
shrub lands on the other hand (low human influence,
Höpfner and Scherer 2011). Vanacker et al. (2005) found land

Table 5 Spatial shares (%) of
land cover types 2001–2010 Land cover type Study region Cluster of grid points with low or medium

explained variance in mean NDVI (r2<0.6)
but with high mean RanV (RanV≥0.4)

Very sparsely vegetated 0.32 0.0

Sparsely vegetated 7.75 2.82

Forest 5.33 1.08

High-productive vegetation 44.87 75.17

Low-productive vegetation 41.73 20.94

SUM 100.0 100.0

Fig. 12 Linear regression results applying spatial means and
systematically changing input timeframes for calculation of mean
precipitation. Results applying spatial means of mean NDVI depending
on land cover type ‘sparsely vegetated’ (a), ‘forest’ (b), ‘high-productive

vegetation’ (c) and ‘low-productive vegetation’ (d). All results are
significant on the 5 % significance level. Not significant results are not
displayed. The maximum result is marked for each land cover type. The
maximum r2 is marked (x)
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cover products highly sensitive to short-term rainfall vari-
ability, especially for grass and shrub savannahs. Thus,
areas often swing between the two land cover types low-
productive vegetation and sparsely vegetated when run-
ning annual land cover classifications. This also happens
for other vegetation formations at the border between two
of the five land cover types (e.g. rain-fed agriculture
swings between the land cover types low-productive veg-
etation and high-productive vegetation, depending on its
location and water supply). As a consequence, the patterns
of correlation results are similar (Figs. 8 and 12).

Regarding the results from the land cover types high-
productive vegetation and low-productive vegetation, they
both show highest explained variances in mean NDVI
towards the end of December. This underlines the results
above but is different from sparsely vegetated land cover
that shows the highest explained variance including mean
precipitation up to middle of March (Fig. 12). We find the
location of areas belonging to one of the three land cover
types as the main difference. Sparsely vegetated areas are
mainly located in towns and more extreme sites of higher
altitudes, which facilitates surface run-off or hampers in-
filtration and retention. Thus, water availability is lower,
and vegetation needs longer input of precipitation to pro-
duce green biomass. The locations of low-productive veg-
etation are more or less near cities, in uneven areas, to-
wards dryer regions in the south, and towards higher alti-
tudes. Most of the areas classified as low-productive veg-
etation shape transitional zones around forested areas or
between areas classified as sparsely vegetated and classi-
fied as high-productive vegetation. Areas classified as
high-productive vegetation are mainly in the plains of the
study region. It is reasonable that vegetation of higher plant
density (e.g. croplands) produces biomass faster than veg-
etation with lower plant density (e.g. shrublands), which is
additionally reinforced when plant locations are less ex-
treme in case of water availability (e.g. higher rates of
infiltration and retention). Thus, vegetation of agricultural
land use is privileged and quickly leads to higher NDVI
values compared to other potential land uses.

The additional emphasis of precipitation between the be-
ginning of October and beginning of June or later in correla-
tion results of land cover types high-productive vegetation and
low-productive vegetation (orange/yellow vertical line in
Fig. 12c, d) leads to the assumption that areas not agricultur-
ally used are well classified. This refers to the limits of the
classification scheme (Höpfner and Scherer 2011) and con-
cerns vegetation formations at the border to the land cover
type forest. Here, we assume an impact of not heavily har-
vested crops of agricultural land use (e.g. viniculture).
Another possibility of not-harvested vegetation could be
shares of deciduous shrubs or trees which have a high NDVI
range due to a well-developed system of roots.

In all, the results of land cover types high-productive
vegetation and low-productive vegetation confirm earlier re-
sults that found the period between the beginning of October
and middle of December to be critical using only one refer-
ence point of precipitation measurements as an input (Höpfner
and Scherer 2011). Now, we can state this more precisely to
the timeframe between the beginning of September and end of
December applying spatially distributed precipitation data.

Results from the land cover type forest are different. Its
vegetation has a perennial character, which does not rest
during the summer like the vegetation of the other land cover
types. Thus, precipitation is always important to overcome the
dry, hot season by e.g. infiltration, retention and refilling of
additional sources in deeper levels, respectively. Having
longer roots that reach these deeper resources, vegetation of
the land cover type forest is able to overcome the dry, hot
summers whenwater in upper soil levels becomes scarce. This
mitigates the effects of variance in precipitation and leads to
lower r2 values. Similar ideas were stated by Udelhoven et al.
(2009) who found that crops and grassland in the semiarid
regions of Spain are more sensitive towards water stress than
perennial woody species.

