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Abstract We present a method to estimate minimum and
maximum air temperatures that uses land surface information
from the Moderate Resolution Imaging Spectroradiometer
(MODIS). The method is based on an analysis of the distri-
bution of the Normalized Difference Vegetation Index
(NDVI) and Land Surface Temperature (LST) obtained from
the MODIS sensor. We select the pixels with high values of
NDVI for each set of NDVI–LST images to represent vege-
tation pixels with adequate water conditions, ensuring that
temperature values between surface and air surrounding are
similar. Then, these pixels are spatially interpolated in order to
obtain whole region maps of maximum and minimum air
temperature. Estimates were compared with observed values
for 12 meteorological stations distributed in the study area.
After correcting for bias and lags between satellite and surface
observation times, the majority of the stations show air tem-
perature estimates that have no significant differences com-
pared to the observed air temperature values. Except for urban
areas, results show a correct representation of spatial and
temporal distribution of maximum and minimum tempera-
tures for all surface types.

1 Introduction

Air temperature is one of the most relevant variables to be
considered in environmental studies (Geiger 1965). At

ecosystem scales, it influences the distribution of plant species
(Cabrera 2002) and affects the dynamics of the soil–plant–
water system (Chartzoulakis and Psarras 2005; Zavala 2004),
being included in evapotranspiration models (Allen et al.
2006; Carlson et al. 1995) as well as hydrological models
(Purkey et al. 2007; Yates et al. 2005). At the individual level,
temperature affects plant growth and net primary productivity
since photosynthetic and respiration rates depend on it.

Despite its relevance and the relative simplicity of mea-
surement, air temperature data are not usually available with
the desired spatial resolution for detailed regional analysis
and/or their record length is sometimes insufficient for time
domain characterization. For heterogeneous terrain, where we
often observe different land cover types and changing topog-
raphy, it is necessary to have a fairly dense network of obser-
vations to adequately represent a study area due to a lot of
factors that are involved in air temperature dynamics (Geiger
1965).

Recognizing that this is a highly relevant and frequent
problem, several methods have been developed to improve
time–space estimation of air temperature. Some of them con-
sider land topography as a relevant variable and develop
different algorithms for spatial interpolation using geographic
features as independent variables (Chuanyan et al. 2005;
Colombi et al. 2007; Dodson and Marks 1997; Jarvis and
Stuart 2001; Lookingbill 2003). A second set of methods
use satellite images to model spatial behavior of temperature
using energy budget theory (Nieto et al. 2011; Prihodko and
Goward 1997; Stisen et al. 2007). Since surface temperature is
the result of energy balance and ultimately of the ratio be-
tween latent and sensible heat, we can explore the relationship
between surface temperature and plant water status to charac-
terize the spatial distribution of air temperature in a given
landscape.

The thermal characteristics of the atmospheric layer closest
to the surface can be inferred from surface temperature (Ts),
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considering the characteristics of the vegetation cover and
water status (Geiger 1965). Such interactions have been ap-
plied in the past (see Jackson (1981) for a summary) to
characterize plant water status and develop tools to schedule
irrigation based on the differences between air temperature
(Ta), the canopy temperature (Tc), and soil water availability
(Jackson et al. 1988; Jackson 1981; Jackson et al. 1981).
Ehrler et al. (1978) related temperature differences between
surface cover and the adjacent air (ΔT) to plant water potential
(ψplant), finding a negative relationship between these two
variables, which is explained by variations in soil moisture
at root level, which influences canopy resistance. When avail-
able water is reduced, stomatal closure is observed, favoring
sensible heat flow and causing temperature rise.

The development of remote sensing information has made
possible to enable simultaneous surveys of surface tempera-
ture and spectral response in visible and near-infrared regions
of the spectrum, capturing spatial and temporal variations of
both the plant cover (expressed as the normalized difference
vegetation index, NDVI; Pettorelli et al. 2005) and its temper-
ature, Ts. The relationship between both variables has been
widely used in several applications: characterization of the
temporal variation and relationship between LST and vegeta-
tion characteristics among platforms/sensors (Goetz 1997),
development of a crop water deficit estimation (Moran et al.
(1994), determination of regional evapotranspiration (Batra
et al. 2006; Carlson et al. 1995; Stisen et al. 2008), estimation
of soil moisture (Gillies et al. 1997; Gillies and Carlson 1995;
Sandholt et al. 2002), and calculation of canopy resistance to
evapotranspiration (Blonquist et al. 2009; Nemani and
Running 1989).

