
ORIGINAL PAPER

Simulation skill of APCC set of global climate models
for Asian summer monsoon rainfall variability

U. K. Singh & G. P. Singh & Vikas Singh

Received: 19 April 2012 /Accepted: 6 April 2014 /Published online: 2 May 2014
# Springer-Verlag Wien 2014

Abstract The performance of 11 Asia-Pacific Economic
Cooperation Climate Center (APCC) global climate models
(coupled and uncoupled both) in simulating the seasonal
summer (June–August) monsoon rainfall variability over
Asia (especially over India and East Asia) has been evaluated
in detail using hind-cast data (3 months advance) generated
from APCC which provides the regional climate information
product services based on multi-model ensemble dynamical
seasonal prediction systems. The skill of each global climate
model over Asia was tested separately in detail for the period
of 21 years (1983–2003), and simulated Asian summer mon-
soon rainfall (ASMR) has been verified using various statis-
tical measures for Indian and East Asian land masses sepa-
rately. The analysis found a large variation in spatial ASMR
simulated with uncoupled model compared to coupled models
(like Predictive Ocean Atmosphere Model for Australia,
National Centers for Environmental Prediction and Japan
Meteorological Agency). The simulated ASMR in coupled
model was closer to Climate Prediction Centre Merged
Analysis of Precipitation (CMAP) compared to uncoupled
models although the amount of ASMR was underestimated
in bothmodels. Analysis also found a high spread in simulated

ASMR among the ensemble members (suggesting that the
model’s performance is highly dependent on its initial condi-
tions). The correlation analysis between sea surface tempera-
ture (SST) and ASMR shows that that the coupled models are
strongly associated with ASMR compared to the uncoupled
models (suggesting that air-sea interaction is well cared in
coupled models). The analysis of rainfall using various statis-
tical measures suggests that the multi-model ensemble
(MME) performed better compared to individual model and
also separate study indicate that Indian and East Asian land
masses are more useful compared to Asia monsoon rainfall as
a whole. The results of various statistical measures like skill of
multi-model ensemble, large spread among the ensemble
members of individual model, strong teleconnection (correla-
tion analysis) with SST, coefficient of variation, inter-annual
variability, analysis of Taylor diagram, etc. suggest that there
is a need to improve coupled model instead of uncoupled
model for the development of a better dynamical seasonal
forecast system.

1 Introduction

The accurate prediction of seasonal rainfall over Asia is one of
the most challenging problems for any numerical model es-
pecially over South and Southeast Asia. It is a well-known fact
that the large parts of Asia receive major proportion (75 %) of
their annual rainfall during summer monsoon season (June–
August (JJA)). The climatology of the observed and MME
seasonal summer monsoon rainfall (SMR) over Asia from
1983 to 2003 (21 years) has been well depicted in panels a
and b of Fig. 1, respectively. Figure 1a shows that MME well
captured the belts of high rainfall along the head Bay of
Bengal, Northeast India, adjoining Bangladesh, west coast
of India and over the equatorial Indian Ocean extending up
to the west Pacific sector. In contrast, low rainfall can be seen
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over Northwest India, south-east peninsular India, Malaysia,
Indonesia and north-east and north-west parts of the China.
Figure 1a also shows a large spatial variability in seasonal
rainfall over the South Asia. This variability in rainfall has
significant impacts on agricultural fortunes of the farmers and,
hence, the economy of South Asian countries. The importance
of climate forecast to crop yield, risk management of rain-fed
farming, conservation of available water resources and other
related impacts has been well documented in Krishna Kumar
et al. (2004), Challinor et al. (2005), Sivakumar (2006),
Pattanaik and Kumar (2010), etc.

Numerical weather prediction (NWP) models are not ade-
quate to address satisfactorily in detail the aspect of the Asian
monsoon. This may be due to the large temporal and spatial
variability in rainfall and some inherent limitation of NWP
models. These models are built on the foundation of deter-
ministic modeling which starts with some initial conditions.
The inherent limitation of NWP models is that they generally
neglect small-scale climate variations and cannot approximate
complicated physical processes and interactions. The models

loose skill because of the growth of inevitable uncertainty in
the initial conditions. In order to overcome these shortcom-
ings, a new approach known as ensemble forecasting was
introduced in the 1990s (Molteni et al. 1996; Zhang and
Krishnamurti 1997; etc.). In this method, forecasts are made
either with different models or different initial conditions or
both and combined into a single forecast to take into account
the uncertainty in the model formulation and initial
conditions.

