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Abstract The ability of Coupled General Circulation Models
(CGCMs) participating in the Intergovernmental Panel for
Climate Change's fourth assessment report (IPCC AR4) for
the 20th century climate (20C3M scenario) to simulate the
daily precipitation over the Indian region is explored. The skill
is evaluated on a 2.5°×2.5° grid square compared with the
Indian Meteorological Department's (IMD) gridded dataset,
and every GCM is ranked for each of these grids based on its
skill score. Skill scores (SSs) are estimated from the probabil-
ity density functions (PDFs) obtained from observed IMD
datasets and GCM simulations. The methodology takes into
account (high) extreme precipitation events simulated by
GCMs. The results are analyzed and presented for three cat-
egories and six zones. The three categories are the monsoon
season (JJASO — June to October), non-monsoon season
(JFMAMND — January to May, November, December) and
for the entire year ("Annual"). The six precipitation zones are
peninsular, west central, northwest, northeast, central north-
east India, and the hilly region. Sensitivity analysis was per-
formed for three spatial scales, 2.5° grid square, zones, and all
of India, in the three categories. The models were ranked

based on the SS. The category JFMAMND had a higher SS
than the JJASO category. The northwest zone had higher SSs,
whereas the peninsular and hilly regions had lower SS. No
single GCM can be identified as the best for all categories and
zones. Some models consistently outperformed the model
ensemble, and one model had particularly poor performance.
Results show that most models underestimated the daily pre-
cipitation rates in the 0–1 mm/day range and overestimated it
in the 1–15 mm/day range.

1 Introduction

General circulation models (GCMs) are sophisticated, three-
dimensional numerical models developed by research groups
worldwide and are used to simulate the behavior of the climate
system, its components, and their interactions. The climate
system is chaotic, and for the long period simulations required
to study climate change, these complex models are generally
run at a global scale using equations, parameterizations, and
assumptions (Broecker 1995; Phillips et al. 2004; Raisanen
2007; Rial et al. 2004; Skelly and Henderson-Sellers 1996).
The performance of GCMs at the regional scale remains
variable (Bollasina and Nigam 2009; Gleckler et al. 2008;
Randall et al. 2007). Model accuracy differs with region and
the type of variable simulated (Errasti et al. 2010); hence,
GCM models are evaluated by testing their ability to simulate
the "present climate" of hydrometeorological variables (in-
cluding variability and extremes). However, it should be noted
that neither good performance across an arbitrary suite of
measures of observed climate, nor agreement in output across
a collection of models, provides a rigorous basis for assessing
the accuracy of a future prediction. Other evaluation method-
ologies identify groups of models that agree on future climate
changes (convergence) or a combination of present and future
climates (Dominguez et al. 2010; Giorgi and Mearns 2003;
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Tebaldi and Knutti 2007). The inherent problems with
these approaches are discussed by Knutti (2010),
Raisanen (2007), Tebaldi and Knutti (2007), and Weigel
et al. (2010).

Daily precipitation is important at a river basin scale be-
cause it is (1) the main driver of runoff generation in river
basins (Chen et al. 2010; Chiew et al. 2009; Kim and
Pachepsky 2010; Piani et al. 2010); (2) used in the evaluation
of flood frequency for flood safety, which is of utmost concern
for water resource management agencies for operating and
maintaining reservoir systems (Raff et al. 2009), and for risk
evaluations to guide design of infrastructure alterations or
potential changes in reservoir operations (Raff et al. 2009);
(3) used to study the impact produced by a precipitation
pattern change in the erosion process in a river basin
(Abaurrea and Asín 2005); (4) important in irrigation water
management (García-Garizábal and Causapé 2010); (5) used
in the estimation of water budget (Guo et al. 2004), precipita-
tion erossivity (Angulo-Martínez and Beguería 2009; Vrieling
et al. 2010), and groundwater recharge (Nolan et al. 2007;
Toews and Allen 2009); (6) used to study the effect of its
changes on loads of NO3-N and sediment from watersheds
(Chaplot 2007) and forest ecosystems (Johnson et al. 2000);
and (7) used to study water table fluctuations (Park and Parker
2008), atmospheric circulation, and temperature (Brandsma
and Buishand 1997). Hence, the performance of daily precip-
itation simulated by GCMs should be evaluated at finer spatial
scales.

Evaluating highly variable, complex climate variables such
as precipitation is important and desirable. On higher spatial
and temporal scales, GCM performance is rarely assessed at a
daily scale due to the vast quantities of data involved (Finnis
et al. 2009). For the 20th century climate scenario (20C3M),
past studies have evaluated the daily precipitation simulated
by the GCMs participating in the Intergovernmental Panel for
Climate Change's fourth assessment report (IPCC AR4). The
studies were performed for the entire globe (Dai 2006) for the
land areas (Sun et al. 2006) and in a more detailed way for
smaller regions such as Australia (Maxino et al. 2008; Perkins
et al. 2007; Vaze et al. 2011), the USA (Chen and Knutson
2008; Pierce et al. 2009; Pryor and Schoof 2008), China (Li
et al. 2010), and South America (Bombardi and Carvalho
2009, 2010). Probability density functions, skill scores
(SSs), mean square error, intensity, frequency, and extreme
value indices are some of the methods used in these studies.
The details of these studies such as the region examined,
number of GCMs, and methods used in the analysis are
provided in Table 1. The results of these studies are discussed
later in the manuscript. Evaluation of the daily precipitation
simulated by the GCMs exclusively for the Indian region at
finer scales has not been conducted (Table 1). Past studies
have evaluated the precipitation simulated by GCMs at larger
timescales (monthly, seasonal, and annual) over India region

and larger spatial scales (e.g., south Asia) (Annamalai et al.
2007; Bollasina and Nigam 2009; Kripalani et al. 2007b;
Preethi et al. 2010; Rajeevan and Nanjundiah 2009). A good
review of the methods available to evaluate the performance
of GCMs may be found in (Errasti et al. 2010; Johnson and
Sharma 2009). Details of many previous studies performed at
a monthly scale, such as region examined, variables evaluated,
method used, and GCM model selected can be found in
Table 8 in Errasti et al. (2010).

