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Abstract The main purpose of this study is to evaluate the
impacts of climate change on Izmir-Tahtali freshwater basin,
which is located in the Aegean Region of Turkey. For this
purpose, a developed strategy involving statistical downscal-
ing and hydrological modeling is illustrated through its appli-
cation to the basin. Prior to statistical downscaling of precip-
itation and temperature, the explanatory variables are obtained
from National Centers for Environmental Prediction/National
Center for Atmospheric Research reanalysis data set. All
possible regression approach is used to establish the most
parsimonious relationship between precipitation, temperature,
and climatic variables. Selected predictors have been used in
training of artificial neural networks-based downscaling
models and the trained models with the obtained relationships
have been operated to produce scenario precipitation and
temperature from the simulations of third Generation
Coupled Climate Model. Biases from downscaled outputs
have been reduced after downscaling process. Finally, the
corrected downscaled outputs have been transformed to runoff
by means of a monthly parametric hydrological model GR2M
to assess the probable impacts of temperature and precipita-
tion changes on runoff. According to the A1B climate scenar-
io results, statistically significant trends are foreseen for pre-
cipitation, temperature, and runoff in the study basin.

1 Introduction

Hydrometric and meteorological observations have shown
that water resources and hydrologic process are being affected
by climate changes, particularly greenhouse concentration and
temperature increases. According to Fourth Assessment
Report (AR4) of Intergovernmental Panel on Climate
Change (IPCC), significant changes on temperature and pre-
cipitation which are the major climatic inputs to hydrologic
system have been foreseen for many regions in the world due
to climate change (IPCC 2007).

Changes in precipitation and temperature cause relative
variation in runoff as they affect the rainfall–runoff processes
in a basin. With regard to water systems, because of the close
linkage between climate change effects and hydrological pro-
cesses, there have been several studies that assess the impacts
of climate change on water resources (Holt and Jones 1996;
Lettenmaier et al. 1999; Landman et al. 2001; Arnell et al.
2001; Prudhomme et al. 2002; Phillips et al. 2003; Struglia
et al. 2004; Milly et al. 2005; Gedney et al. 2006; Graham
et al. 2007; Bates et al. 2008)

As known, the probable variations on major hydrological
variables such as precipitation, temperature, evaporation, and
runoff can be considered by using the coarse results of the
general circulation models (GCMs) in which land, atmo-
sphere, and ocean systems are numerically coupled.
However, the GCMs may not represent the variations of local
climate scales since the GCMs have horizontal resolutions of
hundreds of kilometers. Hence, there is a need for high-
resolution results to interpret the impact of the large-scale
atmospheric patterns at the local scale (Wilby et al. 2002).

Two main downscaling approaches, namely dynamic
downscaling and statistical downscaling, are used for the
studies about climate scenario assessments at higher resolu-
tions (Wilby et al. 2002; Anandhi et al. 2008). The dynamic
downscaling method is associated with the physically based
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Regional Climate Models (RCMs) that are other numerical
models in which GCM results constitute the boundary condi-
tions for the local climate domain (Crane and Hewitson 1998).
The RCMs are able to parameterize the physical atmospheric
process and simulate the regional climate features (Frei et al.
2006; Leung et al. 2003). However, the drawback of RCMs is
their complicated design, uncertainty, and high computational
cost. Additionally, the applications of RCMs are not flexible
to adapt to another region unlike in the applications of statis-
tical downscaling methods (Fistikoglu and Okkan 2011).

The statistical downscaling methods involve deriving sta-
tistical relationships that transform large-scale atmospheric
variables of GCMs to surface-level variables. There are three
main types of statistical downscaling methods, namely weath-
er classification methods, weather generators, and transfer
functions (Khan et al. 2006). The most popular statistical
downscaling approaches are the transfer functions, which
statistically model the relationships between large-scale atmo-
spheric variables and local surface variables (Tatli et al. 2004;
Schoof et al. 2007; Fistikoglu and Okkan 2011). Applications
of these transfer functions vary from linear and nonlinear
regression types, artificial neural networks (ANNs), support
vector machines, principal component analysis, canonical
correlation to redundancy analysis (Crane and Hewitson
1998; Wilby et al. 2003; Maheras et al. 2004; Bardossy et al.
2005; Anandhi et al. 2008; Fistikoglu and Okkan 2011).