During the past two decades, climate scientists have made
groundbreaking progress in the dynamical seasonal prediction
model that is used as an intermediate complexity coupled
ocean-atmosphere model (Cane et al. 1986). Recent studies
(Kumar et al. 2005; Wang et al. 2005; Rajeevan et al. 2012)
have found that simulated ASMR with the coupled
atmosphere-ocean general circulation models (CGCMs) per-
formed better as compared to the atmospheric-oceanic GCMs
over Asia. Atmospheric chaotic dynamics may cause seasonal
forecast errors, inherently limiting seasonal climate predict-
ability. Since seasonal predictability does not depend on the

Fig. 1 a Observed (CMAP) and
b multi-model ensemble (MME)
Climatology of Asian summer
monsoon rainfall (ASMR)
(millimetres per day) from
1983–2003)
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initial atmospheric conditions, an ensemble forecast with dif-
ferent atmospheric initial conditions was developed
(Krishnamurti et al. 1999, 2000) to reduce the errors arising
from atmospheric chaotic dynamics. Another considerable
source of errors in seasonal forecast arises from the uncer-
tainties in model parameterizations of unresolved sub-grid
scale of processes. In an individual model, stochastic physical
schemes were developed to alleviate the uncertainty arising
from sub-grid scales (Bowler et al. 2008), which are now
operationally used in many centres for the forecasting.
Meanwhile, a more effective way, the MME approach, was
designed for quantifying the forecast uncertainties due to
model formulation (Krishnamurti et al. 1999, 2000; Shukla
et al. 2000). The idea behind MME is that if the model
parameterization schemes are independent of each other, the
model error associated with the model parameterization
schemes may be random in nature; thus, an average approach
may cancel the model errors contained in individual models.
The MME, in general, is superior to the predictions made by
any single model component and exhibits better performance
thanmost of the component models and predict the large-scale
features quite reasonably (Kharin and Zwiers 2002; Peng et al.
2002; Palmer et al. 2004; Min et al. 2009). The MME is
defined as averaged simulation results from multiple models.
The main reason to focus on MME is that the averages across
structurally different models empirically show better agree-
ment with the observations. The application of MME can also
be seen in other modeling applications to produce the simu-
lated climate features that have improved the simulations over
single models (Christensen et al. 2007; Meehl et al. 2007).
This method is now frequently used in model evaluation/
estimation of the climatology from coupled atmosphere-
ocean GCMs (AOGCMs) (McAvaney et al. 2001), projection
of climate change from AOGCMs (Cubasch et al. 2001;
Giorgi and Mearns 2002) and climate change detection from
AOGCMs (Gillett et al. 2002). A detailed discussion on merit
and demerit of MME for the simulation of Asian-Australian
monsoon precipitation using 10 different CGCMs can be seen
in the work of Wang et al. (2008). Gadgil and Sajani (1998),
Kang et al. (2002) and Wang and An (2002) have suggested
that there are several problems in simulating the mean mon-
soon climate and its spatial and temporal variations. Using 20
atmospheric GCMs under the Atmospheric Model Inter-
comparison Project (AMIP), Gadgil and Sajani (1998) have
shown that the atmospheric models did not evolve to a stage
where they can simulate the inter-annual variability of the
Indian summer monsoon realistically. One of the main prob-
lems in the prediction using atmospheric models is surface
boundary conditions like SST which has to be prescribed for
the time length of prediction. AMIP simulations were made
with the SST, specified from the observations and are there-
fore expected to have better skill than the prediction made
with predicted SST. Using 20 models products, Gadgil and

Sajani (1998) have shown that out of 20 models, only one
model could predict the rainfall deficiency of 1979. Wang
et al. (2005) have suggested that the state-of-the-art AGCMs
when forced by the observed SST are unable to simulate the
Asian-Pacific summer monsoon rainfall. Their analysis also
illustrated that over the parts of the western Pacific, the rela-
tionship between SST and rainfall was negative while it was
insignificant over the Indian regions. All the GCMs show a
direct correlation between SST and seasonal summer mon-
soon rainfall. Their study suggested that the coupled ocean
atmosphere processes are crucial in the monsoon regions
where the atmospheric feedback on SST is critical. The above
study suggests that the unprecedented levels of evaluation of
the climate models have been done over the last decade in the
form of multi-model ensemble inter-comparison project.
Preethi et al. (2009) have tested seven models in simulating
the summer monsoon rainfall over India and have found low
skill of simulation for inter-annual rainfall variability.
Rajeevan et al. (2012) have well described the main problem
in simulating the inter-annual rainfall variability in coupled
atmosphere-ocean general circulation models. The exercises
were done by analyzing the model simulated forecast from the
‘Development of European Multimodel Ensemble System for
seasonal to inTERannual prediction’ (DEMETER) project.

The present study is therefore aimed to asses the perfor-
mance of all the 11 sets of global climate models (coupled and
uncoupled both) of the Asia-Pacific Economic Cooperation
Climate Center (APCC) in simulating the Asian summer
monsoon rainfall variability (Indian and East Asian land
masses). The APCC can provide a good opportunity to exam-
ine the simulation characteristics of the Asian summer mon-
soon from the outputs of available APCC set of global climate
models. In the present study, hind-cast data of 11 models has
been used to examine and understand the variability in simu-
lated summer monsoon rainfall. Data and methodology are
given in Section 2, and evaluation of simulation skills is
described in Section 3. Section 4 discussed the main results
of the study.