Monsoon constitutes an essential phenomenon for a tropi-
cal climate (IPCC 2001) and defines essential features of the
Earth's climate that have profound social and economic con-
sequences (Zhang and Li 2008). The Indian summer monsoon
(ISM) represents one of the largest annual variations of the
global climate system (Turner and Slingo 2009). ISM is one of
the main components of the large-scale Asian summer mon-
soon (Cherchi et al. 2007), which is relied on by more than a
third of the world's population for the majority of their water
resources, for agriculture, and, increasingly, for industrial uses
(Turner and Slingo 2010). Furthermore, the Indianmonsoon is
one of the most dominant tropical circulation systems in the
general circulation of the atmosphere (Rajeevan and
Nanjundiah 2009). Precipitation is the variable used by most
studies to evaluate the performance of a simulated monsoon
(Zhang and Li 2008). The errors in simulated precipitation
fields often indicate deficiencies in the representation of these
physical processes in the GCM (Dai 2006). Indian precipita-
tion has often been used as proxy data for the Asian monsoon
as a whole for understanding the energy budget of the major
circulation features (Parthasarathy et al. 1994).

The objective of this study was to evaluate the simulated
daily precipitation by GCMs over India. Simulations from 19
GCMs participating in the IPCC's AR4 for 20C3M scenario
during the period 1961–2000 are evaluated. The study is
valuable due to the importance of daily precipitation and
Indian monsoon. It supplements the many assessments that
evaluate GCMs at daily scale and helps us understand GCMs'
strengths or weaknesses in simulating the monsoon in this
region, which also influences surrounding areas. Knowledge
ofmodel performance will help groups to build on strengths or
address weaknesses in subsequent models and is useful to
researchers in selecting an appropriate mix of global models
for use in regional applications and the effects such choices
would have on regional study results (Pierce et al. 2009).

2 Data used and study region

The observational dataset used in this study is the 1°×1° daily
precipitation dataset prepared by the National Climate Centre
of the Indian Meteorological Department (IMD), Pune, India
(Rajeevan et al. 2005; Rajeevan et al. 2006). About 2,140 rain
gauge stations having a minimum 90 % of data during the
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period 1951–2004 were chosen from 6,329 stations in India
(Satyanarayana and Srinivas 2008). Rajeevan et al. (2005)
discussed the method of gridded data preparation in detail.
The spatial interpolation procedure from the irregularly
spaced rain gauge network to an equal angle grid was adapted
from Shepard (1968). In addition to a distance factor, a direc-
tion factor has been introduced while defining the weights for
interpolation (Dash et al. 2009). There are 357, 1° grids in the
study region (filled circles in Fig. 1), each having a time series
of precipitation data. The period of data used in this study is
1961–2000.

Simulations of precipitation from 19 GCMs (Tables 2 and 3)
are obtained from the World Climate Research Programme's
(WCRP) Coupled Model Intercomparison Project phase 3
(CMIP3) multi-model dataset for the baseline scenario
(20C3M) in the form of daily data. In this study, the naming
convention followed for GCM model names are three-letter
abbreviations, similar to those in (Kripalani et al. 2007a). Some
of the GCMs are run multiple times. The naming conventions
of both GCM name and run number (numerals) are given in
Tables 2 and 3. There are a total of 39 realizations from different
GCMs and runs (Tables 2 and 3) for study region. They are
extracted and interpolated to a common 2.5º grid square using
bilinear interpolation. There are 77, 2.5° grid squares in the
study region, and they are numbered in Fig. 1. These 2.5° grid
squares are referred to as grid squares in the manuscript.

In this study, India has been divided into six precipitation
zones (peninsular, west central, northwest, northeast, central

northeast India, and the hilly region), as shown in Fig. 1b.
Zones were defined by the Indian Institute of Tropical Mete-
orology (IITM) in Pune (www.tropmet.res.in) and used as
homogenous precipitation zones (Dash et al. 2009). These
are referred to as zones in the manuscript and discussed in
Section 4.1 (Figs. 2 and 3).

3 Methodology

In the study region, each grid square has one or more grid
points (one time series for each grid point) of observed data
(Fig. 1a). Most of the grid squares had either six or nine time
series of observed precipitation. The boundary grid squares
having fewer (one to five) time series of observed data
(Fig. 1). For each grid square, a probability density function
(PDF) of observed precipitation was estimated by pooling all
the time series of observed data in that grid square. These are
referred as "observed PDF" in the manuscript (Figs. 2b and 3).
In calculating the observed PDFs, the values of the observed
time series were not averaged. For each grid square and GCM
run, a PDF was estimated using a single time series of simu-
lated precipitation. These PDFs were referred as the "GCM
PDF" in the manuscript (Fig. 3).

