# ORIGINAL PAPER

# Changes in reference evapotranspiration over an agricultural region in the Qinghai-Tibetan plateau, China

Cungui Zhang · Yanjun Shen · Fenggui Liu · Lei Meng

Received: 26 March 2014 / Accepted: 8 December 2014 / Published online: 24 December 2014 © Springer-Verlag Wien 2014

Abstract Reference evapotranspiration  $(ET_0)$ , as an estimate of the evaporative demand of the atmosphere, has been receiving extensive attention in researches on hydrological cycle. Sensitivity of ET<sub>0</sub> to major climatic variables has significant applications in climatology, hydrology, and agrometeorology and is also important to improve our understanding of the connections between climatic conditions and ET<sub>0</sub> variability. In this study, we used the Penman-Monteith equation to calculate ET<sub>0</sub> and adopted a nondimensional sensitivity coefficient formula to analyze sensitivities of ET<sub>0</sub> to four climatic variables based on daily meteorological data from eight meteorological sites in the Huangshui River basin and surrounding areas during 1961-2010. The results indicated that (1) strong correlations with  $R^2$  up to 0.76 exist between observed  $E_{pan}$  and calculated annual ET<sub>0</sub>; (2) ET<sub>0</sub> had a decreasing trend in the Huangshui River basin (HRB) during 1961–2010; (3) Spatially, distribution of  $ET_0$  was largely correlated with altitude, for instance, the average annual  $ET_0$ was larger in low-altitude areas than in high-altitude areas; (4) ET<sub>0</sub> was more sensitive to actual vapor pressure in highaltitude areas while it was more sensitive to temperature in

C. Zhang · Y. Shen (⊠) Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021, China e-mail: yjshen@sjziam.ac.cn

C. Zhang e-mail: zhangcungui@yeah.net

C. Zhang · F. Liu College of Biologic and Geographic Sciences, Qinghai Normal University, Xining 810008, China

#### L. Meng

low-altitude areas; and (5)  $\text{ET}_0$  showed a decreasing trend and was consistent with the decreases in net radiation and wind speed at seasonal and annual time scales in HRB during 1961– 2010. Sensitivity analysis of  $\text{ET}_0$  to major climatic variables revealed that temperature was primarily responsible for changes in  $\text{ET}_0$  in the growing season while actual vapor pressure was the dominating factor causing changes in  $\text{ET}_0$ in the nongrowing season. However, annual averaged  $\text{ET}_0$ was more sensitive to actual vapor pressure ( $R^2$ =0.63), indicating that actual vapor pressure was possibly the primary climatic variable that causes changes in annual  $\text{ET}_0$ .

# **1** Introduction

Several large rivers, such as the Yangtze River, Yellow River, Lancang River, Nujiang River, and so on, originate from the Oinghai-Tibetan plateau (OTP) that is regarded as the water tower of Asia. QTP plays a fundamental role in the formation and maintenance of the summer circulation over Asia. It is also the important mechanism influencing the formation of the Asian monsoon (Ruddiman and Kutzbach 1991; An et al. 2001). In recent years, many researches on reference evapotranspiration (ET<sub>0</sub>) have reported that global warming had led to changes in the surrounding environment in QTP, including glacial melt accelerating, permafrost ablation accelerating, vegetation degradation increasing, and the number of days of strong wind and sandstorm decreasing (Zhou et al. 2006; Song et al. 2011). Changes of hydrothermal environment will largely influence water yield while the change in energy balance will affect the climate system over QTP (Yin et al. 2008). These changes in the environment will strongly affect the Huangshui River basin (HRB), located in the northeastern part of QTP, a typical agricultural region in this plateau (Fig. 1).

Department of Geography and Environmental Studies and Sustainability Program, Western Michigan University, Kalamazoo, MI 49008, USA