The presented study was designed to focus on evaluating
the climate change effects on runoff, which result from fore-
casted changes in precipitation and temperature. The method-
ological steps covered the following: (a) generation of climate
change scenarios to forecast changes on precipitation and
temperature for a study region in Turkey, (b) application of
the probable changes to the study area through a statistical
downscaling approach and a hydrological model to estimate
changes on runoff, and (c) interpreting the differences be-
tween future and past period for precipitation, temperature,
and runoff. The application of methodology is carried on
Tahtali watershed to understand possible effects of climate
change on a critical region with Mediterranean climate char-
acteristics. It is worth mentioning that to the best of our
knowledge, the presented paper is one of the initial studies
about assessing climate change effects on hydrometeorologi-
cal variables in Turkey. In the study content, the results of
third-generation Canadian General Circulation Model
(CGCM3) cited in the AR4 of the IPCC have been evaluated
in terms of a future climate scenario (A1B) and a scenario
representing the climate of the twentieth century (20C3M). In
order to get high-resolution results of these scenarios, a statis-
tical downscaling strategy has been improved by using
Levenberg–Marquardt algorithm-based feed forward neural
networks (LM-FFNN) with stopped training approach. The
following processes have been carried out for this study. First,
explanatory climatic variables (predictors), which represent

the monthly areal precipitation and temperature of Tahtali
watershed, were selected from the National Center for
Environmental Prediction and National Center for
Atmospheric Research (NCEP/NCAR) reanalysis data set.
In this context, statistical approaches based on the all possible
regression method and Mann–Whitney U homogeneity test
were used to determine the effective predictors among the
NCEP/NCAR data set. Later, predictors selected from
NCEP/NCAR data set were used for training the downscaling
models to establish statistical relationships between local-
scale variables (observed precipitation and temperature) and
climatic variables. The relationships thus obtained were used
to project the future precipitation and temperature from
CGCM3 (The Third Generation Coupled Global Climate
Model) simulations. Following to these statistical downscal-
ing analyses, bias correction procedure was applied.
Afterwards, the corrected scenario results were evaluated at
watershed scale by means of parametric hydrological model
GR2M to observe the probable impacts of temperature and
precipitation changes on runoff for near future periods.

The information about study region and climate data, some
details about prediction selection, are introduced in the
Section 2. Then, downscaling modeling and bias correction
process applied in this study and obtained results are presented
in Sections 3 and 4, respectively. The application of GR2M
model and forecasted runoff results are presented in Section 5.
Some conclusions are then made in the final section.

2 Study region and data

The study region covers the Tahtali watershed which is locat-
ed at the Aegean coast of the Turkey (Fig. 1). Tahtali water-
shed has a total drainage area of 546 km2 and the annual
runoff is in the order of 160 hm3. The Tahtali watershed is
the major surface water resource for the city of Izmir which is
the third largest city in Turkey. The study region has typical
Mediterranean climate characteristics. Only three meteorolog-
ical stations are available around the study area, namely Izmir
(17220), Seferihisar (17820), and Degirmendere (6294). The
monthly precipitation records for these stations were obtained
from the Turkish State Meteorological Service. The monthly
mean areal precipitation values, which represent the water-
shed, are obtained by the Thiessen polygons. The monthly
mean temperature values are obtained from Izmir (17220)
meteorological station.

The NCEP/NCAR (Kalnay et al. 1996) monthly mean
reanalysis data set are selected for the study region as large-
scale predictors for the period from 1948 to 2008. The NCEP/
NCAR distributes the reanalysis data set of which time reso-
lution varies from hours to month, to present atmospheric
conditions at different levels of the atmosphere (Kalnay
et al. 1996). The NCEP/NCAR data set have been used in
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several downscaling applications in different regions over the
world, as daily, monthly, and seasonal predictors since
reanalysis data are outputs from a high-resolution model op-
erated data from meteorological, upper air, and satellite obser-
vation stations (Maheras et al. 2004; Tatli et al. 2004; Anandhi
et al. 2008; Fistikoglu and Okkan 2011; Okkan and Fistikoglu
2012). The variables of the selected NCEP/NCAR grid for the
study regionwhose latitudes range from 36.15°N to 38.45°N and
longitudes ranges from 26.15°E to 28.45°E at a spatial resolution
of 2.5° (Fig. 1) are obtained from the web site http://www.cdc.
noaa.gov/. The variables extracted from the NCEP/NCAR
reanalysis data set include air temperature, relative humidity,
and geopotential height at various atmospheric levels and pres-
sure, sea level pressure, and large-scale precipitation.