The nonparametric observed PDF and simulated PDF were
calculated using MatLab (http://www.mathworks.com). To
estimate the PDFs, bin width (Sb) was required and was
assumed as 1 mm/day in this study. The frequency of each

Table 1 Literature review of daily precipitation evaluation studies

Variable Region examined GCM/RCM models
used

Method (Author/reference)

P Globe 12 GCMs standard
deviation

4 GCMs annual
frequency

Standard deviation of pentad, annual frequency,
and intensity of daily precipitation

(Dai 2006)

P Globe (land) 18 Precipitation frequency, intensity, and the number
of rainy days contributing to most (i.e., 67 %)
of the annual precipitation total

(Sun et al. 2006)

P, Tmax, Tmin 12 regions in Australia 16 Probability-based skill score (Perkins et al. 2007)

Extreme P USA 17 30-year return level of daily rainfall and a simple
daily intensity index (SDII)

(Chen and Knutson 2008)

P, Tmax, Tmin Murray-Darling basin,
Australia

17 Probability-based skill score (Maxino et al. 2008)

P USA 10 Seasonality index, percentile-based analysis (Pryor and Schoof 2008)

P South America 10 Pentad (Bombardi and Carvalho 2009)

P, Tmax, Tmin Western USA 21 MSE, skill score, RMSE (Pierce et al. 2009)

P, SST South America 10 Onset and demise dates, duration, and total
precipitation during the monsoon season

(Bombardi and Carvalho 2010)

Extreme P China 20 Extreme precipitation amount, extreme precipitation
frequency, percentage contribution from extreme
precipitation to the total precipitation

(Li et al. 2010)

P Southeast Australia 15 RMSE, spatial correlation, and Nash–Sutcliffe
efficiency

(Vaze et al. 2011)
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bin (n ) was calculated, then normalized such that the area (or
integral) under the histogram was equal to 1. The frequency
was normalized by dividing by the number of observation
times the bin size. The observed PDF for each grid square was
the plot of the normalized frequencies of observations (FOn),
whereas the GCM PDF was the plot of the normalized fre-
quencies of GCM simulations (Fgn).

The SS based on empirical PDFs developed by Perkins
et al. (2007) was used due to its simplicity and applicability

across variables, spatial scales, and time periods. The mini-
mum frequency in each of the bins between modeled (Fgn)
and observed (FOn) were estimated. SS was the summation of
the minimum frequency values over all bins (Eq. 1).

SS ¼
X

n¼1

Nb

min Fgn; Fonð Þ ð1Þ

Nb is the number of bins and is calculated using Eq. 2.

Nb ¼ Vmax−Vminð Þ=Sb ð2Þ

where Vmax and Vmin are the maximum and minimum values
of the precipitation, respectively. The SS can range between 0
and 1. SS is close to 1 when the observed PDFs and the GCM
PDF are similar, and it is close to 0 if overlap is negligible. The
limitation of the methodology is that as the event becomes
more rare, failure of the model to simulate these events be-
comes less important to the SS (Perkins et al. 2007).

In this study, this limitation was overcome by modification
of the SS methodology.

We found that in cases where a model overestimated in
general and had very high values of rare precipitation
amounts, significant differences occurred between the ob-
served and model's mean value. The SSs estimated for these
models were not found to be the least, because these events
were less important to SS. In the modified approach adopted
in this study, the models were screened and separated into two
groups: models with and without significant differences be-
tween mean value from observed datasets oð Þ and model
simulations gð Þ . Then the SSs were estimated using Eq. 3.

SS ¼
X

n¼1

Nb

min Fgn; Fonð Þ
if o�−g�ð Þ is significant

user‐defined else

8
>><

>>:
ð3Þ

Models with significant differences were penalized and
assigned an SS value such that they had the lowest SS. In this
study, gir01model was identified as the model with significant
differences during the screening process and was assigned a
SS value 0.1 lower than the model with the least SS for the
grid square.

Based on the temporal scale, this analysis was performed
for three categories, the monsoon season (JJASO — June to
October), non-monsoon season (JFMAMND — January–
February–March–April–May–November–December), and
for the entire year ("Annual"). SSs were estimated for each
grid square.

SS variations in each category and precipitation zone (de-
scribed in Section 2) were studied using a few statistics
calculated based on the SSs in each grid square. The statistics
of SS calculated were maximum, minimum, median, mean,

Fig. 1 a Location of the 1° grid points and 2.5°×2.5°grid squares used in
the study. b Location of 1° grid points and classification of regions in
India. 1° grid points show the location of observed precipitation data. All
Global Climate Models (GCMs) are regridded to a common 2.5° grid
square. The 77 grid squares in the study region are numbered (a) and
referred in text. The 1° grid points in each grid square are pooled to
estimate the probability density function (PDF) of observed precipitation
and are compared to the PDF estimated from GCM for the grid square
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standard deviation, and inter-quartile range; for example, the
category Annual would have 39 SS values (one for each GCM
realization) in each grid square. From the 39 values, the
statistics were calculated for each grid square. The entire
Indian region had 77 values (one for each grid square) for a
statistic. The results of the statistics estimated are presented in
Sections 4.2 and 4.3, and Fig. 4.

To evaluate the performance of individual models in GCM
realizations in each category, the SSs estimated for each grid
square were ranked. For example, a grid square in a category
(e.g., Annual) would have 39 SS values (one for each GCM
realization). Ranks were assigned to these 39 SS values. The
realization with the highest SS was assigned rank 1, and the
realization with the lowest SS was assigned rank 39. Thus, in a
category, each grid square and GCM realization was ranked
between 1 and 39. For GCMs with multiple runs, the ranks

were first averaged across the runs. Each of the 19 GCMs had
77 rank values (one for each grid square) for a category; for
example, the GCM cc5 had five runs. The ranks of the five
runs were averaged for each of the 77 grid squares, and these
values in a category were again averaged to get the ranking of
GCMs for the entirety of India and each of the six zones. Thus,
a GCM had a rank for a category, zone, and all of India
(Table 4).