For a particular land cover, the slope between NDVI and Ts
has also been related to the rate of evapotranspiration
(Prihodko and Goward 1997). Jackson et al. (1981, 1988)
and Nemani and Running (1989) have shown that the physical
relationship between NDVI and Ts is explained by the differ-
ent sensitivities of canopy and soil surface to changes in soil
moisture because it affects thermal characteristics of coverage,
as well as the ratio of latent to sensible heat fluxes (Prihodko
and Goward 1997; Stisen et al. 2008). In this process, we
should also consider factors such as evapotranspiration rates,
the thermal properties of the surface, the available net radia-
tion, wind velocity, and surface roughness because they mod-
ify the rate of energy and matter exchange between the surface
and atmosphere, which determine the relative position of a pixel
within the NDVI– Ts space (Sandholt et al. 2002). This response
is much higher in bare soils than in dense canopies (Gillies and
Carlson 1995) and is very sensitive to variations in soil and
vegetation type (Gillies et al. 1997; Sandholt et al. 2001).

Thus, for normal values of aerodynamic resistance, the
magnitude of evapotranspiration flux and subsequent cooling
of the surface increases with the resistance reduction and is
promoted by higher water availability. Potential latent heat

flow depends on the available net radiation and magnitude of
vapor pressure deficit. The resistance depends on both wind
speed and the surface roughness (Jones 1992). These
dependencies and interactions hinder the analysis of the
results obtained by different estimation methods (Sandholt
et al. 2002).

The interpretation of the surface temperature for open
canopies, such as the case of sclerophyllous shrubs, presents
the additional difficulty that the temperature measurements are
composed by thermal signals coming from both the bare soil
and the existing vegetative cover.

The relationships between NDVI and Ts determined that,
for the domain considered, areas with high vegetation cover
(i.e., areas with higher NDVI values) correspond to areas
where a minimum amount of the emitted radiation comes
from the soil, and we can associate the temperature recorded
by the sensor (Ts), with the temperature of the cover (Tc)
(Jackson et al. 1988). This can be seen in a scatter plot
between NDVI and Ts value of all pixels considered (Fig. 1),
where it is seen that the observations have a triangular (Gillies
and Carlson 1995) or trapezoidal distribution (Moran et al.
1994), which represents the value ranges of all NDVI and Ts
combinations at the time of image acquisition.

Canopies with high values of NDVI represent dense covers
and therefore present a structure that maximizes heat diffusion
effect (Gates 1968; Geiger 1965), allowing thermal equilibri-
um with the adjacent air. Consequently, it is possible to
consider that the surface temperature of those pixels is a good
approximation of the air temperature at the time of image
acquisition (Nieto et al. 2011; Stisen et al. 2007).

The main hypothesis of this work is that the information
available in MODIS surface temperature and NDVI images
allow us to determine the variability of surface temperature
and vegetation considering all land cover types present. As-
suming that the temperature of dense ground cover located at
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Fig. 1 Simplified representation of the ratio Ts/NDVI according to the
degree of vegetation cover (adapted from Sandholt et al. (2002))
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high values of NDVI in the NDVI– Ts distribution is very
close to the air temperature, it is possible to obtain a good
estimate of air temperature, which is a very useful approxi-
mation to improve the spatial distribution of air temperature in
a regional scale.

Therefore, the main objective of this study is to develop a
methodology to obtain an estimate of the near-surface air
temperature using information from satellite images in the
visible, near-infrared, and thermal infrared spectra.

2 Materials and methods

2.1 Study area

The study area considered corresponds to the Maipo River
Basin located in central Chile between latitudes 32°55′ and
34°15′ S. The area covers a total of 15,317 km2, of which one
third corresponds to mountainous terrain. The altitude profile
of the basin extends from 0 to 6,500 m from the mouth of the
Maipo River in the Pacific Ocean to the border with Argentina
in the Andes, with an average elevation of 1,660 m. The
region has an important watershed area above 2,000 m in
elevation. Topographically, there are four important elements
from east to west: Andes, Central Valley, Coast Range, and
Coastal Plains. According to the Meteorological Office of
Chile (DMC), there are two climate subtypes in this region:
a temperate Mediterranean type with a long dry season and a
temperate Mediterranean type with a dry season of 4 to
5 months. The latter is influenced by the height of the Andes
(Fig. 2).

The main vegetation types in the study area are the
sclerophyll forest, deciduous forest, and tree-thorn shrub,
which vary in proportion to the interior of the basin (Luebert
and Pliscoff 2006). The basin is characterized by fairly large
agricultural and urban areas (Table 1; Fig. 3). Nevertheless,
the predominant land cover types below 2000 m are the thorn
shrub with open grasslands and agricultural land (Muñoz-
Schick et al. 2000).

Due to the effect of topography over temperatures of air
masses related to the adiabatic lapse rate (Colombi et al. 2007;
Dodson and Marks 1997; Geiger 1965), we consider as study
area the basin area below 2,000 meters for implementation of
the method as well as discussion of results.