The monthly climate data used in the study are obtained
from the CGCM3 climate model, through the web site http://
esg.llnl.gov:8080/. The CGCM3 climate model grid is
uniform along the longitude with grid box size of 3.75° and
roughly uniform along the latitude (nearly 3.75°). CGCM3
climate model was selected in this study because it is one of
the frequently used climate model in literature. The monthly
climate data for this GCMwere compiled for the selected grid.
The coordinates of this grid center are 38.97°N and 26.25°E
for latitude and longitude, respectively. The nearest grid
representing the study area includes air temperature,
geopotential height, and relative humidity at different
atmospheric levels and surface level variables.

In this study concept, the authors have intended to validate
the hydrometeorological forecasts for the present climate and
present some evidence of climate change for the near future
focusing on a scenario and then discuss possible impacts

based on these projections. Thus, the used data set consist of
future climate scenario simulations covering the years 2010s,
2020s, and 2030s and a scenario simulation representing
climate of the twentieth century (20C3M) for the historic-
based period between 1950 and 1999. For future climate
assessment, A1B scenario (a subset of the A1 family), which
lies near the high end of the spectrum for future greenhouse
gas emissions, particularly through mid-century, has been
considered. This scenario projects a future where technology
is shared between developed and developing nations to reduce
regional economic inequalities.

According to IPCC (2007), a brief description of the sce-
narios is presented in Table 1. The detailed descriptions of the
scenarios have been presented by Anandhi et al. (2008). The
atmospheric variables to be provided to the downscaling
models for the purpose of the downscaling of the monthly
precipitation and temperature series representing the study
region consist of determined 12 NCEP/NCAR variables,
which common to CGCM3 climate model, including 1948–
2008 period and listed in Table 2.

It is often important to determine if the data set is homog-
enous before any statistical model is applied to it. So, the
homogeneity check of climate data is of major importance
because some factors make data unrepresentative of the cli-
mate variation, and thus the conclusion of hydrometeorolog-
ical studies are potentially biased (Costa and Soares 2009).
The Mann–Whitney U (M-W) test having greater efficiency
than the t test on nonnormal distributions can be used to
determine whether a set of data can be considered homoge-
nous to a certain degree of accuracy. This nonparametric
statistical test is used to analyze two comparison groups to

TURKEY

Mediterranean Sea

Black Sea

Fig. 1 Study region and the meteorological stations in the NCEP/NCAR reanalysis grid
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identify whether they have the same distribution or not (Mann
and Whitney 1947). M-W is based on the bringing together
and arranging of two groups. When these group members are
lined up, a line number is assigned to each member. The
membership status of these members (to which group they
belong) is ignored. These line numbers are then summed up.
The sum of the members of the first group is R1 and of the
second group is R2. TheU values can then be calculated using

Ui ¼ N1N2 þ Ni Ni þ 1ð Þ
2

−Ri; i ¼ 1; 2ð Þ ð1Þ

After the calculation for i=1 and i=2, U1 and U2 are
obtained, and the larger is chosen (U*) to determine the test
statistics.

z ¼
U �−

N 1N2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2 N 1 þ N2 þ 1ð Þ

12

r

��������

��������
ð2Þ

where N1 and N2 are the quantities of data for the groups
compared.

For the values of z <z cr, there is no significant difference
between the first group and second group. (For 5 % level of
significance, z cr=1.96). In this study, NCEP/NCAR variables
including the period between 1948 and 2008 (61-year data)
and observed local scale monthly precipitation and tempera-
ture series were divided into two subgroups as the first group
includes 31-year data and the second group includes 30-year
data in order to examine the homogeneities of climate data
(Table 3).