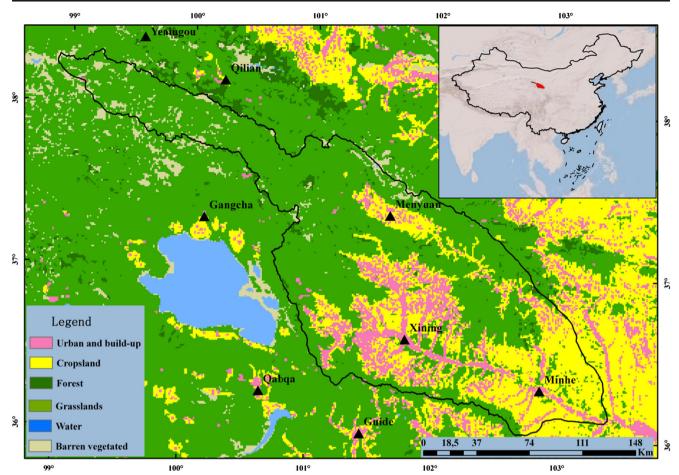



Fig. 1 The location and land use of the Huangshui River basin

Reference evapotranspiration  $(ET_0)$ , one of the important parameters of the hydrologic cycle, plays a significant role in estimating and predicting actual evapotranspiration, water management, establishing irrigation scheme, and other agricultural production practice. Reference evapotranspiration refers to the evapotranspiration of open grassland under consistent height, vigorous growth, and complete coverage (Allen et al. 1998).  $ET_0$  reflects the impact of atmosphere evaporation capacity on the crop water requirement in different regions and periods, and it is related to climatic variables (Allen et al. 1998). Currently, most studies on pan evaporation and reference evapotranspiration have generally shown a negative trend across the world, such as America (Serrat-Capdevila et al. 2011), Australia (Roderick and Farguhar 2002, 2004; Rotstayn et al. 2006; Roderick et al. 2007, 2009), Spain (Espadafor et al. 2011), Italy (Borin et al. 2011), Siberia (Parka et al. 2008), India (Chattopadhyay and Hulme 1997), China (Thomas 2000; Liu et al. 2010, 2012; Liu and Zhang 2011), Iran (Dinpashoh et al. 2011), and Thailand (Tebakari et al. 2005). For instance, Zhang et al. (2009) found that reference evapotranspiration of QTP has also decreased. Chen et al. (2006) calculated the trend in  $ET_0$  of the Tibetan for the period of 1961-2000 and analyzed responses of ET<sub>0</sub> to climatic perturbations. They also found that  $ET_0$  has a decreasing trend. Many previous researches have also used meteorological data to calculate reference evapotranspiration ( $ET_0$ ) and analyzed its variation and sensitivity to climatic variables.  $ET_0$  was found to be most sensitive to temperature and relative humidity in the southern Spain located in the southern Europe whose latitude is similar with that of QTP (Estevez et al. 2009). In China, previous studies showed that  $ET_0$  was most sensitive to a number of climatic variables including actual vapor pressure (Liu et al. 2012), relative humidity (Gong et al. 2006), temperature, and net radiation (Liu et al. 2009).

In this study, we will apply the Penman-Monteith formula (Allen et al. 1998) to calculate  $ET_0$  and analyze its sensitivity to several climatic variables. Considering the natural geographical conditions and limited data availability in HRB, this study focused on the spatial and temporal variation of seasonal and annual sensitivity in  $ET_0$  of HRB and surrounding areas during 1961–2010. The analysis of  $ET_0$  variability and its sensitivity at different time scales can improve our understanding of the varying impact of climatic variables on  $ET_0$ . Meanwhile, it can also provide a theoretical guidance for the rational development and effective utilization of water resources over HRB in the future.

### 2 Materials and methods

#### 2.1 Study area and data

The Huangshui River basin (HRB) is located between the longitude 98 and 104° E and the altitude 35 and 39° N and occupying around 38,540 km<sup>2</sup> (Fig. 1). Its topography is complicated, and the elevation varies from 1576 to 5610 m. HRB is one of areas which is often effected by the East Asian Monsoon, South Asian Monsoon, and Plateau Monsoon. The average annual temperature and precipitation vary from 2 to 5 °C and from 241 to 474 mm, respectively. Observed pan evaporation with China 20 cm pan ranges from 1299 to 1752 mm. It is also the area with the densest population, most developed economy, and agriculture over QTP. Studies on the spatial and temporal characteristics of ET<sub>0</sub> and sensitivity to main climatic variables in HRB will advance understanding of the climatic and hydrological changes in study area and provide guidance for the agriculture and water resource in the future.

Meteorological data including daily precipitation, air temperature (maximum, minimum, and average), actual vapor pressure, relative humidity, wind speed 10 m above ground, and sunshine hours from eight meteorological sites in HRB and surrounding areas from 1961 to 2010 was obtained from the China Meteorological Administration. Here wind speed 10 m above ground is converted to wind speed 2 m above the ground using the formula recommended by the FAO (Allen et al. 1998).

#### 2.2 Reference evapotranspiration

The Penman-Monteith modified formula (Allen et al. 1998) is as follows:

$$ET_0 = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273}u_2(e_S - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$
(1)

where ET<sub>0</sub> is the reference evapotranspiration (mm/ day);  $R_n$  is the net radiation (MJ/m<sup>2</sup>·day); G is the soil heat flux (MJ/m<sup>2</sup>·day), is ignored here;  $\gamma$  is the dry and wet constant (kPa/°C);  $u_2$  is the wind speed 2 m above the ground (m/s);  $e_s$  is the saturation vapor pressure (kPa);  $e_a$  is the actual water vapor pressure (kPa);  $e_s$ - $e_a$ is the saturation vapor pressure deficit (kPa); and  $\Delta$  is the saturation vapor pressure/temperature curve slope (kPa/°C).

The computation formula of the net radiation  $(R_n)$  is as follows (Allen et al. 1998):

$$R_n = R_{ns} - R_{nl} \tag{2}$$

$$R_{ns} = (1 - \alpha) \cdot R_a \tag{3}$$

$$R_{nl} = 4.903 \times 10^{-9} \cdot \left( \frac{(T_{\max} + 273)^4 + (T_{\min} + 273)^4}{2} \cdot (0.34 - 0.14\sqrt{e_a}) \cdot \left( 1.35 \cdot \frac{R_s}{R_{so}} - 0.35 \right) \right)$$
(4)

where  $R_n$  is the net radiation,  $R_{ns}$  is the shortwave net radiation,  $R_{nl}$  is the long-wave net radiation,  $T_{max}$  and  $T_{min}$  are the highest temperature and daily lowest temperature (°C), respectively,  $e_a$  is the actual water vapor pressure (KPa),  $R_a$  is the extraterrestrial radiation,  $R_s$  is the total solar radiation (MJ/ m<sup>2</sup>), and  $R_{so}$  is the sunny radiation (KJ/m<sup>2</sup>).