2.2 Weather information

Air temperature data were obtained from the network of
weather stations of the Dirección General de Aguas (DGA)
and the Dirección Meteorológica de Chile (DMC). We select-
ed 12 stations within the basin and extracted maximum and
minimum temperatures throughout the study period (Jan
2004–Dec 2005). Figure 3 shows the spatial distribution of

meteorological stations considered, while Table 2 details the
characteristics in terms of dominant land use in the locality
where they are located.

2.3 MODIS images

We selected 47 pairs of MODIS images of good quality from
the repository of the Geological Survey (USGS) and the
Agency’s National Air and Space Administration (NASA)
(https://lpdaac.usgs.gov/) between Jan/1/2004 and Dec/31/
2005 for a daily temporal resolution at 1 km of spatial resolu-
tion in LST images (MYD11A1—day/night) and 16 days and
1 km for vegetation index product (MYD13A2—NDVI). We
used standard processing level 3 (L3) data to ensure correct
spatial concordance between the two images (Justice et al.
1998). As a proxy for vegetation cover characteristics, we
used NDVI values since the absorption and reflectivity of
the vegetation cover are correlated with their structural prop-
erties, such as the index leaf area (LAI), fractional vegetation
cover (Fr), biomass, as well as their physiological condition
(Huete et al. 2002; Jiang et al. 2006). This is explained by the
particular spectral behavior of vegetation cover, with a high
absorption of red (approximately 650 nm) by chlorophyll and
the high reflectivity of the mesophyll of the leaf to the near-
infrared (approximately 850 nm). Values of NDVI vary be-
tween −1 and 1, where the range between 0.2 and 0.9 is the
most common in continuous vegetation cover (Huete et al.
2002).

NDVI ¼ ρNIR−ρRed
ρNIRþ ρRed

ð1Þ

where ρNIR is the near-infrared reflectance (841–876 nm) and
ρRed the reflectance of the red band (620–670 nm).

The land surface temperature (LST) is obtained from the
emissivity of MODIS bands 31 (10.780–11.280 μm) and 32
(11.770–12.270 μm). Their respective radiances were obtain-
ed using the split-window algorithm developed for the
MODIS LST product (Wan et al. 2002; Wan and Dozier
1996; Wan and Li 1997), which corrects for atmospheric
effects and emissivity using a lookup table based on global
land surface emissivity in the thermal infrared (Snyder
et al. 1998).

The Aqua platform was regarded as the most appropriate
since its time of observation over the study area roughly
correspond with the moment when the highest temperatures
are usually observed (13:30 local time). The time of observa-
tion at night occurs around 1:30 local time. Although it does
not match the moment when minimum temperatures are usu-
ally observed, we consider this estimate a fairly reasonable
approximation, which will be corrected for daily minimum
temperature estimation.
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The LST images from MODIS were filtered using quality
flags of the product, keeping only the pixels classified as good
quality in order to ensure using reliable information about
surface temperature.

2.4 Air temperature estimation based on MODIS NDVI
and LST

For the estimation ofmaximum andminimum air temperature,
we implemented the following protocol and applied it to all
images (Fig. 4):

& We selected pixels with the highest values of NDVI de-
fined as those which showed values equal or greater than
the 90th percentile in each data set. This criterion was
selected because other parametric thresholds would be
difficult to achieve as NDVI usually has non-normal dis-
tributions. This threshold was chosen because it produced
a reasonable balance between the number of pixels select-
ed and a theoretically valid value of NDVI. Based on
selected pixels, we built a mask layer to extract corre-
sponding surface temperature values from the LST image.
From this temperature data, we removed outliers (mean
plus 2.5 standard deviations).

& We then interpolated the data to generate a surface of
temperature estimates. The interpolation procedure was

Fig. 2 Study area and spatial distribution of weather stations. It also presents the altitude profile and the distribution of climates in the region

Table 1 Area and land use percentage as in the Maipo River Basin

Land use Area (km2) %

Grassland and shrub 6,938.4 45.50

Bare soil 3,811.0 24.99

Agricultural land 2,532.4 16.61

Urban and industrial areas 837.0 5.49

Forest 820.5 5.38

Plantations 101.9 0.67

Snow and glaciers 87.7 0.58

Wetlands 68.7 0.45

Water bodies 51.8 0.34

Total 15,249.3 100
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carried out using the inverse distance weighted method
(IDW) since previous studies indicate that it reduces

computational time and produces similar results in terms
of accuracy in relation to geostatistical procedures

Fig. 3 Land use in the watershed of the Rio Maipo. Highlighted is the large amount of land used for agriculture and urban characteristics

Table 2 Weather stations of the
study, with geographical coordi-
nates, altitude, and land cover
associated