2 Data and methodology

The APCC is successfully maintaining and continuously im-
proving an international science and technology network
mainly for reducing and mitigating the adverse impact of
climate and extreme weather events. The Asia-Pacific
Economic Cooperation (APEC) provides operational 3-
month lead dynamical seasonal predictions through the
MME technique. MME predictions are facilitated through
the multi-institutional co-operation within the APEC coun-
tries. Eighteen dynamical seasonal forecasts are available to
APCC from 15 national hydro-meteorological centers/
research institutes of eight APEC member economies.
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Currently, APCC operates the world's largest and most extensive
operational MME dynamical seasonal prediction system.
Organizations and institution participating in joint real-time
MME operational forecasts are NASA, National Centers for
Environmental Prediction (NCEP), IRI and COLA (USA);
HMC and MGO (Russia); KMA, METRI and SNU (Korea),
Japan Meteorological Agency (JMA); CWB of Chinese Taipei;
IAP and BCC of China; Canadian Meteorological Center and the
Australian Bureau of Meteorology.

The present study uses 21 years (1983–2003) of rainfall data
of hind-cast experiments conducted in a group of 11 operational
climate predictionmodels, which is used by APCC in theMME
prediction system. These models are CWB, GCPS, JMA,
GDAPS_F, NCEP, Predictive Ocean Atmosphere Model for
Australia (POAMA), MSC_GEM, MSC_GM2, MSC_GM3,
MSC_SEF and National Institute of Meteorological Reaserch
(NIMR). Among these models POAMA, NCEP and JMA are
coupled models and the remaining models are uncoupled (at-
mospheric/oceanic) ones. Detailed descriptions of the group of
APCC global climate models are presented in Table 1. For each
model, the data comprised 3-month-long hind-cast performed
12 times in a year with the first day of each 12 months as the
starting date and ensemble members were varied between 10 and
20. In the present study, we have confined our analysis to the hind-
cast which started with the initial conditions of 1 May which

includes the Asian summer monsoon periods from June to
August (all the uncoupled models have 1 May as an initial
condition with 3-month time lead and all the coupled models
have 1 May initial conditions with 3-month lead as well as 1
February initial condition with 6-month time lead). Model
simulated monthly precipitation (millimetres per day) has
been used in the present study. Observed monthly precipita
tion (millimetres per day) from the CMAP at a resolution of
2.5°×2.5° available for the entire globe (Xie and Arkin 1997)
was used for model validation. NOAA Extended
Reconstructed Sea Surface Temperature at 2.5°×2.5° resolu-
tions has been also used for correlation analysis.

In order to understand the skill of each model in
simulating SMR over Asia (15°S–40°N and 40°E–
150°E), the mean spatial pattern of the seasonal rainfall
for each model and MME have been studied and results
are compared with the observed (CMAP) rainfall. The
skill of the forecast models has been assessed as per
World Meteorological Organization (WMO) standard
forecast verification methods (WMO 2010). Various sta-
tistical measures like long-term mean climatology, biases,
map-to-map correlation, Gerrity skill score (WMO 2010),
coefficient of variation (CV), correlation coefficients
(CCs), standardized rainfall anomalies, spatial resem-
blance of the simulated and observed patterns (Taylor

Table 1 Model description of APCC participating global models

Models Organization (country) Model Initialization Resolution

POAMA Bureau of Meteorology
(Australia)

POAMA-1.5 Coupled
Forecast System

Atmosphere/land reanalysis
from AMIP run nudging
3D atmosphere to ERA40

Atmosphere: Spectral T47, 17
levels, Ocean: 2° zonal,
meridional 0.5° (equator)
to 1.5° (poles), 25 levels

NCEP NCEP/NOAA (USA) NCEP Coupled
Forecast System

NCEP Reanalysis 2, OZ,
30–31 December, 1–3,
9–13 and 19–23 January
each year

Spectral truncation T62,
64 sigma levels

GCPS KMA (Korea) Global Climate
Prediction System

NCEP RA2 T63, 21 levels

JMA JMA (Japan) JMA/MRI-CGCM BGM method and the initial
dates are nearly every
15 days

TL95 (about 1.875°, Gaussian
grid 180 km), L40

NIMR NIMR/KMA (Korea) METRI AGCM 0000UTC 27 January (MAM),
0000UTC 26th Apr. 00Z
(JJA), 0000UTC 27
July (SON), 0000UTC
27 October (DJF),
12-h time lag, 10 members
(NCEP/NCAR Reanalysis)

72×46 (5° longitude/4° latitude),
17 levels up to 1 hPa

CWB Central Weather Bureau
(Chinese, Taipei)

CWB Spectral Model Last 10 days (12Z) of previous month
from NCEP Reanalysis version 2

T42, L18

MSC_GEM MSC (Canada) RPN GEMCLIM v3.2.1 LAF approach with a 12-h lag 2°, 50 hybrid levels, top at 5 hPa

MSC_GM2 MSC (Canada) CCCma AGCM2 LAF approach with a 12-h lag Spectral T32, 10 sigma levels

MSC_GM3 MSC (Canada) CCCma AGCM2 LAF approach with a 12-h lag Spectral T63, 32 hybrid levels

MSC_SEF MSC (Canada) RPN SEF LAF approach with a 12-h lag Spectral T95, 27 hybrid levels

GDAPS_F KMA (Korea) GDAPS T106 NCEP RA2 110 km, 21 layers
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diagram), etc. have been studied in detail using model
simulated and observed rainfall for the period of 1983–
2003 (21 years).