2.3 The nondimensional relative sensitivity coefficients used in this study were calculated following McCuen 1974; Beven 1979

$$SV_{i} = \lim_{\Delta v_{i} \to 0} \left( \frac{\Delta ET_{0}/ET_{0}}{\Delta V_{i}/V_{i}} \right) = \frac{\partial ET_{0}}{\partial V_{i}} \cdot \frac{V_{i}}{ET_{0}}$$
(5)

where  $SV_i$  represents the sensitivity coefficient of ET<sub>0</sub> to climatic variables; in other words, it indicates the fraction of the change in  $V_i$  transmitted to ET<sub>0</sub> change.  $V_i$  represents climatic variables such as air temperature, net radiation, actual vapor pressure, or wind speed. These coefficients are themselves sensitive to the relative magnitudes of ET<sub>0</sub> and  $V_i$ . Sensitivity coefficients positive or negative of  $V_i$  indicate increase or decrease of ET<sub>0</sub> with the change in  $V_i$ , respectively. Higher coefficients mean higher effects of magnitudes on ET<sub>0</sub> estimations. In the past, many researchers have used this methodology to characterize sensitivity models (Saxton 1975; Meyer et al. 1989; Piper 1989; Rana and Katerji 1998) adopting different climatic variables and equations.

# 2.4 The Mann-Kendall test

The Mann-Kendall method, a nonparametric trend test method, has been commonly used in meteorological and hydrological time series analysis (Yue and Wang, 2002; Zheng et al., 2007). It tests the significance of the sequence mainly through calculating statistics  $\tau$  and variance  $\sigma_t^2$  and standardized variables. Related formulas are as follows:

$$M = \tau \Big/ \sigma \tag{6}$$

$$\tau = \frac{4S}{N(N-1)}$$
(7)

$$\sigma_t^2 = \frac{2(2N+5)}{9N(N-1)}$$
(8)

where *S* is the number of occurrences for all dual sequence of observations ( $X_i$  and  $X_j$ , I < j in  $X_i$  ( $X_j$ )) and *N* is the length of the data set; we use the significance level 0.05; so, the standard normal deviates |M| > Ma/2 = 1.96. If *M* is positive, it indicates a rising or increasing trend, else it means reducing or decreasing trend.

## **3 Results**

## 3.1 Seasonal and interannual variations of ET<sub>0</sub>

Based on the daily meteorological data of the eight meteorological sites in HRB and surrounding areas during 1961–2010, we applied the Penman-Monteith formula to calculate  $ET_0$ . Figure 2 shows a comparison between calculated  $ET_0$ 

and observed pan evaporation  $(E_{\text{pan}})$  from 1960 to 2001. The result revealed that both calculated ET<sub>0</sub> and observed  $E_{\text{pan}}$  had decreasing trends with the agreement of 0.76  $(R^2)$  between them at the eight sites. Therefore, calculated ET<sub>0</sub> by the Penman-Monteith can reflect general variation of evapotranspiration in HRB.

The average annual  $\text{ET}_0$  is 723.8 mm over HRB during 1961–2010 with strong seasonal variation. The maximum value (102.0 mm) occurred in July, and the minimum value (19.0 mm) was in December. Averaged  $\text{ET}_0$  across the whole HRB had significantly decreased (a=0.05) at –4.9 mm/decade from 1961 to 2010. A change point for  $\text{ET}_0$  series was identified around the year 2003 with  $\text{ET}_0$  decreasing from 1961 to 2002 and increasing from 2003 to 2010. (Fig. 3,  $\text{ET}_0$ ).

Figure 3 and Table 1 show trends and slope of annual ET<sub>0</sub> and climatic variables in HRB. For the whole basin average, both  $R_n$  and u decreased significantly from 1961 to 2010 (a= 0.05) at -17.7 MJ·m<sup>-2</sup>/decade and -0.09 m·s<sup>-1</sup>/decade, respectively. However,  $e_a$ , T, and precipitation (Pr) increased significantly (a=0.05) at 10 Pa/decade, 0.3 °C/decade, and 22.7 mm/decade, respectively. It can be inferred that decreases in  $R_n$  and u may be responsible for the decrease in ET<sub>0</sub> in HRB during 1961–2010.

#### 3.2 Trends of climatic factors and $ET_0$

Table 1 shows trends of the growing season, nongrowing season, and annual climatic variables in HRB during 1961–2010. As can be seen in Table 1, Pr, *T*, and  $e_a$  increased significantly, while both  $R_n$  and *u* significantly decreased. ET<sub>0</sub> was generally decreasing in the three defined periods and had similar trends with  $R_n$  and *u*, suggesting that  $R_n$  and *u* were possibly the primary contributing factors to decreasing ET<sub>0</sub>. At the seasonal scale, the slope of the nongrowing season ET<sub>0</sub> (2.8 mm/decade) is larger than the one of the growing season ET<sub>0</sub> (2.1 mm/decade).