Station Localization Land use

Longitude Latitude Altitude (m)

Aeropuerto −70°47′ −33°23′ 475 Urban and industrial areas

Cerro Calán −70°32′ −33°23′ 800 Urban and industrial areas

Chorombo −71°13′ −33°31′ 140 Agricultural land

Huechún Andina −70°47′ −33°5′ 580 Grassland and scrubs

Laguna Aculeo −70°52′ −33°52′ 360 Agricultural land

Longovilo −71°24′ −33°56′ 140 Agricultural land

Los Cerrillos −70°42′ −33°29′ 510 Urban and industrial areas

Los Panguiles −71°1′ −33°26′ 195 Grassland and scrubs

Melipilla −71°12′ −33°41′ 165 Agricultural land

Pirque −70°35′ −33°40′ 670 Agricultural land

Quinta Normal −70°40′ −33°26′ 520 Urban and industrial areas

Embalse Rungue −70°54′ −33°1′ 700 Grassland and scrubs
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(Chuanyan et al. 2005; Jarvis and Stuart 2001; Li and
Heap 2008). Details of this procedure are provided in the
following section.

We compared the estimates of minimum and maximum
temperature with observed values of the 12 weather stations.
To obtain the maximum temperatures, it was necessary to
correct for bias in the modeled values. We calculated monthly
bias for each land cover type and concluded that seasonal
variability of maximum temperature bias was far more impor-
tant than land cover variability. Minimum temperatures on the
other hand showed comparatively less temporal variability
with almost no dependence on land cover.

For this reason, we applied an empirical correction
throughout the year. In the case of maximum temperature,
we fitted a polynomial (Eq. 2), whereas in the case of mini-
mum temperature we only subtracted the mean bias:

Tmax‐bias ¼ −1:4958M − 0:1556M 2 þ 0:0233M 3 þ 11:888 ð2Þ

2.5 Spatial interpolation of air temperature estimations

The IDW method estimates the value of an attribute at the
point of interest using a linear combination of the known
values, weighted by the inverse function of the distance

between known points and the point considered. This method
indicates that highest weights are given to the nearest points
because their values can be regarded as more similar to the
values found in a desired point or station (Li and Heap 2008).

The relation is:

λi ¼ n=d p
iXn

i¼n
n=d p

i

ð3Þ

where di is the Euclidean distance, based on x, y, and z
coordinates, between the know values and the point of inter-
est, p is the power parameter, and n is the number of points
included in the estimation (neighbors). For this method, the p
parameter is directly related to the influence of the closest
points to interpolated point; high p values imply local behav-
ior of the variable, while low values are associated to a more
regional behavior of the variable. In this case, we used p=2
and the 11 closest neighbors, which allows for the use of this
method for all of the observation dates. In locations of com-
plex terrain, altitude is a variable that influences climatic
conditions. Recognizing the relevance of height, to calculate
distance, wemodifiedweights and give the vertical distances a
value of 1.5 in comparison to horizontal ones. This resulted in
improved estimations of temperature. For both estimates of
the maximum and minimum air temperatures, mean values

Fig. 4 Diagram of methodology
for air temperature estimation
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and corresponding errors are reported (difference between
modeled air temperature and meteorological station). In addi-
tion, we report the mean square error obtained after cross-
validation. These indices are a measure of the quality of the
interpolation and its reliability in the region under study where
there are not many validation points for the observed values of
air temperature.

For maximum and minimum temperature estimates, we
calculated a set of indicators in order to evaluate the validity
of the model. Mean and standard deviation were calculated, as
well as the root mean square error (RMSE) and the correlation
coefficient (r) to evaluate the model results with respect to the
observed values. All statistical analyses were performed using
the open source software R (R Development Core Team
2012).

3 Results

3.1 Maximum air temperature estimation

3.1.1 Mean values of maximum temperature estimation

The estimation method was applied to the whole set of
MODIS images. Table 3 shows the statistics of the air tem-
perature estimations for each reference weather station.

There is a good representation of the general patterns for
the study area, with average differences of 4.26 °C compared
to the observed air temperature data. This difference corre-
sponds to an overestimation of the method for all stations
considered, with values ranging between 6.3 and 1.1 °C above
the actual values for stations Aeropuerto and Laguna Aculeo,
respectively.

With these results, we determine that the method presented
for the case of estimated maximum air temperatures wide-
spread bias of 4.25 °C. This is explained because the selected
ground cover, despite having a good water supply and there-
fore low surface temperatures, had a temperature higher than
the values recorded by the stations. This can be explained by
the high water demand which could lead to water stress and
therefore would trigger stomatal closure processes in the leaf,
which are responsible for an increase in leaf temperature
(Vitale et al. 2007; Zavala 2004). This therefore determines
the surface temperature of the cover which is, for daylight
satellite overpass, systematically higher than measured air
temperatures.