The nearly complete absence of vegetation in areas
assigned as land cover type very sparsely vegetated explains
that no statistically significant relation between mean NDVI
and mean precipitation can be found for this land cover type.
This confirms the robustness of the methods applied.

In general, we can derive an importance of variation in
precipitation especially in November from the land cover type
specific results because the explained variance in mean NDVI
becomes statistically insignificant if precipitation input from
the beginning of December or later is applied.

Results from spatial distributed analyses show a high in-
fluence of mean precipitation (r2>0.6) on mean NDVI for
more than 61 % of the study region. This means that there is a
high explained variance in mean NDVI for the majority of the
areas using mean precipitation data. Results from examina-
tions of spatial shares of land cover types confirm the above
discussed results when applying different thresholds of r2

(Fig. 10). From a mathematician’s point of view, shares of
land cover types with a high overall explained variance in
mean NDVI must increase when using higher thresholds for
input. Therefore, it is consistent that shares of the land cover
type forest decrease with rising thresholds because this land
cover type has the lowest explained variance inmean NDVI of
all land cover types. Vice versa, it is also consistent that shares
of the land cover type high-productive vegetation and low-
productive vegetation increase using higher thresholds be-
cause these land cover types contain the highest overall ex-
plained variance in mean NDVI. Nevertheless, shares of low-
productive vegetation finally decrease because the overall
explained variance in mean NDVI of the land cover type
high-productive vegetation is even higher.
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Three quarters of potentially irrigated agriculture are cov-
ered with high-productive vegetation during the 10 years
(Table 5). Although, a high share of high-productive vegeta-
tion on potentially irrigated agriculture is expected on the one
hand due to the applied threshold (RanV≥0.4), this surprises
on the other hand because high-productive vegetation has the
highest r2 values of all land cover types (Fig. 12). However,
this is not contradictory because the applied threshold leads to
a considerable number of grid points that fulfil the assump-
tions made for being potentially irrigated (r2<0.6, RanV≥
0.4). Thus, we assume that areas of the land cover type high-
productive vegetation having low tomedium r2 are potentially
irrigated and that areas of high r2 values are rain-fed. Together
with shares of land cover type low-productive vegetation, a
span of 75–96% of irrigated land is conceivable. Determining
the exact proportion of the combined shares (“low-” and
“high-productive” land cover types) is difficult. This is due
to a lag of information about which areas of the low-
productive vegetation are indeed irrigated croplands and
which are only land cover fragments due to e.g. different grid
spacings. The shares of the other two land cover types in the
cluster of potentially irrigated lands are regarded to be such
fragments. Exemplarily, validations with an available ground
truth map of the Wilaya of Grand Casablanca did not disagree
with our results. A visual validation of data of Google maps
for the subcluster of potentially irrigated lands at the northern
border of the study region reveals structures of plantations
similar to viniculture. All together, we found no disproof for
our assumptions.

In accordance with Balaghi et al. (2008), our results
suggest a high forecast potential regarding land manage-
ment for e.g. crop yield of up to 1.5 months. Also,
Bolton and Friedl (2013) state that NDVI (among other
VIs) at 65 to 80 days after green up (start of growing
season) correlates best with crop yields (maize, soy-
beans) in semiarid regions. However, crop yield is not
only a consequence of photosynthetically active and
green vegetation as represented by the NDVI (Jackson
and Huete 1991). Crop yield has to be seen as an end-
of-season observation that also integrates the cumulative
effect of processes as, e.g. nutrient deficiency, insect
infestation or disease over the entire season (Pinter
et al. 2003). These processes are then not often well
related to the mean NDVI when senescence of green-
ness sets in naturally and e.g. leaves begin to loose
chlorophyll. Thus, we cannot assume, based on the
regressions, that higher than normal precipitation at the
beginning of the growing season, followed by relatively
high mean NDVI, is directly linked to higher crop
yields. Therefore, precipitation at the beginning of the
growing season is a necessity for high crop yields, but
it cannot sufficiently explain the total crop yield at the
end of the growing season. This kind of assumptions is

feasible in the opposite case when precipitation at the
beginning of the growing season (green up) is below
normal. In this case, precipitation leads more likely to a
decrease in crop yields. Keeping this in mind, our
results have a high relevance for land use management,
e.g. to decrease vulnerability of agricultural land in the
case of droughts. The forecast potential for crop yields
within the study region should be further investigated
applying NDVI, re-analysed precipitation and other re-
analysed weather data for better parameterisation of
crop yield models (Pinter et al. 2003; Seiler et al.
2007).