In literature about statistical downscaling, studies have
shown that the explanatory variables could vary from one
region to another and any type of predictor can be used for
downscaling as long as it has acceptable correlation with the
local surface variables (Wilby et al. 1998; Tripathi et al. 2006;
Fistikoglu and Okkan 2011; Okkan 2013). For this study,
monthly observed precipitation and temperature were selected
as the dependent variables, while potential predictors were
air200, hgt200, air500, hgt500, rhum500, air850, hgt850,
rhum850, air, press, slp, and prate in NCEP/NCAR reanalysis
data set given in Table 2. The optimum predictors for both
precipitation and temperature downscaling were determined
with the help of best regression model structures denoted in
Table 4 and Table 5 based on the adjusted determination
coefficient and root mean squared error statistics corrected
by considering the homogeneity test results presented in
Table 3. Generating all possible subset regression models
resulted in 212−2=4,094 different models (excluding full
model and intercept-only model) for both precipitation and
temperature. In this context, MINITAB (version 11) computer
package was used to determine best subsets through these
different model combinations. Considering the analysis for
precipitation, not only data homogeneity but also a satisfacto-
ry correlation is provided with large-scale precipitation at
surface level (prate), air temperature at 850 hPa (air850), and
geopotential height at 200 hPa (hgt200) variables. By using
the same procedure, only mean air temperature (air) variable
of NCEP/NCAR data set was selected as monthly temperature
predictor.

A similar methodology which has been applied to monthly
precipitation downscaling in an earlier work (Fistikoglu and
Okkan 2011) has been improved for this study concept at the
same basin scale. In both papers, the precipitation is down-
scaled with Levenberg–Marquardt algorithm-based feed for-
ward neural networks method for a present climatic period
while in this paper future projections are also produced.

Table 1 The brief description of the scenarios considered in the study
(IPCC 2007; Anandhi et al. 2008)

The name
of scenario

Data set Description of scenario

20C3M Climate of the
twentieth
century

Atmospheric CO2 concentrations and
other input data are based on
historical records or estimates
beginning around the time of the
Industrial Revolution

A1B 720 ppm CO2

maximum
A future world of very rapid economic
growth, global population that peaks
in mid-century and declines
thereafter, and rapid introduction of
new and more efficient technologies,
with the development balanced
across energy sources

Table 2 The large-scale common variables selected from the NCEP/
NCAR reanalysis and GCM data set

Atmospheric levels Atmospheric variables

200 hPa air200 (°C)

hgt200 (m)

500 hPa air500 (°C)

hgt500 (m)

rhum500 (%)

850 hPa air850 (°C)

hgt850 (m)

rhum850 (%)

Surface air (°C)

press (hPa)

slp (hPa)

prate (kg/m2)

air mean air temperature (in degree Celsius), press pressure (in
hectopascal), slp sea level pressure (in hectopascal), prate precipitation
(in kilogram per square meter), hgt geopotential height (in meter), rhum
relative humidity (in percent)

346 U. Okkan, O. Fistikoglu



The common belief is based on selecting the subset regres-
sionmodel structures with highest R2 and Adj.R2 and with the
smallest root mean squared error as the best one. In the
previous study, Fistikoglu and Okkan (2011) have selected
nine predictors in precipitation downscaling modeling consid-
ering this common belief. On the other hand, non-
homogenous variables may reduce the statistical downscaling
model efficiency. With redundant variables, there is also a
potential of overfitting the data. In the study presented, we
were able to reduce the number of precipitation predictors
using proposed procedure involving both homogeneity test
and all possible regression method in order to efficiently
create a statistical downscaling model. Moreover, it can be
said that changes on adjusted determination coefficient
(Adj.R2) and root mean squared error (RMSE) statistics are
no longer significant when the number of predictors exceeds
three. In other words, performance of the regression-based

model with three predictors is nearly the same as that of the
full model with 12 variables.

3 Developed downscaling strategy

In this study, statistical relationships based on an ANN algo-
rithm were developed between large-scale climatic variables
and local surface observed variables, with selected reanalysis
data as predictors and observed precipitation and temperature
as predictands. These relationships were assessed to model the
future precipitation and temperature using CGCM3 outputs.