In order to improve the estimation accuracy, a bias correc-
tion was applied using values from Eq. 2. The new results are
shown in Table 4.

With respect to the variability of estimated air temperature
relative to that observed at all weather stations, we observe
that the estimates represent the seasonal patterns of air tem-
perature. There is a difference of 2.99 °C between the ob-
served and modeled values. The largest difference is at Pirque
station, with 4.02 °C, while the smallest difference of 0.96 °C
is found at Longovilo station. Figure 5 shows, for five weather
stations of the study, box plots for the distribution of observed
and modeled values.

The correction of bias for the maximum temperatures ad-
justs the measures of central tendency estimates, keeping the
variability obtained through the calculation process (Fig. 5).
This approach has been used in other similar studies (Dodson
and Marks 1997; Prihodko and Goward 1997).

The distribution of modeled and observed maximum air
temperature values shows root mean square errors exceeding
on average 6.82 °C, reaching 8.36 °C as the maximum value
in Huechún Andina station. These values are higher than other

Table 3 Summary table with
modeled maximum air tempera-
ture values (Mod) against
observed values (Obs) and its
difference (Dif=Mod-Obs), for
mean (ME), and standard devia-
tion (SD). In addition, the root
mean square error (RMSE) and
the correlation coefficient (r)
between the observations and the
estimated values for each weather
station for the entire set of images
(n=47)

Weather station ME SD

Obs Mod Dif Obs Mod Dif RMSE r

Aeropuerto 24.04 30.43 6.39 5.97 9.47 3.49 8.26 0.74

Cerro Calán 24.70 29.16 4.46 6.19 9.71 3.53 7.19 0.69

Chorombo 23.36 25.84 2.49 6.11 7.73 1.62 4.87 0.70

Huechún Andina 24.62 30.60 5.98 7.12 9.78 2.67 8.36 0.63

Laguna Aculeo 24.81 25.95 1.14 5.82 9.32 3.50 5.54 0.69

Longovilo 22.64 25.72 3.08 6.8 7.76 0.96 5.43 0.66

Los Cerrillos 24.70 30.11 5.41 5.92 9.12 3.21 7.45 0.71

Los Panguiles 23.56 27.50 3.93 6.13 8.81 2.68 5.92 0.77

Melipilla 23.16 27.36 4.21 5.56 9.04 3.48 6.73 0.70

Pirque 24.11 28.37 4.26 5.83 9.86 4.02 7.64 0.60

Quinta Normal 23.80 29.99 6.19 6.1 9.36 3.25 8.29 0.67

Embalse Rungue 25.42 28.97 3.56 6.16 9.63 3.46 6.14 0.78

Average 24.08 28.33 4.26 6.14 9.13 2.99 6.82 0.69
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methods for estimating air temperature, where the RMSE
values are between 1 and 3 °C for similar heterogeneous
conditions (Kawamura and Edamatsu 1993; Stisen et al.
2007; Yan et al. 2009), as in mountain ranges (Colombi
et al. 2007). Nevertheless, the correlation coefficients are
relatively high for the modeled air temperature estimates for
all stations, showing an average value of 0.69, with values
ranging between 0.60 and 0.78. This reflects that a major
portion of the variable behavior is being captured by this
method.

We conducted a t-test using the observed and unbiased
modeled data for each weather station to examine if there
were significant differences. The null hypothesis is that there
were no differences between them. Because the data exhibit
the phenomenon of temporal autocorrelation of first order,
both for the observed and estimated data (Table 5), we applied
the t-test for autocorrelated data, which applies an inflation
factor of variance in the calculation of the p-value (for details,
see Wilks (2005)).

Table 4 Mean value of maximum observed and modeled air tempera-
tures (˚C) after bias correction for each weather station

Weather station Maximum temperature

Obs Mod-bias

Aeropuerto A.M.B. 24.04 27.37

Cerro Calán 24.70 26.10

Chorombo 23.36 22.79

Huechún Andina 24.62 27.54

Laguna Aculeo 24.81 22.89

Longovilo 22.64 22.66

Los Cerrillos 24.70 27.05

Los Panguiles 23.56 24.44

Melipilla 23.16 24.30

Pirque 24.11 25.31

Quinta Normal 23.80 26.93

Embalse Rungue 25.42 25.91

Average 24.08 25.27

Fig. 5 Distribution of observed
values, biased estimation, and
unbiased estimations of
maximum temperature. The
horizontal line of each box is the
median value of a data set, and the
upper and lower limits of a box
are the third and fourth quantile.
The ends of the dotted lines are
the range of values for each
data set
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The t-test results revealed that for only three of the 12
stations considered in the study was there sufficient evidence
to reject the null hypothesis about equality between observed
values and estimates with 95 % confidence interval. These
results suggest that, in regional terms and considering the
heterogeneity of the placement of weather stations, the meth-
od allows to obtain estimates that are not statistically different
from the observations recorded by weather stations in the
Maipo River Basin.