6 Conclusions

This study used re-analysed precipitation data within a region
north of the Sahel and south of the Mediterranean Sea, which
is rarely in focus of other studies within this context. We
applied a new comprehensive dataset (NwAR) at a very high
spatiotemporal resolution (2 km, hourly). This is a major step
ahead of other studies, which apply data from station mea-
surements, estimates based on remote sensing or data based on
interpolation at lower spatial resolutions.

The applied continuous NDVI data allowed producing
comprehensive consistent land cover products of each year
over a large region (~37,600 km2). These products are of high
value for vegetation analyses, because normally land cover/
land use products are limited in their spatial or temporal
dimension. The application of 16-day NDVI data ensures
continuous input and the quality of products.

First of all, we conclude that the NwAR precipitation
reproduces the measured precipitation of four validation sta-
tions sufficiently accurate over a decade (r2=0.78 at a 3-
monthly, seasonal base) although not every exact detail in
terms of extent and timing is reproduced.

Secondly, we show that a statistical association exists be-
tween NwAR precipitation and mean NDVI in northwest
Morocco within the decade 2001–2010. However, the influ-
ence of precipitation on mean NDVI depends upon the tem-
poral sequence in which precipitation occurs. This confirms
the findings of Wang et al. (2001). We prove that for vegeta-
tion in general (independently from land cover types), 73% of
variance in mean NDVI can be explained by the variance in
precipitation between the middle of November and end of
December. Thus, the explained variance based on a specific
timeframe (November–December) of precipitation tends to be
higher than the explained variance over the entire hydrological
year.

Thirdly, land cover type specific results show that 75 % of
the variance in mean NDVI of the land cover type high-
productive vegetation can be explained by the variance in
precipitation between the beginning of September and end
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of December. This is especially important for agricultural lands.
Moreover, the variance in precipitation between the beginning
of November and end of December has to be emphasised for
these land cover types. The variance in precipitation in the
same timeframe explains 66 % of the variance in mean NDVI
of the land cover type low-productive vegetation. For the land
cover type sparsely vegetated, 62 % of the variance in mean
NDVI can be explained by the variance in precipitation be-
tween the beginning of November and middle of March.
Results from the land cover type forest show the best explained
variance in mean NDVI by the variance in precipitation be-
tween the beginning of October and end of the hydrological
year (r2=0.48). This is the lowest explained significant variance
in mean NDVI of all land cover types and can be explained by
the perennial character of vegetation in forests.

Fourthly, we conclude that the variance in precipitation in
November is especially critical for mean NDVI. Lower rank-
ing but also of high influence is the variance in precipitation in
December.

Fifthly, we conclude that spatially distributed precipitation
data allow to extract irrigated areas. We find roughly 14 %
(~5300 km2) of the study region to be potentially irrigated.
The applied approach therefore opens potential for monitoring
aspects and should be deepened in further analyses.

Sixthly, spatial distributed results show that 61 % of the
study region has a high explained variance in mean NDVI
(r2>0.6). The higher the explained variance, the higher is the
share of land cover type high-productive vegetation in these
areas. We can conclude that, despite the irrigated areas, a
considerable part of agricultural areas are rain-fed in the study
region. With respect to efficient resource management strate-
gies (e.g. food security, water management), this point has
central importance.

Seventhly, a wide-ranging applicability is possible since
the method of our study can be independently applied from
our study region and usual land use/land cover types.

In all, the re-analysed data of high spatiotemporal resolu-
tion opens a new quality of analysis valuable, e.g. for moni-
toring aspects, policy decisions, regulatory actions and land-
use activities (Lunetta et al. 2006). Especially the provision of
land cover that is very sensitive to precipitation has great value
for risk management (e.g. floodings, droughts, fire). In terms
of agricultural management and export goods, our methods
are valuable because land areas are better understood in their
sensitivities.
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