ANN, which has been recently used in many fields, could
be defined as a black box model producing outputs against
inputs and is used as one of the applied frequently used
statistical downscaling techniques (Fistikoglu and Okkan
2011). Among ANN algorithms, the feed forward neural

Table 3 Mann–Whitney U homogeneity test results both for NCEP/NCAR variables and observed monthly precipitation/temperature

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

prate H.M.N Mann–Whitney U 224 347 319 418 380 426 431.5 363 455.5 454 369 404

10 Z 3.477 1 .702 2.106 0 .678 1 .226 0 .563 0 .495 1 .533 0 .137 0 .159 1 .385 0 .880

slp H.M.N Mann–Whitney U 278 292 331.5 247 275.5 266.5 256 256.5 233.5 271 334.5 293

2 Z 2.698 2.496 1 .926 3.145 2.734 2.864 3.015 3.008 3.340 2.799 1 .883 2.481

press H.M.N Mann–Whitney U 267 297 322.5 243.5 263 240 242 239.5 217.5 255 335 283.5

1 Z 2.856 2.424 2.056 3.195 2.914 3.246 3.217 3.253 3.571 3.030 1 .876 2.618

air H.M.N Mann–Whitney U 407.5 406 371.5 379.5 376.5 302.5 352 337.5 353 372.5 458.5 455.5

11 Z 0 .830 0 .851 1 .349 1 .234 1 .277 2.344 1 .630 1 .839 1 .616 1 .334 0 .094 0 .137

air200 H.M.N Mann–Whitney U 422 303.5 408.5 431.5 440 445.5 407 445.5 454 463 260 344.5

10 Z 0 .636 2.367 0 .828 0 .498 0 .372 0 .285 0 .881 0 .299 0 .163 0 .030 3.074 1 .775

air500 H.M.N Mann–Whitney U 260 465 398 427 392 197 445 457 335 335.5 440 439.5

8 Z 3.024 0 .000 0 .990 0 .572 1 .099 4.226 0 .303 0 .125 2.022 1.962 0 .369 0 .377

air850 H.M.N Mann–Whitney U 398.5 396 413.5 382.5 415 321.5 343.5 391 321 365.5 430.5 447.5

10 Z 0 .977 1 .007 0 .752 1 .209 0 .739 2.184 1 .799 1 .091 2.128 1 .454 0 .506 0 .258

hgt200 H.M.N Mann–Whitney U 196 413 307 366.5 340.5 218.5 414 366 261 289 390 355

7 Z 3.881 0 .750 2.279 1 .421 1 .796 3.556 0 .736 1 .428 2.943 2.539 1 .082 1 .587

hgt500 H.M.N Mann–Whitney U 215 398 323 322 305 113 221 221.5 202 251 401 332

3 Z 3.607 0 .967 2.049 2.063 2.308 5.078 3.520 3.513 3.794 3.087 0 .923 1 .919

hgt850 H.M.N Mann–Whitney U 243 314.5 296.5 248 249 196 196.5 167 206.5 211.5 350.5 262

1 Z 3.203 2.171 2.431 3.131 3.116 3.881 3.874 4.299 3.729 3.657 1 .652 2.929

rhum500 H.M.N Mann–Whitney U 109 102.5 165.5 227.5 237.5 116 280 306.5 202 264.5 235 256.5

0 Z 5.142 5.237 4.328 3.438 3.289 5.046 2.679 2.297 3.808 2.898 3.323 3.015

rhum850 H.M.N Mann–Whitney U 307.5 406.5 290.5 337 330 359 459 404 413 434 402.5 399

10 Z 2.277 0 .846 2.524 1 .850 1 .952 1 .533 0 .087 0 .882 0 .752 0 .448 0 .904 0 .954

Observed temperature H.M.N Mann–Whitney U 436 411 405.5 354.5 372.5 202.5 278 326.5 314 356.5 399.5 403.5

8 Z 0 .419 0 .779 0 .931 1 .595 1 .335 3.792 2.700 2.000 2.181 1 .566 0 .945 0 .888

Observed precipitation H.M.N Mann–Whitney U 385 391 447 435 377.5 316.5 397.5 305 317 394 317 440

8 Z 1 .154 1 .068 0 .260 0 .433 1 .262 2.143 0 .994 2.344 2.139 1 .024 2.135 0 .361

Bold values denote homogeneous months. Zcr, 1.96

H .M .N homogeneous month numbers
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networks (FFNN) type is the most frequently preferred algo-
rithm. There are many literatures which provide a detailed
description of the FFNN (Hagan and Menhaj 1994; Ham and
Kostanic 2001; Fistikoglu and Okkan 2011), and hence only a
brief description of FFNN is given here.