3 Evaluation of model simulation skill over Asia

3.1 Spatial rainfall patterns

The spatial distribution of long-term mean rainfall
(millimetres per day) climatology derived from the CMAP
(observed) and MME data set for a period of 21 years (1983–
2003) have been shown in panels a and b of Fig. 1, respec-
tively. Summer monsoon rainfall biases for individual global
climate models along with MME are presented in Fig. 2.
Comparison of Fig. 1a with the mean rainfall simulated with
different models (figure not shown here) shows that most of
the global climate models well captured the mean rainfall
characteristics like zones of rainfall maxima, minima mainly
over the land areas, high and low rainfall zones. etc. including
MME. However, a significant difference in simulated rainfall
of different ensemble members of the individual model is also
noticed and shown in Fig. 2 in terms of model biases. Most of
the models show a high variability in spatial rainfall like an
underestimation of rainfall over high-rainfall regions such as
over the west coast of India, Northeast India and the equatorial
regions. Larger fluctuations (highly under estimated rainfall)
in simulated rainfall can be seen in MSC_GEM, MSC_GM2,
GDAPS_F, MSC_SEF and CWB models, while smaller fluc-
tuations (comparatively low amount of underestimated rain-
fall) can be seen in POAMA, NCEP and JMA. Figure 2 also
shows that GCPS, GDAPS_F and CWB models simulated a
high rainfall amount over the land regions compared to that
observed. The low and high rainfall amount can be associated
with the model resolution and parameterizations schemes used
in individual models. As far as South Asia (mainly India) is
concerned, Fig. 2 clearly shows the characteristics of high rain
belt over the Western Ghats and Northeast India and low rain
belt mainly over Northwest India. Figure 2 shows that the
models well captured the characteristics of high and low
rainfall but amount of rainfall has shown large variations.
Figure 2 clearly shows that NCEP and POAMA (coupled
model) simulated rainfall is closer to the observed rainfall
compared to the other model simulated rainfall but NCEP
has shown to be the best among them. This suggests that the
seasonal mean rainfall could be sensitive to the initial condi-
tions and individual model behaves differently over the same
regions of Asia like an under/overestimation of rainfall over
the same regions.

To quantify the models’ skill in reproducing the spatial
rainfall patterns, the CCs between the simulated and observed
(CMAP) rainfall were computed and shown in Fig. 3. Figure 3
shows different spatial pattern of CCs; however, most of the

models have a significant and high correlation over the
Southeast Asian and west Pacific sectors. The spatial distri-
bution in rainfall biases already showed a large variation from
model to model models (Fig. 2); hence, pattern (map-map)
correlations were computed for regions (1) over Asia and (2)
over India separately (tables not shown). Pattern correlation
depicts that some of the models like JMA, NCEP, GCPS and
MME show better skill (CCs exceeding 0.70) in reproducing
spatial mean rainfall climatology over Asia and skills de-
creased over the Indian continent (except POAMA). This
illustrates that most of the models show a better spatial pattern
of rainfall climatology only over Asia as a whole compared to
South Asia (Indian region). Inter-comparison of the spatial
pattern of rainfall climatology of different models was also
carried out and CCs were calculated. Theminor changes in the
patterns of CCs for MSC_GEM, JMA and CWB while an
increase in CCs were found in MSC_GEM, MSC_SEF and
POAMA models from the Asian to South Asian regions. The
Meteorological Service of Canada (MSC) set of models
(MSC_GEM, MSC_SEF, MSC_GM2 and MSC_GM3) has
shown a large variation in spatial rainfall pattern over Asia as a
whole and over South Asia. MSC_GM2 models show signif-
icant CCs of 0.54 over the Asian regions, while weak CCs
(CC = 0.16) were found over the South Asian regions. MME
and JMA have the highest CCs over both regions (Asia and
South Asia).

Rainfall is highly discontinuous in space and time; its
distribution is positively skewed and characterized by the
presence of many zero values. Spatial maps are very noisy
and often contain large outliers. These characteristics make
verification of rainfall amount difficult, and a new intensity-
scale method for verifying the spatial precipitation forecasts is
introduced. This technique provides a way of evaluating the
forecast skill as a function of rainfall rate intensity and spatial
scale of the error. For this purpose, a detailed model skill
analysis has been performed using the Gerrity skill score
(GSS) which uses three-by-three contingency table to test
the skill of the model in terms of simulating below-normal,
normal and above-normal rainfall. GSS was calculated for
each grid cell in the domain from 1983 to 2003. Figure 4
illustrates the GSS map for the 11 APCC sets of climate
models including MME. Most of the models show a positive
skill score over the oceanic area, mainly over the west Pacific
and Indian Ocean. Almost all the models show a better fore-
cast skill over the oceanic sector than the land. Positive skills
can be seen over the west Pacific and Indian Ocean with
mixed patches of weak skill. Most of the models have almost
no skills to forecast SMR over west China. The MME shows
slightly a better and positive forecast skill mainly over the
oceanic sectors.