Figure 4 shows variation of  $\text{ET}_0$  in the growing season, nongrowing season, and annual *average* in HRB during 1961–2010.  $\text{ET}_0$  (450.3 mm) accounted for 62 % of annual  $\text{ET}_0$ , while  $\text{ET}_0$  (273.5 mm) accounted for only 38 %. It

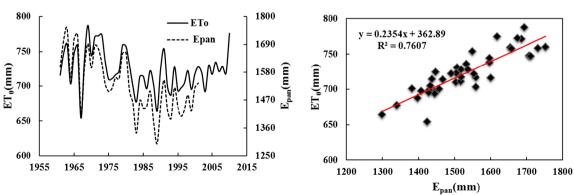



Fig. 2 Comparison of  $ET_0$  and  $E_{pan}$  in the study region

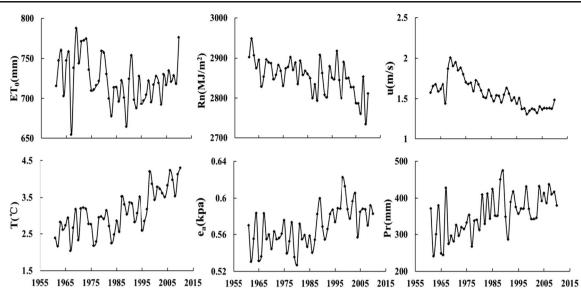



Fig. 3 Trends of annual  $ET_0$  and climatic variables in HRB during 1961–2010

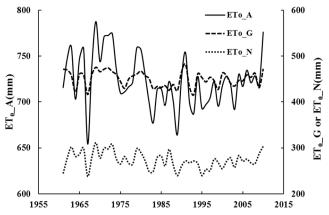
indicates the change in annual  $ET_0$  is primarily influenced by fluctuation of the growing season  $ET_0$ . Therefore, in order to more accurately understand the attribution of changing  $ET_0$  at seasonal and annual time scales, we shall adopt sensitivity formula of  $ET_0$  to climatic factors to further analyze reasons of decreases in  $ET_0$  in the next step.

## 3.3 Sensitivity of $ET_0$ to climatic variables

Figure 5 shows variation of the growing season, nongrowing season, and annual sensitivity coefficients in HRB during 1961–2010. The growing season, nongrowing season, and annual  $S(R_n)$  and S(u) have upward trends; in other words, ET<sub>0</sub> will increase when  $R_n$  and u increase.  $S(e_a)$  in the growing season, nongrowing season, and annual average has downward trend, namely, ET<sub>0</sub> will decrease with increasing  $e_a$ . It also showed that both the growing season and annual S(T) have positive trends, while the nongrowing season S(T) has negative trend. It indicates growing season and annual ET<sub>0</sub> will increase with increases in T, while the nongrowing season ET<sub>0</sub> will decrease with decreases in T.

In general, a positive/negative sensitivity coefficient of certain climatic variable indicates that  $ET_0$  will increase/ decrease with the increases in climatic variable. The larger the sensitivity coefficient, the stronger influence certain climatic variable has on ET<sub>0</sub>. *T* is the most sensitive climatic variable (*S*(*T*)=1.40), which indicates *T* has the largest effect on ET<sub>0</sub> during the growing season (Fig. 5a).  $e_a$  is the most sensitive variable (*S*( $e_a$ )=0.64), which reveals  $e_a$  has larger effect on ET<sub>0</sub> during the nongrowing season. It is similar with the nongrowing season that annual  $e_a$  is the most sensitive variable (*S*( $e_a$ )=0.63), followed by  $R_n$  (*S*( $R_n$ )=0.52), *u* (*S*(u)=0.35), and *T* is the most insensitive variable (*S*(T)=0.33) (Fig. 5c). Further, *S*(T) varied from -1.2 to 2.2, indicating the sensitivity of ET<sub>0</sub> to *T* is the most unsteady. Meanwhile, other climatic variables are relatively steady.

#### 3.4 Spatial changes of ET<sub>0</sub> and sensitivity coefficients


Table 2 shows trends of the growing season, nongrowing season, and annual  $ET_0$  and sensitivity coefficients in HRB during 1961–2010. There are different trends in  $ET_0$  and sensitivity coefficients during the growing season, nongrowing season, and annual scale. Growing season  $ET_0$  has an increasing trend in high-altitude areas while it has a downward trend in low-altitude areas. Both the nongrowing season and annual scale  $ET_0$  have downward trends in the lower regions of HRB, especially Xingning and Minhe sites.