Subgroups of models that share common features were
formed to connect SSs and model characteristics. The model
characteristics considered for the analysis included (1) hori-
zontal resolutions of the GCMs, (2) convective scheme
employed for precipitation parameterization, and (3) flux cor-
rection at the ocean–atmosphere interface (Table 3). Based on
horizontal resolution, we divided the models into three groups
(high, medium, and low) and compared them with the SSs. In

Table 2 Names of themodeling group, country of origin, model name and version, acronym, run for the precipitation used in the study, and the reference

S.N Institution and country GCM I.Da

(approximate resolution)
Acronym Run number Reference

1 Bjerknes Centre for Climate Research, Norway BCCR-BCM2.0 (2.8×2.8) bcr 1 (Furevik et al. 2003)

2 Canadian Centre for Climate Modeling and
Analysis, Canada

CGCM3.1 (T47, 3.7×3.7) cc4 1,2,3,4,5 (Flato et al. 2000)

3 Canadian Centre for Climate Modeling and
Analysis, Canada

CGCM3.1 (T63, 2.8×2.8) cc6 1 (Flato et al. 2000)

4 Meteo-France/Centre National De Recherches
Meteorologiques, France

CNRM-CM3 (2.8×2.8) cnr 1 (Salas-Melia et al. 2005)

5 CSIRO Atmospheric Research, Australia CSIRO-Mk3.0 (1.9×1.9) cs3 1,2,3 (Gordon et al. 2002)

6 CSIRO Atmospheric Research, Australia CSIRO-Mk3.5 (1.9×1.9) cs5 1,1a,2,3 (Gordon et al. 2002)

7 Max Planck Institute for Meteorology, Germany ECHAM5/MPI-OM (1.9×1.9) mpi 1,4 (Jungclaus et al. 2006)

8 Meteorological Institute of the University of Bonn,
Meteorological Research Institute of KMA, and
Model Data, Germany/Korea

ECHO-G (3.7×3.7) miu 1,2,3 (Legutke and Voss 1999)

9 LASG/Institute of Atmospheric Physics, China FGOALS-g1.0 (2.8×3.0) iap 1,2,3 (Yongqiang et al. 2004)

10 Geophysical Fluid Dynamics Laboratory (GFDL)
USA

GFDL-CM2.0 (2.5×2.0) gf0 1 (Delworth et al. 2006)

11 Geophysical Fluid Dynamics Laboratory (GFDL)
USA 1

GFDL-CM2.1 (2.5×2.0) gf1 2 (Delworth et al. 2006)

12 NASA/Goddard Institute for Space Studies, USA GISS-AOM (4.0×3.0) gao 1 (Russell et al. 1995)

13 NASA/Goddard Institute for Space Studies, USA GISS-ER (5.0×4.0) gir 1 (Schmidt et al. 2006)

14 Istituto Nazionale di Geofisica e Vulcanologia, Italy. INGV-SXG ing 1 (Gualdi et al. 2008)

15 Institute for Numerical Mathematics, Russia INM-CM3.0 (5.0×4.0) inm 1 (Diansky and Volodin 2002)

16 Institut Pierre Siomn Laplace IPSL-CM4 (3.7×2.5) ips 1,2 (Marti et al. 2005)

17 Center for Climate System Research/National Institute
for Environmental Studies and Frontier Research
Center for Global Change (JAMSTEC), Japan

MIROC3.2(hires) (1.1×1.1) mih 1 (K-1 Model Developers 2004)

18 Center for Climate System Research/National Institute
for Environmental Studies and Frontier Research
Center for Global Change (JAMSTEC), Japan

MIROC3.2(medres)
(2.8×2.8)

mim 1,2 (K-1 Model Developers 2004)

19 Meteorological Research Institute, Japan MRI-CGCM2.3.2 (2.8×2.8) mri 1,2,3,4,5 (Yukimoto et al. 2001)

Total number 39

Three-letter acronyms are used throughout the text to refer to a particular model
a As provided by Lawrence Livermore National Laboratory's Program for CoupledModel Diagnosis and Intercomparison (PCMDI): http://www-pcmdi.
llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php
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general, the horizontal resolutions of the three groups are >3°,
2–3° and <2° for high, medium, and low groups, respectively

(Kim et al. 2008). Based on convective scheme used, they are
divided into four groups: RAS (relaxed Arakawa–Schubert),
MC (moist convection adjustment), MF (mass flux-based),
and AS (Arakawa–Schubert) (Kripalani et al. 2007a). Based
on flux correction at the ocean–atmosphere interface, they are
divided into groups with no flux correction (N), heat (H),
water (W), or momentum (M) (Dai 2006; Kripalani et al.
2007a).

4 Results

4.1 Analysis of observed data

The average daily precipitation for each month (mm/day) was
calculated for each zone using the observational dataset
(Fig. 2a). The PDFs of the observed data for the six zones
and the entire country (Fig. 2b) are provided. During July
and August, the entire subcontinent comes under the influ-
ence of the monsoon. The monsoon starts retreating in
northwestern India in early September, but it continues
almost until December in the far south. The retreating
monsoon is also responsible for precipitation in parts of
the Indian peninsula (Roy 2009), as observed by a peak in
October in Fig. 2a. The northeast zone has the highest
annual precipitation in the country. Cherrapunji and
Mawsynram, the two well-known stations with highest annual
rainfall (Jenamani et al. 2006), are located in this region.
During the dry summer months of March through May, there
are also convective storms in certain parts of the subcontinent
(Roy 2009) that cause higher precipitation in hilly regions.