The present study has also investigated the atmosphere
ocean feedback during the summer monsoon season by com-
puting summer monsoon seasonal contemporaneous
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Fig. 2 Biases in ensembles mean ASMR (millimetres per day) simulated in APCC set of global climate models and MME (1983–2003)
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Fig. 3 Spatial map of correlation between observed and model simulated rainfall
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Fig. 4 Spatial map of Gerrity skill score for APCC sets of climate models.
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correlation (CCs) between simulated mean rainfall (over the
land area only) by different models and observed SST along
with MME from 1983 to 2003. The results are presented in
Fig. 5. A significant positive (direct association) simultaneous
CC provides the influence of SST on the atmosphere while a
negative CC indicates the influence of atmosphere on SST.
Figure 5 shows a direct association over the larger parts of
west and east Indian Ocean and an inverse one over the south
China and north-west Pacific Ocean in CMAP (observed).
Coupled models (NCEP, JMA and POAMA) show an almost
similar trend but weaker CCs. Comparison of different models
simulated and MME CC trend with CMAP indicates that
MME CC trend is slightly closer compared to individual
model simulated rainfall. The MME shows an inverse pattern
of CCs over the northern Indian Ocean and positive CCs
slightly southward compared to other models. The positive
and negative CCs over the west and East Indian basin suggest

that SST strongly forces the atmosphere over the eastern Indian
Ocean which in turn has positive feedback on SSTs. The
Bjerkness feedback mechanism relating the thermocline and
equatorial upwelling is an important thermodynamics for an air-
sea feedback mechanism, and it is well described in the work of
Vinayachandran et al. (2009). The above-saidmechanism in the
Indian Ocean basin operates when the equatorial trade wind is
weak easterly and the wind over the Indonesian coast favours
upwelling (Wang et al. 2004; Vinayachandran et al. 2009). The
high and significant CCs of the three models suggest that the
coupled models are characterized by a more realistic and ex-
cessive oceanic forcing on the atmosphere over the equatorial
Indian Ocean. Rajeevan and Nanjundiah (2009) have also
found a similar type of strong relationship between SST rainfall
coupling over the Indian Ocean in the IPCC models.

Overall, MME, POAMA, NCEP and JMA simulated rain-
fall patterns are slightly closer to the verification (CMAP)

Fig. 5 Correlation between SST and rainfall (observed and APCC sets of climate models
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rainfall over the Asian regions. The MSC set of models has
almost the same experimental design but simulating dissimilar
systematic biases, even though the models are developed in
the same center. The SSTand rainfall correlation also suggests
that NCEP, JMA and POAMA performed better compared to
other models.

3.2 Coefficient of variation and correlation coefficient

The CV represents the ratio of the standard deviation to the
mean, and it is frequently used in comparing the degree of
variation from one data set to another, even if the means are
drastically different from each other. The analysis found that
the CV in SMR is about 8 and 6.2 % and long-term mean is
about 650 and 420 mm over the Indian and East Asian land
masses, respectively. For a detailed study of inter-annual
variability in rainfall, various statistical analyses have been
done over the Indian (5°N–35°N, 68°E–90°E) and East Asian
(20°N–50°N, 90°E–150°E) land masses separately.

Over Indian land mass Figure 6a–d shows the inter-annual
variability over the Indian land mass (excluding the oceanic
regions). The analysis found that the mean SMR varies from
500 mm (JMA) to 910 mm (CWB) while the mean SMR of
MME is 700 mm. The CV varies between 3.2 % (CWB) and
12.2 % (MSC_SEF), and for MME, the CV is 5.0 %. The
analysis indicates that the CV is low for the ensemble mean
compared to its ensemble members and dispersion among the
ensemble members was also high. Comparison of simulated
CV with the observed CV shows that the ensemble members
of POAMA model are slightly closer to those observed but
simulated mean rainfall over India with POAMA model was
overestimated.

To get a clear idea of inter-annual variability of SMR
and the spread among the ensemble members, CCs has
been computed between the observed and models simu-
lated SMR (only over the Indian land mass) and shown
in Fig. 6b. Figure 6b shows that most of the model
ensembles have inverse relationships with the observed
rainfall except NCEP and POAMA where ensemble
mean CCs lie between 0.2 and 0.3. The observed rain-
fall shows positive CCs with NCEP and POAMA, while
the highest negative CCs (CC = −0.48) are found with
GCPS and MME (CC = −0.3).