In growing season, both  $S(R_n)$  and S(u) have positive significant trends in most regions, while trend of S(T) is not

 Table 1
 Trends of the major climatic variables in the growing season, nongrowing season, and annual bases during 1961–2010

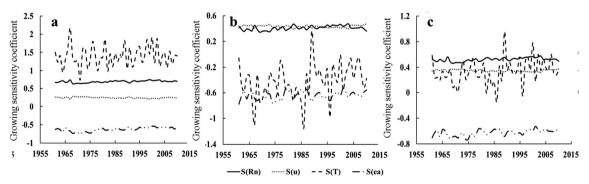
|                   | Precipitation<br>(mm/decade) | Temperature<br>(°C/decade) | Wind speed $(m \cdot s^{-1}/decade)$ | Net radiation<br>(MJ·m <sup>-2</sup> /decade) | Actual vapor pressure<br>(Pa/decade) | ET <sub>0</sub><br>(mm/decade) |
|-------------------|------------------------------|----------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------|
| Growing season    | 13.4 <sup>a</sup>            | 0.25 <sup>a</sup>          | $-0.1^{a}$                           | -11.2 <sup>a</sup>                            | 12 <sup>a</sup>                      | -2.1                           |
| Nongrowing season | 9.3 <sup>a</sup>             | 0.35 <sup>a</sup>          | $-0.09^{a}$                          | $-6.5^{a}$                                    | 7 <sup>a</sup>                       | -2.8                           |
| Annual            | 22.7 <sup>a</sup>            | 0.3 <sup>a</sup>           | $-0.09^{a}$                          | -17.7 <sup>a</sup>                            | 9 <sup>a</sup>                       | -4.9                           |

<sup>a</sup> Indicates significance at 0.05 confidence level



**Fig. 4** Variations of the growing season, nongrowing season, and annual  $ET_0$  in HRB during 1961–2010 ( $ET_{0\_}A$  annual  $ET_0$ ,  $ET_0\_G$  growing season  $ET_0$ ,  $ET_0\_N$  nongrowing season  $ET_0$ )

significant in all regions.  $S(e_a)$  shows a significantly positive trend except for Yeniugou site. In the nongrowing season, ET<sub>0</sub> shows positive trends in Qabqa and Qilian areas and has negative trends in other sites, especially ET<sub>0</sub> has significantly negative trends in Xining and Minhe sites.  $S(R_n)$  shows positive trends while S(T) still has no trend, and  $S(e_a)$  has a positive trend, except for Qilian and Guide sites while S(u)varied largely. Annual ET<sub>0</sub> shows a positive trend in the highaltitude areas and a negative trend in the low-altitude areas.  $S(R_n)$  shows a positive trend except for Qilian site while  $S(e_a)$ shows a positive trend except for Yeniugou site; S(T) shows a positive trend except for Yeniugou site; S(T) shows a positive trend except for Qabqa site while S(u) varies largely.


Table 3 shows the mean growing season, nongrowing season, and annual  $ET_0$  and sensitivity coefficients over HRB during 1961–2010. Spatially,  $ET_0$  is higher in lower elevation in HRB at seasonal and annual time scales. For instance, average annual  $ET_0$  (584.4 mm) in Yeniugou site located in high-altitude areas is less than  $ET_0$  (864.5 mm) in the Guide site located in lower-altitude areas.

In the growing season, T is the most sensitive variable among the four climatic variables. It indicates T is a main contributing climatic factor causing change in ET<sub>0</sub>. S(T)increases from 0.94 (Gangcha site) to 2.18 (Minhe site) with the decrease in elevation. In the nongrowing season,  $e_a$  is the most sensitive variable, which reveals  $e_a$  is the main controlling climatic factor causing change in ET<sub>0</sub>. Both *S* ( $e_a$ ) and *S* (*u*) decrease with the decrease in altitude while *S* ( $R_n$ ) increases inversely with altitude. Annual  $e_a$  is the most sensitive variable, indicating  $e_a$  is the dominating climatic factor causing change in ET<sub>0</sub>. Both *S* (*T*) and S ( $R_n$ ) increase in lower altitudes.

In a word, actual vapor press is the primarily influencing climatic variable causing change in  $ET_0$ , which is inconsistent with the above result that  $ET_0$  decrease was caused by decreases in net radiation and wind speed. Therefore, trend analysis along cannot entirely explain changing  $ET_0$ ; a more quantitative sensitivity analysis method is necessary to analyze attribution of changing  $ET_0$ .

# **4 Discussions**

Sensitivity analysis can help understand influence of different climatic variables on ET<sub>0</sub>. In this study, the nondimensional sensitivity coefficient was used to analyze responses of  $ET_0$  to perturbations of four climatic variables in the HRB basin. ET<sub>0</sub> is calculated with the FAO-56 Penman-Monteith formula. The analysis was based on meteorological data set of daily air temperature, wind speed, relative humidity, and daily sunshine duration at eight meteorological observatory stations from 1961 to 2010. Due to the fact that complexity of topography and mutability of climate would lead to changes in climatic variables and evapotranspiration, this study only investigated the impact of climatic variables on ET<sub>0</sub> and focused on spatial and temporal variation and attribution of changing ET<sub>0</sub>. Though the trends and sensitivity of climatic variables can reflect the reason of changing ET<sub>0</sub>, we found that trends of  $ET_0$  and its influencing climatic factors are different at seasonal and annual time scales. There are possible contributors to the change in ET<sub>0</sub> that are not climatic