Table 3 The model characteristics considered: (1) horizontal resolutions
of the GCMs (H high, M medium, L low), (2) convective scheme
employed for precipitation parameterization (RAS relaxed Arakawa–
Schubert, MC moist convection adjustment, MF mass flux-based, AS
Arakawa–Schubert) and (3) flux correction at the ocean–atmosphere
interface (N no flux correction, H heat, W water, M momentum)

GCM name Horizontal
resolution

Convective
scheme

Flux
correction

mpi H MF N

mih H AS N

cs0 H MC N

ing H – –

bcr H – N

cs5 H MC N

gf1 H RAS N

gf0 H RAS N

miu L MF N

inm L MC W

cc4 L MC HW

gao L MF N

gir L MF N

mim M AS N

mri M AS HWM

ips M MC N

cc6 M MC HW

cnr M MF N

iap M MF N

Fig. 2 a Average daily
precipitation for each month
(mm/day) was calculated for each
of the six zones (shown in
Fig. 1b). b Variation in the
probability density functions
(PDFs) estimated for each of the
77 grid squares (referred in
Fig. 1a) for the three categories
(Annual, JJASO, and
JFMAMND). The plots were
prepared using observed data for
the period 1961–2000
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Fig. 3 Variations in SS in each
category were studied using a few
statistics calculated based on the
SSs in each grid square. The
statistics of SS calculated were
median, mean, maximum (max),
minimum (min), standard
deviation (SD) and inter-quartile
range (IQR). These statistics were
calculated from SSs of all GCM
realizations used in the study for
three categories (Annual, JJASO,
JFMAMND)
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Orographic uplift of air causes heavy precipitation on the
windward side of mountains. This is also the cause of high
precipitation over western coast in the peninsular region,
which is on the windward side of western ghats. The north-
west zone encompasses the desert regions that have the least
precipitation.

4.2 Pan-India assessment of SS from GCM realizations

The results of the statistics (maximum, minimum, median,
mean, standard deviation, and inter-quartile range of GCM
realizations) estimated from the SSs for each grid square (de-
scribed in Section 3) are presented in Fig. 4. The variation in SSs
among the 77 grid squares and various categories are shown. In
this subsection, the four values in the parentheses represent
maximum, minimum, mean, and median SSs. Among the three
categories, for the whole country, the SSs in JFMAMND cate-
gory were slightly better, as they had higher maximum, mini-
mum, mean, and median SSs values (~1, 0.88, 0.96, and 0.99),
followed by Annual (0.99, 0.73, 0.90, and 0.96) and JJASO
(0.98, 0.72, 0.87, and 0.92). The JJASO category had slightly
higher standard deviation in the maximum, minimum, mean,
and median SSs (0.22, 0.12, 0.12, and 0.15) and inter-quartile
range for the above statistics (0.42, 0.18, 0.29, and 0.24) com-
pared with JFMAMND [(0.20, 0.13, 0.11, and 0.17), (0.40,
0.16, 0.23, and 0.26)] and Annual categories [(0.18, 0.12,
0.07, and 0.14), (0.35, 0.16, 0.19, and 0.22)].

4.3 Regional assessment of skill score from GCM realizations

The SS statistics (maximum, minimum, median, mean, stan-
dard deviation, and inter-quartile range of GCM realizations)

estimated for individual grid squares were averaged across the
six zones in India (Fig. 3). This provides insight into the
relative accuracies and inaccuracies in model simulation on
a regional basis. The figure shows that SS statistics vary with
grid square, zone, and category. In this subsection, the values
in parentheses represent the SSs for the three categories (An-
nual, JJASO, JFMAMND). Among the zones, SSs in the
northwest were better for these three categories. This zone
had a highest mean SSs (0.87, 0.76, and 0.94), median SSs
(0.90, 0.80, and 0.95) and maximum SSs (0.97, 0.94, 0.99).
Peninsular zone had the lowest mean SSs (0.66, 0.56, 0.72)
and minimum SSs (0.37, 0.33, 0.31) for the three categories.
This zone also had the lowest median SSs (0.69, 0.53) and
maximum SSs (0.88, 0.83) for two categories (Annual and
JJASO). The hilly region had the lowest mean SSs (0.72),
median SSs (0.73), and maximum SSs (0.87) for the category
JFMAMND. This zone had the second-lowest SSs for the
three categories. The SS statistics for the rest of the zones
(west central, central northeast, and northeast), were in be-
tween for the three categories. The standard deviation and
inter-quartile range of SS for Annual category were the least
for the hilly region and highest for peninsular zone. The
JJASO category was the least for the hilly region and highest
for the northwest zone. The JFMAMND category was the
least for the northwest zone and highest for the peninsular
zone.

4.4 Ranking of individual GCM

The ranking of GCMs was explained in Section 3 and pre-
sented in Table 4. The SSs among the different runs of a GCM
were comparable (Fig. 5), so the ranks estimated for different

Fig. 4 Typical figures showing
the variation in the probability
density functions (PDFs) for the
top five and last five models for
the northwest zone and the three
categories (Annual, JJASO,
JFMAMND). The GCMs with
top five and bottom five rankings
were obtained from Table 4. The
observed PDFs for the region are
in black
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Table 4 The ranking of the GCMs for the three categories (Annual, JJASO, JFMAMND), six zones (peninsular, west central, central northeast,
northwest, northeast, hilly region), and for all of India

Rank India Peninsular West Central Central Northeast Northwest Northeast Hilly region