To examine the spatial resemblance of model simulated
and observed patterns, a Taylor diagram was analysed and
shown in Fig. 6c. A Taylor diagram (Taylor 2001) is used to
provide the graphical summary of how closely a set of patterns
matches with the observations. The association between the
two patterns is quantified in terms of their correlations, their
centred root-mean-square error and the amplitude of their
variations (represented by their standard deviations).
Figure 6c represents the Taylor diagram analysis for the

precipitation over the Indian land mass. In the Taylor diagram,
the radial distance from the origin represents the standard
deviation ratio of the model simulated pattern with the refer-
ence (CMAP) pattern. The pattern CCs between two variables
are given by the azimuthal position and the normalized
centred root-mean-square error (RMSE) of the simulated pat-
tern is given by the distance from the reference point of
observations. Out of the 11 selected models (details are pro-
vided in Table 1), NCEP seems to be the best selection for true
representation of spatial patterns which has maximum patterns
of CCs, minimum RMSE and low bias. The spatial rainfall
distribution based on CMAP and other selected models as
well as their MME is already described in Section 3.1. MME
compared to other selected models reasonably well captures
the spatial characteristics of seasonal monsoon over the Indian
land masses. Hence, MME has been considered for further
analysis. Standardized MME and CMAP (observed) SMR
anomalies are shown in Fig. 6d over the Indian land mass,
which only show that the model well captured the excess
monsoon rainfall in 1988 over India.

Over East Asian land masses The inter-annual rainfall vari-
ability over the East Asian land mass is shown in Fig. 7a–d.
Figure 7a shows that the mean SMR varies from 280 mm
(MSC_GEM) to 560 mm (CWB) while the mean SMR for
MME is 455 mm. The CV varies between 1.5 % (NIMR) and
6.5 % (MSC_GEM), and for MME, the CV is 1.5 %. The
present analysis clearly indicates that the CV is low for the
ensemble mean compared to its ensemble members and dis-
persion among the ensemble members was high. Comparison
of observed CV to simulated CV shows that the ensemble
members of MSC_GEM are slightly closer to those observed
but the MSC_GEM model overestimated the mean rainfall
over the East Asian land mass.

For a detailed study of inter-annual variability of SMR and
the spread among the ensemble members, CCs were comput-
ed between the observed and model simulated SMRs over the
East Asian land mass and shown in Fig. 7b. Figure 7b shows
that approximately all the model ensembles have a direct
association with the observed rainfall while MSC_SEF en-
semble mean CCs are negative (inverse relationship). The
observed rainfall shows the highest CCs with GCPS and
NIMR (CCs above 0.4) and CC for MME is 0.38. Figure 7c
presents the Taylor diagram analysis for the East Asian rain-
fall. Figure 7c shows that out of the 11 considered models,
GCPS and NIMR seem to be the best selection for true
representation of spatial patterns which have maximum pat-
terns of CCs, minimum RMSE and low bias. Standardized
MME and CMAP (observed) SMR anomalies are shown in
Fig. 7d over the East Asian landmass andMMEwell captured
low rainfall of 1989 over East Asia.

The above analysis of observed rainfall shows random
fluctuations without any long-term clear trend over the
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Indian and East Asian land masses. The spread in SMR with
the different models and their ensemble members suggests the
diverse nature of the model and their dependency on the initial
conditions. The MSC set of climate models (MSC_GEM,
MSC_SEF, MSC_GM2 and MSC_GM3) has shown a large
variation in mean rainfall pattern over both land masses. The
analysis of CCs between ensemble SMR and observed
(CMAP) rainfall shows that the skills in reproducing the

inter-annual variability varies from model to model and from
region to region over Asia. The analysis also indicates that
among the models in APCC, MME has some deficiency in
simulating mean and inter-annual variability of SMR.

Overall, rainfall variability over two different regional do-
mains (Indian and East Asian land masses) almost shows an
opposite CC pattern nearly in all the models. The mean value
computed with MME shows some improvement compared to

Fig. 6 a Scatter plot of SMR (millimetres) and CV (percent) from
observed and APCC set of global climate model, b CCs between ob-
served and model simulated SMR, c Taylor diagram showing standard

deviation (centimetres) and CCs between observed and model simulated
rainfall and d inter-annual variability of SMR anomalies for observed and
MME over Indian land masses
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the individual models, indicating that MME is not affected by
the performance of individual models and the uncertainty in
the initial condition.

4 Conclusions

Simulation skills of 11 APCC global climate models in
predicting mean seasonal rainfall over Indian and East Asian

land masses were studied by applying various statistical tech-
niques. The results indicate that majority of the models have
negative bias over some parts of the Asian land mass and over
equatorial zones (Indian and west Pacific Oceans). Large
variability in simulated ASMR was found from model to
model and from region to region in uncoupled models com-
pared to couple models. Most of the models underestimated
the rainfall over high rainfall belts. Atmospheric chaotic dy-
namics uncertainties in the representation of unresolved sub-

Fig. 7 Same as in Fig. 6 except for SMR over East Asian land masses
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grid scales in the models may cause large bias in the models.
Hence, a method of ensemble forecast was used for minimiz-
ing the errors. The study also found large spreads in individual
members of the model, and these spreads were as large as the
spread of ensemble means of different models, suggesting
uncertainty due to errors in initial conditions. The uncer-
tainties in the model largely depend on model formulations.