The basic concept of the FFNN is that they are typically
made up of neurons. And in FFNN, the neurons are organized
in the form of layers. The first and last layer of FFNN is called
the input and the output layer, respectively.The input layer
does not perform any computations but only serves to feed the
input data to the hidden layer which is between the input and
output layers. In general, there can be any number of hidden
layers in the FFNN structures; however, from practical appli-
cations, only one or two hidden layers are used. In addition to
this, the number of hidden layers and also the number of

neurons of hidden layers can be determined by the trial and
error (Ham and Kostanic 2001). There are also three important
components of an FFNN structure: weights, summing func-
tion, and activation function. The importance and functional-
ity of the inputs on ANN models are obtained with weights
(W ). So, the success of the model depends on the precise and
correct determination of weight values. The summing func-
tion (net ) acts to add all outputs; that is, each neuron input is
multiplied by the weights and then summed. After computing
the sum of weighted inputs for all neurons, the activation
function f (.) serves to limit the amplitude of these values.
The activation functions are usually continuous, non-
decreasing, and bounded functions. Various types of the acti-
vation function are possible but generally log-sigmoid func-
tion is preferred in applications (Ham and Kostanic 2001).

Table 4 Summary of the best results derived from all possible regression analyses of monthly precipitation predictors

Model number R2 AdjR2 RMSE (mm) air850 hgt850 rhum850 air500 hgt500 rhum500 air200 hgt200 air press slp prate

1 0.563 0.563 53.639 ●
2 0.612 0.611 50.626 ● ●
3 0.632 0.630 49.325 ● ● ●
4 0.634 0.632 49.208 ● ● ● ●
5 0.648 0.646 48.296 ● ● ● ● ●
6 0.650 0.647 48.205 ● ● ● ● ● ●
7 0.651 0.648 48.125 ● ● ● ● ● ● ●
8 0.654 0.650 48.009 ● ● ● ● ● ● ● ●
9 0.656 0.652 47.885 ● ● ● ● ● ● ● ● ●
10 0.658 0.653 47.797 ● ● ● ● ● ● ● ● ● ●
11 0.659 0.654 47.716 ● ● ● ● ● ● ● ● ● ● ●
12 0.660 0.654 47.699 ● ● ● ● ● ● ● ● ● ● ● ●

air mean air temperature (in degree Celsius), press pressure (in hectopascal), slp sea level pressure (in hectopascal), prate precipitation (in kilogram per
square meter), hgt geopotential height (in meter), rhum relative humidity (in percent)

Table 5 Summary of the best results derived from all possible regression analyses of monthly temperature predictors

Model number R2 AdjR2 RMSE (°C) air850 hgt850 rhum850 air500 hgt500 rhum500 air200 hgt200 air press slp prate

1 0.986 0.986 0.822 ●
2 0.988 0.988 0.777 ● ●
3 0.989 0.989 0.741 ● ● ●
4 0.989 0.989 0.728 ● ● ● ●
5 0.990 0.990 0.712 ● ● ● ● ●
6 0.990 0.990 0.703 ● ● ● ● ● ●
7 0.990 0.990 0.699 ● ● ● ● ● ● ●
8 0.990 0.990 0.696 ● ● ● ● ● ● ● ●
9 0.990 0.990 0.692 ● ● ● ● ● ● ● ● ●
10 0.990 0.990 0.692 ● ● ● ● ● ● ● ● ● ●
11 0.990 0.990 0.692 ● ● ● ● ● ● ● ● ● ● ●
12 0.990 0.990 0.692 ● ● ● ● ● ● ● ● ● ● ● ●

air mean air temperature (in degree Celsius), press pressure (in hectopascal), slp sea level pressure (in hectopascal), prate precipitation (in kilogram per
square meter), hgt geopotential height (in meter), rhum relative humidity (in percent)
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This activation function generates outputs between 0 and 1 as
the input signal goes from negative to positive infinity.

f :ð Þ≅ 1

1þ e− :ð Þ ð3Þ

In addition to the structure and its components of FFNN,
the running procedure is also important which involves typi-
cally two phases: forward computing and backward
computing.