Annual

1 miu miu miu mih mpi ing inm

2 mpi mpi mpi mim miu ips cc6

3 mim mim mim miu mri mim cs5

4 mri mih mih mri cc6 cnr gao

5 mih mri mri mpi cnr miu ips

6 ips cc4 cc4 inm cc4 mih cnr

7 cc6 cs0 bcr ips mim cc6 mpi

8 cnr bcr cc6 gao inm iap iap

9 inm cc6 inm ing ips cs0 mih

10 cs0 cnr ips iap cs0 cc4 mim

11 cc4 ips iap cc4 gf1 mri mri

12 ing inm ing cs0 cs5 cs5 cs0

13 iap gf0 cnr gf1 gf0 gf1 miu

14 bcr ing cs0 bcr mih bcr gf0

15 cs5 cs5 gf0 cnr bcr gao gf1

16 gf1 iap gao cs5 iap inm ing

17 gao gf1 gf1 gf0 gao mpi cc4

18 gf0 gao cs5 cc6 ing gf0 bcr

19 gir gir gir gir gir gir gir

JJASO

1 mpi miu mpi mih mpi mim cc6

2 miu mim miu miu mri inm inm

3 mim mpi mim mim miu ips ips

4 mri mri bcr mpi mim iap cs0

5 mih cc6 mri mri cc4 gao mim

6 cc4 gf1 cc4 cc4 cnr mih gao

7 cc6 mih inm bcr cs0 mpi mih

8 cs0 bcr mih cs0 cc6 gf0 cnr

9 ips cc4 cc6 cs5 gf0 ing cs5

10 bcr cs0 ips gf1 mih mri iap

11 gf0 gao cs0 cnr cs5 cc4 gf0

12 gf1 cs5 gf0 gf0 ips cnr gf1

13 inm cnr gf1 iap bcr miu ing

14 cnr ips ing ing gf1 bcr cc4

15 cs5 gf0 cnr ips inm cc6 miu

16 gao ing cs5 cc6 iap cs0 mri

17 ing iap iap gao ing cs5 mpi

18 iap inm gao inm gao gf1 bcr

19 gir gir gir gir gir gir gir

JFMAMND

1 mpi miu inm ing mpi ing cs5

2 mri mpi mpi gf1 miu iap gf1

3 miu mim iap gao mri inm cnr

4 gf1 mih gf0 mri mih gf0 cc6

5 gao mri gao mpi gf0 gao gao

6 ing cc6 ips iap cc6 mpi iap

7 iap cc4 gf1 cs5 ing gf1 cc4
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simulations with a single model are averaged in this study.
From Table 4, it can be observed that the ranking of GCMs
varies with category and zone. No one model can be consid-
ered as the best for all zones and categories. The models miu,
mpi, mim, mri, and mih ranked in the top five for Annual for
India and for zones such as peninsular, west central, and
central northeast. The models miu, mpi, mim, and mri ranked
in the top five for categories JJASO for India and for zones
such as peninsular, west central, central northeast, and north-
west. The models miu, mpi, and mri ranked in the top five for
category JFMAMND for India and for zones such as penin-
sular and northwest. The models (miu, mpi, mri, or mih) that
performed well for India and most zones did not rank in the
top five models for the hilly region and northeast zone for the
three categories (except mpi, which ranked fifth for the
JFMAMND category). The gir model had the lowest rank
for all categories, zones, and India.Models gao and cs5 ranked
in the bottom five for India and most zones, whereas in the
hilly region they ranked in the top six for all three categories.

4.5 Sensitivity analysis

To test the sensitivity of the GCM rankings for the three
categories, six zones, and for all of India, PDFs of the GCMs
in the top five and bottom five rankings were plotted. From the
PDF plots, it was observed that the variability of the PDFs
were sensitive to the ranks of the GCM, zones, and categories.
Typical PDFs were shown for northwest, northeast, and pen-
insular zones in Figs. 4, 5 and 6. The PDFs from GCMs and
observed precipitation for the six zones exhibited their lowest
variability in the JFMAMND category (column 3, Figs. 4
through 6) followed by Annual (column 1, Figs. 4 through
6) and JJASO (column 2, Figs. 4 through 6) categories. For all
zones and categories, the variability of the observed PDFs was
less than the variability of the PDFs from GCMs (considering
top five and bottom five rankings). For all three categories and

six zones, (except JJASO for northeast, peninsular, and hilly
regions) the variability in PDFs from the top five ranked
GCMs was lower than variability from the bottom-five-
ranked GCMSs. Some zones (e.g., North East) the top5
GCMS do much better while in the others (e.g., North West),
the difference appears to be not so pronounced.

The results of the subgroups of models that share common
features (horizontal resolutions of the GCMs, convective
scheme employed for precipitation parameterization, flux cor-
rection at the ocean–atmosphere interface) show no clear
connection between SSs (obtained using the entire distribu-
tion) and model characteristics, because models with high SSs
did not belong to a particular group in terms of horizon-
tal resolution, convective scheme, and flux correction
(Fig. S1a,b,c).

5 Discussion

Annamalai et al. (2007) evaluated the 18 models participating
in the IPCC AR4 for the Asian summer monsoon (ASM)
region using pattern correlations and root-mean-square differ-
ences (RMSDs) relative to the observed precipitation. They
used seasonal averages (June to September) of precipitation
climatology for 30 years (1971–2000). They found six models
(gf0, gf1, mim, mih, Hadcm3, and NCAR PCM) had larger
pattern correlation and smaller RMSD with observations.
Similar results (high SSs) were observed in this study for India
at daily timescales for two of the six models (mri and mpi).
Models (gf0, gf1) that performed well in their study for the
ASM region did not perform as well in the present study for
India and the zones. This could be because these models had
some significant systematic errors and therefore have difficul-
ty capturing the regional details in precipitation over India,
particularly the high precipitation along the west coast
(Annamalai et al. 2007). The Hadcm3 and NCAR PCM

Table 4 (continued)

Rank India Peninsular West Central Central Northeast Northwest Northeast Hilly region