The analysis of CCs between SST and simulated ASMR
found a large variation in producing inter-annual variability
especially over Indian and west Pacific Oceans mainly in
uncoupled model. It may be due to poor representation of
air-sea interaction. The skill in reproducing the inter-annual
variability varies again from model to model and from region
to region. The prediction skill of models was found slightly
better over the oceanic area compared to land masses. The
exact amount of simulated SMR in MME over Asia is not
fully captured; rather, simulated SMRwithMMEwas slightly
better than the any individual model. Among the set of APCC
models, NCEP, POAMA, GCPS and NIMR can provide
slightly a better skill in simulating inter-annual variability of
SMR over Indian and East Asian land masses based on the
analysis of skill of the individual models and MME. The
present study suggests that there is a need to fully understand
the physical processes used for improving the individual
model skills rather than the methods of MME for producing
better seasonal rainfall prediction systems.

Acknowledgments The authors are indebted to reviewers for the
thoughtful review and for the constructive comments given to our paper.
We are very grateful to the institutions participating in the APCC multi-
model ensemble operational system for providing the hind-cast experi-
ment data. The first and corresponding authors want to acknowledge
project no. KBCAOS/SEL/DST-MoES/18/2013 and project no. DST/
CCP/NMSKCC/10, respectively.

References

Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE (2008) The
MOGREPS short-range ensemble prediction system. Q J R
Meteorol Soc 134:703–722. doi:10.1002/qj.234

Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El
Niño. Nature 321:827–832

Challinor AJ, Slingo JM, Wheeler TR, Doblas-Reyes FJ (2005)
Probabilistic simulations of crop yield over western India
using DEMETER seasonal hindcast ensembles. Tellus 57A:
498–512

Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007)
Evaluating the performance and utility of regional climate models:
the PRUDENCE project. Clim Chang. doi:10.1007/s10584-006-
9211-6

Cubasch U et al (2001) Projections of future climate change. In:
Houghton JT et al (eds) Climate Change. The scientific basis.
Cambridge University Press, New York, pp 525–582

Gadgil S, Sajani S (1998) Monsoon precipitation in the AMIP runs. Clim
Dyn 14:659–689

Gillett NP, Zwiers FL, Weaver AJ, Hegerl GC, Allen MR, Stott PA
(2002c) Detecting anthropogenic influence with a multi-model en-
semble. Geophys Res Lett 29. doi:10.1029/2002GL015836

Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range,
and reliability of regional climate changes from AOGCM simula-
tions via the reliability ensemble averaging (REA) method. J Clim
15:1141–1158

Kang IS, Jin K, Wang B, Lau KM, Shukla J, Krishnamurthy V, Schubert
SD, Waliser DE, Stern WF, Kitoh A, Meehl GA, Kanamitsu M,
Galin VY, Satyan V, Park CK, Liu Y (2002) Intercomparison of the
climatological variations of Asian summer monsoon precipitation
simulated by 10 GCMs. Clim Dyn 19:383–395

Kharin VV, Zwiers FW (2002) Climate prediction with multimodel
ensembles. J Clim 15:793–799

Krishna Kumar K, Rupa Kumar K, Ashrit RG, Deshpande NR, Hansen
JW (2004) Climate impacts on Indian agriculture. Int J Climatol 24:
1375–1393

Krishnamurti TN, Kishtawal CM, Zhang Z, LaRow TE, Bachiochi DR,
Zhang Z, Williford CE, Gadgil S, Surendran S (1999) Improved
weather and seasonal climate for weather forecasts frommultimodel
superensemble. Science 285:1548–1550

Krishnamurti TN, Kishtawal CM, Williford CE (2000) Multimodel
superensemble forecasts for weather and seasonal climate. J Clim
13:4196–4216

Kumar KK, Hoerling MP, Rajagopalan B (2005) Advancing dynamical
prediction of Indian monsoon rainfall. Geophys Res Lett 32,
L08704. doi:10.1029/2004GL021979

McAvaney B, Covey C, Joussaume S, Kattsov V, Kitoh A, Ogana W,
PitmanAJ,Weaver AJ,Wood RA, Zhao Z-C, AchutaRao K, Arking
A, Barnston A, Betts R, Bitz C, Boer G, Braconnot P, Broccoli A,
Bryan F, Claussen M, Colman R, Delecluse P, Del Genio A, Dixon
K, Duffy P, Dümenil L, England M, Fichefet T, Flato G, Fyfe JC,
Gedney N, Gent P, Genthon C, Gregory J, Guilyardi E, Harrison S,
HasegawaN,Holland G,HollandM, Jia Y, Jones PD, KageyamaM,
Keith D, Kodera K, Kutzbach J, Lambert S, Legutke S, Madec G,
Maeda S, Mann ME, Meehl G, Mokhov I, Motoi T, Phillips T,
Polcher J, Potter GL, Pope V, Prentice C, Roff G, Semazzi F, Sellers
P, StensrudDJ, Stockdale T, Stouffer R, Taylor KE, Trenberth K, Tol
R, Walsh J, Wild M, Williamson D, Xie S-P, Zhang X-H, Zwiers F
(2001) Model evaluation. In: Houghton JT, Ding Y, Griggs DJ,
Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA
(Eds.). Climate change. The scientific basis. Contribution of
Working Group I of the Third Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge
University Press, Cambridge, pp 471–523

Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory
JM (2007) The WCRP CMIP3 multimodel dataset: a new era in
climate change research. Bull AmMeteorol Soc 88:1383–1394. doi:
10.1175/BAMS-88-9-1383