In forward computing, each layer uses a weight matrix
(W (v), for v =1, 2) associated with all the connections made
from the previous layer to the next layer. The hidden layer has
the weight matrixW (1)∈R hxn, the output layer's weight matrix
is W (2)∈R mxh. Given the network input vector x ∈R nx1, the
output of the hidden layer xout,1∈R hx1 can be written as

xout;1 ¼ f 1ð Þ net 1ð Þ
h i

¼ f 1ð Þ W 1ð Þx
h i

ð4Þ

which is the input to the output layer. The output of the output
layer, which is the response (output) of the network y =xout,2∈
R mx1, can be written as

y ¼ xout;2 ¼ f 2ð Þ net 2ð Þ
h i

¼ f 2ð Þ W 2ð Þxout;1
h i

ð5Þ

Substituting (Eq. 4) into (Eq. 5) for xout,1 gives the final
output y =xout,2 of the network as

y ¼ f 2ð Þ W 2ð Þ f 1ð Þ W 1ð Þx
h ih i

ð6Þ

After the phase of forward computing, backward comput-
ing which depending on the algorithms to adjust weights is
used in the ANN. The process of adjusting these weights to
minimize the differences between the actual and the desired
output values is called training or learning the network. If
these differences (error) are higher than the desired values,
the errors are passed backwards through the weights of the
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network. In ANN terminology, this phase is also called the
backpropagation. Once the comparison error is reduced to an
acceptable level for the whole training set, the training period
ends, and the network is also tested for another known input
and output data set in order to evaluate the generalization
capability of the ANN (Ham and Kostanic 2001).

Depending on the techniques to train FFNN models, dif-
ferent backpropagation algorithms have been used for model-
ing studies. These modeling studies generally include the
standard backpropagation (BP) algorithms such as gradient-
descent, gradient-descent with momentum rate, conjugate
gradient, etc. As the BP algorithms have some disadvantages
relating to the time requirement and slow convergency in
training, Levenberg–Marquardt algorithms, which are alterna-
tive approaches to standart BP algorithms, were used in some
applications (Fistikoglu and Okkan 2011; Okkan 2011).

In this study, Levenberg–Marquardt algorithm (LM-FFNN)
was used for training. This algorithm is a second-order
nonlinear optimization technique that is usually faster and
more reliable than any other standard back propagation tech-
niques. It represents a simplified version of Newton's method
(Marquardt 1963) applied to the training FFNN (Hagan and
Menhaj 1994).

Considering FFNN structure, the running of the network
training can be viewed as finding a set of weights that minimized

the error (ep) for all samples in the training set (Q). If the
performances function is a sum of squares of the errors as

E Wð Þ ¼ 1

2

X
p¼1

P �
dp−yp

�2

¼ 1

2

X
p¼1

P �
ep
�2
;P ¼ mT ð7Þ

where Q is the total number of training samples, m is the
number of output layer neurons, W represents the vector
containing all the weights in the network, yp is the actual
network output, and dp is the desired output.

When training with the Levenberg–Marquardt optimiza-
tion algorithm, the changing of weightsΔW can be computed
as follows

ΔWk ¼ − JTk J k þ μkI
� �−1

JTk ek ð8Þ

where J is the Jacobian matrix, I is the identify matrix, μ is
the Marquardt parameter which is to be updated using the
decay rate β depending on the outcome. In particular, μ is
multiplied by the decay rate β (0<β< 1) whenever E(W )
decreases, while μ is divided by β whenever E (W ) increases
in a new step (k ).
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The LM-FFNN training process can be illustrated in the
following pseudo codes,

1. Initialize the weights and μ (μ =0.001 is appropriate).
2. Compute the sum of squared errors over all inputs,E (W ).
3. Compute the Jacobian matrix J .
4. Solve Eq. 8 to obtain the changing of weights ΔW.
5. Recompute the sum of squared errors E (W ) using

W kþ1ð Þ ¼ W kð Þ � JTk J k
� ��1

JTk ek as the trial W, and

judge

IF trial E(W )<E(W ) in Step 2, THEN

W kþ1ð Þ ¼ W kð Þ � JTk J k
� ��1

JTk ek
μ kþ1ð Þ ¼ μkβ β ¼ 0:1ð Þ
go back to Step 2.