**Fig. 5** Variations of the growing season, nongrowing season, and annual sensitivity coefficients of the different variables in HRB during 1961–2010. (*S* (*Rn*), *S* (*u*), *S* (*T*), and *S* ( $e_a$ ) indicate the sensitivity coefficients for net radiation, wind speed, temperature, and actual vapor press, respectively)

| Table 2 | Trends of average in the growing season | , nongrowing season, and a | annual ET <sub>0</sub> and sensitivity coe | efficients over HRB during 1961–2010 |
|---------|-----------------------------------------|----------------------------|--------------------------------------------|--------------------------------------|
|---------|-----------------------------------------|----------------------------|--------------------------------------------|--------------------------------------|

|                             | Elevation (m)               | Gangcha<br>3306    | Yeniugou<br>3225 | Menyuan<br>2877    | Qabqa<br>2835 | Qilian<br>2724    | Xining<br>2256      | Guide<br>2246      | Minhe<br>1815      |
|-----------------------------|-----------------------------|--------------------|------------------|--------------------|---------------|-------------------|---------------------|--------------------|--------------------|
| Growing season (/decade)    | ET <sub>0</sub> (mm/decade) | 2.82               | 2.08             | 0.50               | 4.52          | 2.68              | -16.88 <sup>a</sup> | -5.08              | -7.34              |
|                             | $S(R_n)$                    | 0.003              | $0.002^{a}$      | 0.013 <sup>a</sup> | 0.003         | 0                 | 0.038 <sup>a</sup>  | 0.015 <sup>a</sup> | 0.011              |
|                             | $S(e_a)$                    | 0.02 <sup>a</sup>  | -0.01            | 0.04 <sup>a</sup>  | $0.02^{a}$    | 0.01 <sup>a</sup> | $0.07^{a}$          | 0.03 <sup>a</sup>  | 0.02               |
|                             | S(T)                        | 0.06               | -0.01            | 0.04               | -0.09         | -0.01             | -0.01               | 0.06               | 0.08               |
|                             | $S(u_2)$                    | 0.001              | 0.002            | $0.007^{a}$        | 0.005         | 0.003             | 0.006 <sup>a</sup>  | 0.006 <sup>a</sup> | 0.008              |
| Nongrowing season (/decade) | ET <sub>0</sub> (mm/decade) | -0.30              | -0.10            | -4.53              | 3.70          | 1.93              | $-13.57^{a}$        | -3.09              | $-7.02^{a}$        |
|                             | $S(R_n)$                    | 0.006 <sup>a</sup> | 0.001            | $0.002^{a}$        | 0.005         | 0.001             | 0.004 <sup>a</sup>  | 0.003              | 0.001 <sup>a</sup> |
|                             | $S(e_a)$                    | 0.01               | 0.02             | 0.03 <sup>a</sup>  | $0.02^{a}$    | -0.002            | 0.06 <sup>a</sup>   | $-0.02^{a}$        | 0.01               |
|                             | S(T)                        | 0.02               | 0.12             | 0.05               | 0.01          | 0.13              | 0.06                | 0.04               | 0.03               |
|                             | $S(u_2)$                    | $0.006^{a}$        | 0.001            | $-0.007^{a}$       | 0.001         | $0.004^{a}$       | $-0.014^{a}$        | $0.010^{a}$        | -0.003             |
| Annual (/decade)            | ET <sub>0</sub> (mm/decade) | 4.61               | 1.98             | -4.03              | 8.22          | 2.52              | $-30.44^{a}$        | -8.17              | $-14.36^{a}$       |
|                             | $S(R_n)$                    | $0.005^{a}$        | 0.002            | $0.002^{a}$        | 0.004         | -0.009            | 0.004 <sup>a</sup>  | 0.004              | 0.001 <sup>a</sup> |
|                             | $S(e_a)$                    | 0.01               | -0.01            | 0.03 <sup>a</sup>  | $0.02^{a}$    | 0.01              | 0.06 <sup>a</sup>   | 0.001              | 0.002              |
|                             | S(T)                        | 0.04               | 0.06             | 0.04               | -0.04         | 0.07              | 0.03                | 0.05               | 0.05               |
|                             | $S(u_2)$                    | 0.004              | 0.001            | $-0.007^{a}$       | 0.001         | 0.003             | $-0.019^{a}$        | 0.003              | -0.004             |

<sup>a</sup> Indicates significance at 0.05 confidence level

variables. For instance, vegetation coverage, soil moisture, topography, land-use change and human activities, and so on can also change  $ET_0$  to different degrees. In order to better understand reasons for the decreasing  $ET_0$ , it requires further investigation by other more efficient methods. This result will provide a theoretical guidance for the rational allocation and management of water resources and lay the foundation for the study of crop water requirement of HRB in the future.

# **5** Conclusions

We adopted the Penman-Monteith formula (recommended by FAO) to calculate  $ET_0$  and used the Mann-Kendall trend tests to analysis temporal and spatial variation of  $ET_0$  and its sensitivity to major climatic variables in HRB. The daily meteorological data of eight meteorological sites in the Huangshui River basin from 1961 to 2010 was used in this study. The results show that (1) the  $R^2$  between measured and