One aspect that could be affecting the estimation of max-
imum andminimum air temperatures that cannot be quantified
by this method is advection processes that disrupt the thermal
balance conditions between the layers of air present at a given
time (Campbell and Norman 1998; Geiger 1965; Li and Yu
2007). In this case, for the regional scale of this study, we have
to assume conditions of stability and absence of advection.

3.1.2 Interannual variation of maximum air temperature
estimations

The temporal behavior of the estimates is variable throughout
the year for maximum temperatures (Fig. 6). There is a sea-
sonal variability that responds to changes in both vegetation
cover in the region and seasonal variations in air temperature.
For the maximum temperatures seen in a good representation
of seasonality, identifying fluctuations occurred in the study
period. Also, the method shows the times of the year in which
the estimates have particular behavior as observed during
periods of overestimation of method occurred in the summer.
On certain occasions, like mid spring, vegetation suffers rapid
changes and a window of 16 days could not be the most

appropriate way to capture changes and represent temperature
variations. For those cases, an 8-day NDVI product could be
used.

It is possible to distinguish that uncorrected air temperature
estimations have higher discrepancies in the summer months
(December–January–February) with respect to a better fit that
can be observed in the winter months (June–July–August).
This overestimation is likely due to the behavior of the vege-
tation cover when high air temperatures and low soil moisture
conditions occur (Duffkova 2006), where, as a Mediterranean
ecosystem response, there is a decrease in gas exchange rate
levels of stomata, which added a high vapor pressure deficit
(Ehrler et al. 1978; Jackson et al. 1981), causing a decrease in
vapor flows at the canopy level (Vitale et al. 2007). Ultimately,
it implies a decrease in the rate of assimilation of carbon and
an increase in surface temperature.

3.2 Minimum air temperature estimation for weather stations

3.2.1 Mean values of minimum temperature estimation

We calculated minimum air temperatures following the meth-
od presented here; the results are shown in Table 6.

For the case of minimum air temperature, the differences
between estimated and observed data are quite low compared
to the maximum temperatures. In this case, the average for all
weather station differences is 1.11 °C, with extreme values of
2.99 °C at Rungue Embalse station and −1.15 °C at the Cerro
Calan station. In the case of the urban stations (Cerro Calan,
Los Cerrillos, and Quinta Normal), minimum temperatures
have modeled the major differences from those observed,
which might be related to the heat island phenomenon. This
effect is observed in urban coverages and has the effect over
rise observed temperature compared to non-urban environ-
ment, especially evident in atmospheric calm conditions and
clear skies in nights, when the minimum temperatures are
estimated. At this moment, the differences between radiative
cooling of urban coverage and non-urban surroundings be-
come more evident. (A very good description of these urban
heating processes is provided by Voogt and Oke (2003).)

The model was able to represent the variability of the
temperature. The observed differences represented by the
estimated standard deviation of 0.38 °C averaged over all
seasons, varying between 1.15 °C and −0.69 °C (Fig. 7).

The time of satellite observation may be a source of addi-
tional error in the model. In our case, nighttime observations
occur between 1 and 2 AM, whereas it is known that observed
minimum temperatures typically occur right before sunrise.
One may want to correct this and fit a function that reproduces
nighttime cooling in order to generate an adjusted value of
satellite estimation (see an example of such functions in
Campbell and Norman (1998)). In our case, such correction
did not add any significant improvement to minimum

Table 5 First order autocorrelation coefficients (r1) for observed and
estimated maximum temperatures and p values for t-test. Italicized values
indicate rejection of the null hypothesis of equal mean values with 95 %
confidence interval

Weather stations Autocorrelation coefficients

Obs Est p value

Aeropuerto 0.60 0.75 0.00

Cerro Calán 0.58 0.73 0.08

Chorombo 0.73 0.74 0.72

Huechún Andina 0.73 0.71 0.00

Laguna Aculeo 0.62 0.68 0.97

Longovilo 0.64 0.75 0.49

Los Cerrillos 0.56 0.78 0.01

Los Panguiles 0.74 0.79 0.19

Melipilla 0.67 0.73 0.13

Pirque 0.50 0.68 0.11

Quinta Normal 0.55 0.77 0.00

Embalse Rungue 0.65 0.74 0.31

Average 0.63 0.74
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Fig. 6 Temporal distribution of maximum air temperature and the dispersion of estimated and observed temperature values for three weather stations: a
Rungue Embalse, b Melipilla, and c Pirque. The 1:1 line shows the dispersion for each data set
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Table 6 Summary table with
modeled minimum air tempera-
ture values (Mod) against ob-
served values (Obs) and its dif-
ference (Dif=Mod-Obs), for
mean (ME), and standard devia-
tion (SD). In addition, the root
mean square error (RMSE) and
the correlation coefficient (r) be-
tween the observations and the
estimated values for each weather
station for the entire set of images
(n=47)