8 gf0 ing ing miu mim ips cs0

9 mim ips cs0 gf0 gao mim gf0

10 cs0 cs0 cs5 mim bcr mri mri

11 cs5 bcr miu ips cnr bcr inm

12 inm cnr mim inm cs0 cnr bcr

13 ips gf1 mri mih iap miu mpi

14 mih inm mih bcr cs5 cc4 ing

15 cc6 cs5 cc4 cc4 inm cc6 miu

16 bcr iap bcr cs0 ips cs5 ips

17 cc4 gao cc6 cnr gf1 cs0 mim

18 cnr gf0 cnr cc6 cc4 mih mih

19 gir gir gir gir gir gir gir
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models were not used in this study, so their performance not
compared. Annamalai et al. (2007) found the mri model
simulation the most realistic in simulating the annual cycle
of the ASM region. Preethi et al. (2010) found that the ing
model had higher skill than mpi in simulating ISM climatol-
ogy as well as inter-annual variability; however, results indi-
cate that the mpi model had better SSs in simulating daily
precipitation than the ing model for the JJASO category
(except in the hilly region), the JFMAMND category (except
central northeast and north east zones), and the Annual cate-
gory (except the northeast zone). Among the seven models
used in their study, ing and mpi are the twomodels common to

this study. In their study, Kripalani et al. (2007b) usedmonthly
precipitation values to calculate the annual cycle over the
south Asian region and found bar and ips models unable to
simulate the annual cycle accurately. The results in this study
show a higher skill for the ips model in the Annual category
for the Indian region.

Among the different zones considered in India, SSs in
peninsular zones and hilly regions were generally lower com-
pared with the rest of the zones. The results of this study show
that considerable improvements in the hilly regions are desir-
able; for example, through improved representation of moun-
tains and high terrain. Similar conclusion was observed in

Fig. 5 Typical figures showing
the variation in the probability
density functions (PDFs) for the
top five and bottom five models
for the northeast zone and the
three categories (Annual, JJASO,
and JFMAMND). The GCMs
with top five and bottom five
rankings were obtained from
Table 4. The observed PDFs for
the region are in black

Fig. 6 Typical figures showing
the variation in the probability
density functions (PDFs) for the
top five and bottom five models
for the peninsular zone and the
three categories (Annual, JJASO,
and JFMAMND). The GCMs
with top five and bottom five
rankings were obtained from
Table 4. The observed PDFs for
the region are in black
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studies (Dai 2006). The peninsular zone in this study has
contrasting precipitation patterns, with the west coast of the
zone having heavy precipitation and the southeast having very
low precipitation (Preethi et al. 2010).Within the west coast of
this zone, a mountain range (Western Ghats) runs parallel to
the coast, and the axis of the range lies perpendicular to the
prevailing summer-monsoonwinds. The moisture-ladenmon-
soon winds cause heavy rainfall on the windward side of the
mountains than the rain shadow on the leeward side of the
west range (Basu 2005; Suprit and Shankar 2008). The low
SSs in the peninsular zones could be due to significant large-
scale precipitation biases in the models, such as reduced
precipitation along the western coast of India and excessive
rain over the Indian peninsula observed by Bollasina and
Nigam (2009). Their results were based on the comparison
of seasonal precipitation (June through September) from
models (gf1, mim, mpi, CCSM3, and Hadcm3) to observed
precipitation. The grid square resolution in GCMs is coarse to
represent both high and low precipitation in the windward and
leeward sides of the mountains in the west coast of the zone,
which could be another reason for low SSs in this zone.
Especially in the mountain regions, simulated precipitation is
highly dependent uponmodel resolution (Pan et al. 2011). The
low performance of GISS-ER could be attributed to its coarse
resolution model, its inability to simulate extreme rainfall, and
the seasonal cycle (Vidyunmala 2008; Kharin et al. 2005).

Among the three categories considered in the study,
JFMAMND had higher SSs compared with JJASO. The
reason for this could be that the category JFMAMND has less
precipitation during the period than the JJASO category
(Fig. 2a). The large spread in the PDFs from GCMs (column
2, Figs. 5 and 6) indicated that in general, most GCMs were
not able to capture the monsoon in high-rainfall zones (north
east and peninsular region).

Sun et al. (2006) classified daily precipitation rates into two
categories: light (1–10 mm/day) and heavy (>10 mm/day)
precipitation. They studied seven fully coupled climate
models and found that most of them overestimated the fre-
quency of light precipitation and underestimated the frequen-
cy of heavy precipitation. The results (Figs. 4 and 5) from our
study show that daily precipitation rates of 0–1 mm/day were
underestimated by most models, and the daily precipitation
rates of 1–15 mm/day are overestimated by most models. The
overestimation of 1–10 mm/day precipitation by most models
agrees with results from Sun et al. (2006) even at the smaller
regions considered in this study. The 10–15 mm/day precipi-
tation is also overestimated at smaller spatial scales in our
study, whereas the range is underestimated by most models in
the study by Sun et al. (2006). The difference could be because
smaller regions and seasons are examined in this study. From
the PDF analysis, whether the higher frequency precipitation
rates (>30 mm/day) are underestimated or not is unclear
because the probability of their occurrence is very low.

No clear relationship between model characteristics (hori-
zontal resolution, convective scheme, and flux correction) and
SS could be discerned. One explanation is that several insti-
tutions have contributed a set of two or three climate models,
have shared parts of code, and input datasets and expertise of
those developing the GCMs, so the resulting parts of the
model bias may be similar in some or all models (Jun et al.
2008; Knutti et al. 2010). Therefore, determining underlying
reasons for high/low SSs with the GCMmodel characteristics
that are responsible for the biases may not be possible. How-
ever, our results are in agreement with the results from Kharin
et al. (2007), who found no statistically significant depen-
dence of the magnitude of precipitation extremes on the model
resolution in the tropics.