Table 3 Mean growing season, nongrowing season, and annual ET<sub>0</sub> and sensitivity coefficients over HRB during 1961–2010

|                   |                      | Gangcha | Yeniugou | Menyuan | Qabqa | Qilian | Xining | Guide | Minhe |
|-------------------|----------------------|---------|----------|---------|-------|--------|--------|-------|-------|
| Elevation (m)     |                      | 3306    | 3225     | 2877    | 2835  | 2724   | 2256   | 2246  | 1815  |
| Growing season    | $ET_0 (mm)$          | 417.0   | 361.0    | 374.4   | 488.6 | 440.8  | 475.3  | 534.6 | 510.6 |
|                   | $S(R_n)$             | 0.59    | 0.66     | 0.76    | 0.69  | 0.68   | 0.76   | 0.7   | 0.75  |
|                   | $S(e_a)$             | -0.91   | -0.84    | -0.68   | -0.51 | -0.61  | -0.49  | -0.52 | -0.47 |
|                   | S(T)                 | 0.94    | 0.73     | 0.98    | 1.41  | 1.34   | 1.68   | 1.92  | 2.18  |
|                   | $S(u_2)$             | 0.29    | 0.26     | 0.2     | 0.26  | 0.26   | 0.22   | 0.25  | 0.22  |
| Nongrowing season | ET <sub>0</sub> (mm) | 301.0   | 223.4    | 217.7   | 297.4 | 246.3  | 270.0  | 330.0 | 302.6 |
|                   | $S(R_n)$             | 0.26    | 0.31     | 0.47    | 0.44  | 0.38   | 0.49   | 0.46  | 0.47  |
|                   | $S(e_a)$             | -0.74   | -0.83    | -0.71   | -0.47 | -0.6   | -0.6   | -0.5  | -0.67 |
|                   | S(T)                 | -0.5    | -0.38    | -0.76   | -0.51 | -0.61  | -0.25  | -0.3  | -0.03 |
|                   | $S(u_2)$             | 0.45    | 0.46     | 0.41    | 0.43  | 0.48   | 0.4    | 0.41  | 0.42  |
| Annual            | $ET_0 (mm)$          | 687.1   | 584.4    | 592.1   | 786.0 | 718.0  | 745.3  | 864.5 | 813.2 |
|                   | $S(R_n)$             | 0.39    | 0.45     | 0.59    | 0.53  | 0.49   | 0.6    | 0.55  | 0.58  |
|                   | $S(e_a)$             | -0.8    | -0.82    | -0.69   | -0.48 | -0.59  | -0.55  | -0.5  | -0.58 |
|                   | S(T)                 | 0.1     | 0.08     | -0.03   | 0.29  | 0.2    | 0.54   | 0.61  | 0.88  |
|                   | $S(u_2)$             | 0.38    | 0.37     | 0.32    | 0.36  | 0.38   | 0.32   | 0.34  | 0.33  |

modeled annual mean ET<sub>0</sub> reached up to 0.76 at all eight sites during 1961–2001. The average annual ET<sub>0</sub> of HRB was 723.8 mm, and  $ET_0$  had a decreasing trend in HRB during 1961–2010. The decreasing trend of  $ET_0$  was similar to the trends in net radiation and wind speed and was in contrary to the increasing trend in actual vapor pressure and temperature. (2) Spatially, distribution of  $ET_0$  was highly correlated with altitude. For instance, the average annual ET<sub>0</sub> in low-altitude areas was larger than that in high-altitude areas. ET<sub>0</sub> was more sensitive to the actual vapor pressure in high-altitude areas while it was more sensitive to temperature in low-altitude areas. (3) At seasonal and annual time scales,  $ET_0$  showed a decreasing trend that was consistent with the decreases in net radiation and wind speed in HRB during 1961–2010. ET<sub>0</sub> was more sensitive to temperature (with sensitivity coefficient 1.40) in the growing season and was more sensitive to actual vapor pressure (0.64) in the nongrowing season. These results indicate that temperature is the primary contributing climatic factor to changing ET<sub>0</sub> in the growing season while in the nongrowing season actual vapor press is the control climatic factor. Nevertheless, annual ET<sub>0</sub> was more sensitive to actual vapor pressure (0.63), followed by net radiation (0.52), wind speed (0.35), and temperature (0.33). Sensitivity of  $ET_0$  to temperature was unstable at seasonal and annual time scales in HRB during 1961-2010. For the whole HRB, the actual vapor pressure is the dominant influencing factor of changing ET<sub>0</sub>.

**Acknowledgments** The work was funded by The National Basic Research Program of China (Grant No. 2010CB951704), National Natural Science Foundation of China (No. 41271123), National Natural Science Foundation of China (No. 40761003), College of Biologic and Geographic Sciences, Qinghai Normal University and Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, and Chinese Academy of Sciences. We thank Dr. Wang Yanfang and Dr. Yucui Zhang at the Chinese Academy Sciences for providing suggestions and doing revisions and the anonymous reviewers for providing constructive comments during the review process.