Weather station ME DE

Obs Mod Dif Obs Mod Dif RMSE r

Aeropuerto 7.22 8.37 1.15 3.93 4.54 0.62 3.80 0.64

Cerro Calán 10.13 8.58 −1.55 3.75 4.29 0.54 3.60 0.67

Chorombo 5.55 8.12 2.57 3.69 3.80 0.11 3.67 0.75

Huechún Andina 6.21 8.50 2.29 4.95 4.64 −0.32 3.28 0.88

Laguna Aculeo 5.40 8.37 2.97 3.97 3.96 −0.01 4.08 0.75

Longovilo 6.84 8.37 1.53 2.95 3.98 1.03 3.72 0.55

Los Cerrillos 8.76 8.35 −0.41 4.03 4.39 0.36 3.01 0.75

Los Panguiles 8.27 8.19 −0.08 3.57 3.94 0.38 2.22 0.83

Melipilla 7.89 8.39 0.50 2.97 3.99 1.01 3.62 0.49

Pirque 6.62 7.93 1.30 3.44 4.59 1.15 4.06 0.56

Quinta Normal 8.41 8.45 0.04 3.98 4.35 0.37 3.20 0.70

Embalse Rungue 5.95 8.94 2.99 5.17 4.47 −0.69 3.99 0.86

Average 7.27 8.38 1.11 3.87 4.25 0.38 3.52 0.70

Fig. 7 Distribution of observed
values (Tobs) and estimated
values (Tmod) unbiased
estimations of mínimum air
temperatures. The horizontal line
of each box is the median value of
a data set, and the upper and
lower limits of a box are the third
and fourth quantile. The ends of
the dotted lines are the range of
values for each data set
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temperature estimates (results not shown) but can be consid-
ered as an avenue to explore in cases where nighttime cooling
produces abrupt changes in temperature between satellite
observation times the moment when minimum temperatures
are typically observed.

As in the case of maximum temperatures, the value of
RMSE is maintained with an average value of 3.58 °C for
all seasons, varying between 2.22 and 4.08 °C at stations Los
Panguiles and Laguna Aculeo, respectively.

The results obtained in t-test shows that four of the 12
stations have sufficient evidence to reject the null hypothesis
about equality between observed values and estimates
with a 95 % confidence interval, concluding that the re-
maining eight stations do not have enough evidence to say that
the modeled data differ from the recorded weather station data
(Table 7).

3.2.2 Interannual variation of minimum air temperature
estimations

Estimates of the minimum air temperatures show a good
representation of seasonal patterns, matching observed annual
cycles in temperature (Fig. 8). However, the setting of the
series of daily values has not been appropriately adjusted
between modeled values which are significantly different
from the minimum air temperature observations. This is
mainly in the extreme values as opposed to results of
other studies that use integrated average temperatures
(Vancutsem et al. 2010).

It may be noted that the methodology of setting minimum
temperatures has an additional adjustment by the correction
from satellite images time to daily minimum temperature time.
This has a significant effect in decreasing temperatures, forc-
ing corrected temperatures to be significantly lower than
observed.

Using geostatistical processing tools, we generated region-
al estimate maps of minimum and maximum temperature.
Figure 9 shows the average temperatures observed for the
months of January and July 2004–2005. The method proved
to be valid only below 2,000 m.a.s.l., which corresponds to the
altitudinal limit of ground cover (from vegetation to bare soil)
needed for this methodology.

Themethodology allowed distinguishing spatial patterns of
temperature distribution. In the case of maximum air temper-
ature, for both summer and winter seasons, the northern part
of the basin showed consistently higher temperatures. This is a
characteristic pattern of this region. The south and west areas
of the basin present a temperature distribution explained by
seasonal changes of coverage present in those sectors. These
sectors are dominated by agriculture and shrubland areas
which have high seasonal variations. Also, the topography
influenced some sectors, showing warmer valleys in summer
with the lowest temperatures in winter. The west margin of the
study area has influence of the sea, with more temperate areas
with minimum temperatures higher and maximum lower than
the eastern and northern areas.

3.3 Validation of interpolation processes

The interpolation process was performed for both the maxi-
mum and minimum air temperatures using the methodology
previously described. Table 8 shows the results of a cross-
validation process performed for the interpolation results in
order to evaluate the accuracy and validity of these results for
the whole study area.