Min Y-M, Kryjov VN, Park CK (2009) A probabilistic multimodel
ensemble approach to seasonal prediction. Weather Forecast 24:
812–828

Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ECMWF
ensemble prediction system: methodology and validation. Q J
R Meteorol Soc 122:73–119

Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M,
Delecluse P, Deque M, Dies E, Doblas-Reyes FJ, Feddersen H,
Graham R, Gualdi S, Gueremy JF, Hagedorn R, Hoshen M,
Keenlyside N, Latif M, Lazar A, Maisonave E, Marletto V,
Mores AP, Orfila B, Rogel P, Terres JM, Thomson MC (2004)
Development of a European multimodel ensemble system for
seasonal-to-interannual prediction (DEMETER). Bull Am
Meteorol Soc 85:853–872

Pattanaik DR, Kumar A (2010) Prediction of summer monsoon rainfall
over India using the NCEP climate forecast system. Clim Dyn 34:
557–572

Global climate models and Asian summer monsoon rainfall 121

http://dx.doi.org/10.1002/qj.234
http://dx.doi.org/10.1007/s10584-006-9211-6
http://dx.doi.org/10.1007/s10584-006-9211-6
http://dx.doi.org/10.1029/2002GL015836
http://dx.doi.org/10.1029/2004GL021979
http://dx.doi.org/10.1175/BAMS-88-9-1383


Peng P, Van den Dool AH, Barnston AG (2002) An analysis of
multimodel ensemble predictions for seasonal climate anomalies. J
Geophys Res 107:4710. doi:10.1029/2002JD002712

Preethi B, Kripalani RH, Krishna Kumar K (2009) Indian summer
monsoon rainfall variability in global coupled ocean-atmospheric
models. Clim Dyn 35:1521–1539

Rajeevan M, Nanjundiah RS (2009) Coupled model simulations of
twentieth century climate of the Indian summer monsoon. In:
Current trend in science, platinum jubilee special volume of Indian
Academy of Sciences, Indian Academy of Science, Banglore, India,
23:537–568

Rajeevan M, Unnikrishan CK, Preeti R (2012) Evalution of the
ENSEMBLE multi-model seasonal forecasts of Indian summer
monsoon variability. Clim Dyn 38:2257–2274

Shukla J et al (2000) Dynamical seasonal prediction. Bull Am Meteorol
Soc 81:2493–2606

Sivakumar MVK (2006) Climate prediction and agriculture: current
status and future challenges. Clim Res 33:3–17

Taylor KE (2001) Summarizingmultiple aspects ofmodel performance in
a single diagram. J Geophys Res 106:7183–7192

Vinayachandran PN, Francis PA, Rao SA (2009) Indian Ocean dipole:
processes and impacts. In: Current trends in science, platinum
jubilee special volume of Indian Academy of Sciences, Indian
Academy of Science, Banglore, India, 23:569–589

Wang B, An S-I (2002) A mechanism for decadal changes of ENSO
behavior: roles of background wind changes. ClimDyn 18:475–486

Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005)
Fundamental challenge in simulation and prediction of summer
monsoon rainfall. Geophys Res Lett 32. doi:10.1029/
2005GL022734

Wang B, Kang I-S, Lee J-Y (2004) Ensemble simulations of Asian–
Australian monsoon variability by 11 AGCMs. J Clim 17:803–
818. doi:10.1175/1520-0442(2004)017\0803:ESOAMV[2.0.CO;2

Wang B, Lee JY, Kang IS, Shukla J, Kug JS, Kumar A, Schemm J, Luo
JJ, Yamagata T, Park CK (2008) How accurately do coupled climate
models predict the leading modes of Asian-Australian monsoon
interannual variability? Clim Dyn 30:6. doi:10.1007/s00382-007-
0310-5

WMO (2010) Manual on the global data-processing and forecast-
ing system, ATTACHMENT II.8, volume I—global aspects
(2010 edition, updated in 2012). WMO no. 485. WMO,
Geneva

Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly
analysis based on gauge observations, satellite estimates, and
numerical model outputs. Bull Am Meteorol Soc 78:2539–
2558

Zhang Z, Krishnamurti TN (1997) Ensemble forecasting of hurricane
tracks. Bull Am Meteorol Soc 78:2785–2795

122 U.K. Singh et al.

http://dx.doi.org/10.1029/2002JD002712
http://dx.doi.org/10.1175/1520--0442(2004)017\0803:ESOAMV[2.0.CO;2
http://dx.doi.org/10.1175/1520--0442(2004)017\0803:ESOAMV[2.0.CO;2
http://dx.doi.org/10.1175/1520--0442(2004)017\0803:ESOAMV[2.0.CO;2
http://dx.doi.org/10.1007/s00382-007-0310-5
http://dx.doi.org/10.1007/s00382-007-0310-5

	Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability
	Abstract
	Introduction
	Data and methodology
	Evaluation of model simulation skill over Asia
	Spatial rainfall patterns
	Coefficient of variation and correlation coefficient

	Conclusions
	References