## References

- Allen, RG, Pereira, LS, Raes, D et al. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage paper 56. United Nations Food and Agriculture Organization, Rome
- An ZS, Kutzbach JE, Prell WL et al (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature 411(6833):62–66. doi:10.1038/35075035
- Beven K (1979) A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J Hydrol 44(3–4):169–190. doi:10. 1016/0022-1694(79)90130-6
- Borin M, Milani M, Salvato M et al (2011) Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in Northern and Southern Italy. Ecol Eng 37(5):721–728. doi:10.1016/j.ecoleng.2010.05.003
- Chattopadhyay N, Hulme M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate

change. Agric For Meteorol 87(1):55-73. doi:10.1016/S0168-1923(97)00006-3

- Chen SB, Liu YF, Thomas A (2006) Climatic change on the Tibetan plateau: potential evapotranspiration trends from 1961–2000. Clim Chang 76(3–4):291–319. doi:10.1007/s10584-006-9080-z
- Dinpashoh Y, Jhajharia D, Fakheri-Fard A et al (2011) Trends in reference evapotranspiration over Iran. J Hydrol 399(3–4):422–433. doi:10. 1016/j.jhydrol.2011.01.021
- Espadafor M, Lorite IJ, Gavilan P et al (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric Water Mgt 98(6): 1045–1061. doi:10.1016/j.agwat.2011.01.015
- Estevez J, Gavilan P, Berengena J (2009) Sensitivity analysis of a Penman-Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol Process 23(23):3342–3353. doi:10. 1002/hyp.7439
- Gong LB, Xu CY, Chen DL et al (2006) Sensitivity of the Penman– Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J Hydrol 329(3):620–629. doi:10.1016/j.jhydrol.2006.03.027
- Liu CM, Zhang D (2011) Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China. Acta Geograph Sin 66(5):579–588
- Liu XM, Zheng HX, Liu CM (2009) Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin. Process Sci 31(9):1470–1476
- Liu M, Shen YJ, Zeng Y et al (2010) Trend in pan evaporation and its attribution over the past 50 years in China. J Geog Sci 20(4):557– 568. doi:10.1007/s11442-010-0557-3
- Liu CM, Zhang D, Liu XY et al (2012) Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J Geog Sci 22(1):3–14
- McCuen RH (1974) A sensitivity and error analysis CF procedures used for estimating evaporation. J Am Water Resour Assoc 10(3):486– 497. doi:10.1111/j.1752-1688.1974.tb00590.x
- Meyer SJ, Hubbard KG, Wilhite DA (1989) Estimating potential evapotranspiration: the effect of random and systematic errors. Agric For Meteorol 46(4):285–296. doi:10.1016/0168-1923(89)90032-4
- Parka H, Yamazaki T, Yamamoto K et al (2008) Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agric For Meteorol 148(12):1990–2005. doi:10.1016/j. agrformet.2008.06.018
- Piper BS (1989) Sensitivity of Penman estimates of evaporation to errors in input data. Agric Water Mgt 15(3):279–300. doi:10.1016/0378-3774(89)90021-8
- Rana G, Katerji N (1998) A measurement based sensitivity analysis of the Penman-Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor Appl Climatol 60(1–4):141–149. doi:10.1007/s007040050039
- Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298(5597):1410–1411. doi:10. 1126/science.1075390-a
- Roderick ML, Farquhar GD (2004) Changes in Australian pan evaporation from 1970 to 2002. Int J Climatol 24(9):1077–1090. doi:10. 1002/joc.1061
- Roderick ML, Rotstayn LD, Farquhar GD et al. (2007) On the attribution of changing pan evaporation. Geophys. Res. Lett. 34 (17). doi: 10.1029/2007GL031166
- Roderick ML, Hobbins MT, Farquhar GD (2009) Pan evaporation trends and the terrestrial water balance II. Energy balance and interpretation. Geogr Compass 3(2):761–780. doi:10.1111/j.1749-8198.2008. 00214.x
- Rotstayn LD, Roderick ML, Farquhar GD (2006) A simple panevaporation model for analysis of climate simulations: Evaluation over Australia. Geophys. Res. Lett. 33 (17). doi: 10.1029/ 2006GL027114

- Ruddiman W, Kutzbach J (1991) Plateau uplift and climatic change. Sci Am 264(3):66–75. doi:10.1038/scientificamerican0391-66
- Saxton KE (1975) Sensitivity analyses of the combination evapotranspiration equation. Agric Meteorol 15(3):343–353. doi:10.1016/0002-1571(75)90031-X
- Serrat-Capdevila A, Scott RL, Shuttleworth WJ et al (2011) Estimating evapotranspiration under warmer climates: insights from a semi-arid riparian system. J Hydrol 399(1–2):1–11. doi:10.1016/j.jhydrol. 2010.12.021
- Song CQ, You SC, Ke LH et al (2011) Spatiotemporal dynamics of land cover in northern Tibetan Plateau with responses to climate change. Ying yong sheng tai xue bao 22(8):2091
- Tebakari T, Yoshitani J, Suvanpimol C (2005) Time-space trend analysis in pan evaporation over Kingdom of Thailand. J Hydrol Eng 10(3): 205–215. doi:10.1061/(ASCE)1084-0699(2005)10:3(205)

- Thomas A (2000) Spatial and temporal characteristics of potential evapotranspiration trends over China. Int J Climatol 20(4):381– 396
- Yin Y, Wu S, Zheng D et al (2008) Radiation calibration of FAO56 Penman-Monteith model to estimate reference evapotranspiration in China. Agric Water Mgt 95(1):77–84. doi:10.1016/j.agwat.2007. 09.002
- Zhang X, Ren Y, Yin ZY et al (2009) Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J Geophys Res 114(D15), D15105
- Zhou M, Ishidaira H, Hapuarachchi H et al (2006) Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong river basin. J Hydrol 327(1):151–173. doi:10.1016/j. jhydrol.2005.11.013