We used an average of about 350 pixels per image, which
were selected using the proposed algorithm. Corresponding to
the season of the image, the number of pixels considered
ranged between 50 and 1,050 pixels for winter and summer
periods, respectively. However, there are no significant
deviations between the mean values of the errors for
annual winter and summer periods. The values of the
root mean square errors were also similar. The mean
errors were less than 0.2 °C and values close to 1 °C of
dispersion about the mean for both maximum and min-
imum temperatures.

Given the cited findings and based on the low values of
these errors, it is possible to consider the interpolation process
as a valid procedure to represent the spatially distributed air
temperature for the whole study area. This is also consistent
with the literature (Jarvis and Stuart 2001).

Table 7 First-order autocorrelation coefficients (r1) for observed and
estimated minimum temperatures and p values for t-test. Italicized values
indicate rejection of the null hypothesis of equal mean values with 95 %
confidence interval

Weather station Autocorrelation coefficients

Obs Est p value

Aeropuerto 0.41 0.80 0.13

Cerro Calán 0.54 0.74 0.94

Chorombo 0.47 0.76 0.01

Huechún Andina 0.80 0.75 0.01

Laguna Aculeo 0.71 0.70 0.00

Longovilo 0.40 0.79 0.06

Los Cerrillos 0.63 0.80 0.66

Los Panguiles 0.64 0.73 0.53

Melipilla 0.20 0.79 0.31

Pirque 0.38 0.78 0.10

Quinta Normal 0.50 0.80 0.48

Embalse Rungue 0.77 0.72 0.00

Average 0.54 0.76
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Fig. 8 Temporal distribution of minimum air temperature and the dispersion of estimated and observed values for three weather stations: a Rungue
Embalse, b Melipilla, and c Pirque. The 1:1 line shows the dispersion for each data set
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4 Conclusions

In order to determine the daily extreme air temperatures, we
developed a new methodology based on the analysis of dis-
tribution patterns of vegetation and surface temperature from

satellite imagery and independent air temperatures from me-
teorological stations.

After applying this methodology for determining the max-
imum daily air temperature, the existence of a systematic bias
in the estimation of about 4 ° C was observed. This overesti-
mation of the air temperature is due to the water stress condi-
tions of canopy surface during periods of high temperatures in
this Mediterranean ecosystem. After correcting for this bias,
the model estimates did not show significant differences from
the measurements obtained from standard weather stations.

A minimum temperature was corrected by adjusting a
Fourier series for quantifying the minimum temperature esti-
mated by following the cooling curve. After applying this
correction, the estimates were consistently lower than the
values observed at stations, highlighting those stations located
in an urban context. For this situation, the information derived
from pixels of vegetation around urban areas are unable to
rescue the heat island effect represented by these areas,
resulting in strong underestimation of the minimum
temperature.

Fig. 9 Estimated maximum and minimum air temperature values for January and July for Maipo River Basin

Table 8 Statistic indicators of cross-validation process for the spatial
interpolation of air temperature values. Mean errors and root mean square
error are reported for four seasons

Mean errors RMSE

Tmax Tmin Tmax Tmin

Winter −0.061 0.006 1.254 0.807

Fall −0.143 0.034 1.124 0.968

Spring −0.112 −0.017 1.890 0.573

Summer −0.135 −0.049 1.321 0.759

Average −0.113 −0.007 1.397 0.777
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Another potential uncertainty is related to the interpolation
method, for both maximum and minimum temperatures. Al-
though cross-validation gave mean errors less than 0.1 °C and
values of RMSE close to 1ºC, this source of variation must be
considered when implementing the methodology and
interpreting the results and leaves open the possibility of
improving outcomes obtained by using other methods of
interpolation such as ordinary kriging, co-kriging, or splines.
Clearly, the quality of the estimates will depend on the number
and conditions of pixels used for interpolation and their cor-
rect spatial coverage, particularly when applying it to a com-
plex terrain. The main advantage of this method is the ability
to increase the number of useful sources of information (via
LST data), which results in better estimates particularly in
cases where ground stations are scarce.

The method is able to resolve the spatial and seasonal
variability as it integrates spatially distributed surface temper-
ature information from satellite platforms. These results can
then be used in mesoscale studies that seek to represent the
spatial characteristics of the air temperature. The generated
regional-scale air temperature information is less useful for
analysis at smaller scales since it cannot resolve it at finer
scales.

The methodology meets the objective of allowing a meso-
scale estimation of maximum and minimum temperatures.
This can be used as inter-variable in many types of models
and to improve our understanding of the air temperature
spatial distribution in relation to vegetation distribution.
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