Model accuracy is also affected by the unpredictability of
the Indian monsoon, which is influenced by a multitude of
physical processes and interactions, orography, and its inter-
action with the circulation (e.g., ENSO). The various theories
explaining the onset of the Indian monsoon are discussed in
Chakraborty et al. (2006), and the challenges of modeling the
monsoon are discussed in Turner and Annamalai (2012).
Some of the problems of the AR4 models in simulating the
monsoon climate are briefly stated below. The problems are
addressed in more detail in the provided references.

& Most monsoon depressions in the Bay of Bengal cause
extreme rainfall (>100 mm/day) in the region, but, due to
the coarse resolution of the GCMs, it is unknown if the
depressions are the reason for the extreme rainfall (Turner
and Annamalai 2012).

& The interannual variation of the summer monsoon rainfall
over the Indian region is not correctly simulated by the
GCMs (Gadgil et al. 2005). This could be due to the
GCMs' inability to simulate the special nature of SST–
rainfall relationship over regions such as the West Pacific
Ocean, the Bay of Bengal, and the South China Sea
(Rajendran et al. 2012; Wang et al. 2005) and also im-
proper simulation of monsoon related teleconnections
(Nanjundiah et al. 2013).

& There are biases and discrepancies such a double inter-
tropical convergence zone (ITCZ) (Islam et al. 2013).

& In nature, in the Indian monsoon zone, the continent
tropical convergence zone (TCZ) is dominant, and the
oceanic TCZ appears intermittently throughout the sum-
mer. Many models seem to have a tendency to get locked
into either the oceanic or the continental TCZ (Gadgil and
Sajani 1998).

& Emissions of scattering and absorbing aerosols in the
region are found to affect the monsoon climate
(Chakraborty et al. 2004). The uncertainty in the level of
these emissions and the ability to model their impact
on the monsoon are a problem (Sajani et al. 2012;
Turner and Annamalai 2012). Most models fail to simulate
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the link between Equatorial Indian Ocean Oscillation
(EQUINOO) and ISM (Nanjundiah et al. 2013). Rajeevan
and Nanjundiah (2009) find overestimation of rainfall over
the Equatorial Indian Ocean and errors in simulating the
seasonal cycle of rainfall over both the Eastern andWestern
Equatorial Indian Oceans.

Some of the reasons for uncertainty of the AR4 models in
simulating the monsoon climate stated in the literature are as
follows:

& The SST responses of a given model to anthropogenic
forcing affect the available moisture and vary among
models causing uncertainty (Turner and Annamalai
2012). The differences in the factors affecting monsoon–
SST relationships such as air–sea coupling and SST bias
could cause variability among models (Islam et al. 2013).

& Rajeevan and Nanjundiah (2009) looked at the role of SST
and its interaction with cumulus convection. They found
that the models had a compensation between errors in
SST (underprediction) and rainfall for a given SST
(overprediction). This response was different for different
models and could be a cause of errors.

6 Conclusions

Daily precipitation from a suite of GCMs participating in the
Intergovernmental Panel for Climate Change's fourth assess-
ment report (IPCCAR4) for the 20th-century climate (20C3M
scenario) were evaluated for the Indian region. The SSs were
estimated from the PDFs. The methodology from earlier stud-
ies was modified to take into account high extreme precipita-
tion events simulated by GCMs. The SSs were estimated at
every 2.5°×2.5° grid square. Results are presented for three
categories and six zones. The three categories are the mon-
soon season (JJASO — June to October), non-monsoon sea-
son (JFMAMND — January–February–March–April–May–
November–December) and for the entire year ("Annual"). The
six precipitation zones considered are peninsular, west central,
northwest, northeast, central northeast India, and the hilly
region. Sensitivity analysis was performed for three spatial
scales — 2.5° grid square, zones, and for the whole of India
for the three categories. The observational dataset for India is
the 1°×1° daily precipitation dataset, prepared by the National
Climate Centre of the IMD. The models were ranked based on
the SS.

The results indicate that no single model performs best for
all the categories and zones considered. The category
JFMAMND had higher SS than the JJASO category. In gen-
eral, among the zones, the northwest zone had higher SSs,
whereas the peninsular zones and hilly regions had lower SSs.

The models are ranked for various categories and zones
considered in this study. The impact groups could use this
evaluation as a basis for choosing climate models for subse-
quent study. miu, mpi, and mri ranked in the top five for the
three categories for India and most zones except the hilly
region and the northeast zone. The gir model had the lowest
rank for all categories, zones, and all of India. The models gao
and cs5 ranked in the bottom five for India and most zones
except in the hilly region, where they ranked in the top six for
all three categories.

The PDFs were sensitive to the ranks of the GCM, zones,
and categories. Results show that most models underestimated
the daily precipitation rates 0–1 mm/day and overestimated 1–
15 mm/day daily precipitation rates. The overestimation of 1–
10 mm/day precipitation by most models agrees with results
from Sun et al. (2006), even at the smaller regions considered
in this study; however, the 10–15 mm/day precipitation
overestimated at smaller spatial scales in our study differs
from Sun et al. (2006). The difference could be because
smaller regions and seasons are examined in this study.

We propose to study the subset of the best GCMs and
further analyze their PDFs for change in different climate
change scenarios. Mean precipitation can be affected by a
spectrum of temporal scales, and it is possible for a model
to generate a "correct" seasonal mean value without prop-
erly capturing the underlying precipitation variability
(DeMott et al. 2007). These issues are not frequently
explored in model evaluation. This evaluation approach
will be extended to temperature; extended research in this
direction is underway.
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