ELSE

μ kþ1ð Þ ¼ μk=β

go back to Step 4.
END IF

In this study, the flowchart of proposed downscaling strategy,
which was constructed by a MATLAB code, summarized in
Fig. 2 is considered. According to this flowchart, observed
precipitation/temperature data and the selected NCEP/NCAR
predictors were turned into standardized series before being
presented to the LM-FFNN-based downscaling model. Wilby
et al. (2004) have been emphasized that standardization procedure
is used prior to downscaling to reduce biases in the mean and
variances of GCM outputs relative to the observations or NCEP/
NCAR variables. This procedure involves subtraction of mean
and division by standard deviation of the related variable. The
variables for CGCM3 related to A1B future scenario were also
standardized using the mean and standard deviation statistics of
20C3M scenario variables including 1950–1999 baseline period.

For developing the downscaling model between standard-
ized precipitation/temperature and standardized NCEP/
NCAR predictors, data set were divided in three stages in-
cluding training (50 %), validation (25 %), and testing (25 %)
under certain proportions. In the training of LM-FFNN, the
early stopping method is used and overtraining of the network
was aimed to be prevented.

a

b

y = 0.7796x + 17.647
R² = 0.7588

0

40

80

120

160

200

240

280

320

360

400

440

480

0 40 80 120 160 200 240 280 320 360 400 440 480

L
M

-F
F

N
N

 (
m

m
)

Observed (mm)

Training

y = 0.7575x + 18.2504
R² = 0.7313

0

40

80

120

160

200

240

280

320

360

0 40 80 120 160 200 240 280 320 360

L
M

-F
F

N
N

 (
m

m
)

Observed (mm)

Testing

y = 0.9855x + 0.2351
R² = 0.9858

5

10

15

20

25

30

5 10 15 20 25 30

L
M

-F
F

N
N

 (
o
C

)

Observed (oC)

Training

y = 0.9522x + 0.5977
R² = 0.9881

5

10

15

20

25

30

5 10 15 20 25 30

L
M

-F
F

N
N

 (
o
C

)

Observed (oC)

Testing

Fig. 4 Scatter plots of
precipitation downscaling model
(a) and temperature downscaling
model (b) for training and testing
periods

Evaluating climate change effects on runoff 351



Table 6 Performance measures of developed precipitation downscaling model and temperature downscaling model

Precipitation downscaling model

Training

MSE (mm2) RMSE (mm) WMAPE R2 Adj.R2 NS Min. (mm) Max. (mm)

Observed – – – – – – 0.00 461.09

LM-FFNN 1 ,548 .6620 39.3530 0 .3911 0 .7588 0 .7568 0 .7572 0 .00 362 .22

MLR 2,195.2419 46.8534 0.4952 0.6579 0.6551 0.6559 −41.39 320.93

Testing

MSE (mm2) RMSE (mm) WMAPE R2 Adj. R2 NS Min. (mm) Max. (mm)

Observed – – – – – – 0.00 344.14

LM-FFNN 1 ,662 .4714 40.7734 0 .3969 0 .7313 0 .7267 0 .7300 0 .00 350 .03

MLR 2,233.0729 47.2554 0.4950 0.6377 0.6315 0.6374 −31.85 212.67

Temperature downscaling method

Training

MSE (°C2) RMSE (°C) WMAPE R2 Adj.R2 NS Min. (°C) Max. (°C)

Observed – – – – – – 5.40 29.20

LM-FFNN 0 .6591 0 .8119 0 .0357 0 .9858 0 .9857 0 .9858 5.05 29 .19

MLR 0.7919 0.8899 0.0398 0.9839 0.9838 0.9829 5 .47 30.68

Testing

MSE (°C2) RMSE (°C) WMAPE R2 Adj.R2 NS Min. (°C) Max. (°C)

Observed – – – – – — 5.60 30.00

LM-FFNN 0 .7582 0 .8708 0 .0400 0 .9881 0 .9880 0 .9853 5 .55 29 .15

MLR 1.0567 1.0279 0.0478 0.9876 0.9875 0.9796 6.21 31.71

MSE mean squared error, RMSE root mean squared error, WMAPE weighted mean absolute percentage error, R2 determination coefficient; Adj .R2

adjusted determination coefficient, NS Nash–Sutcliffe coefficient

The bold values denote the best results
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4 Downscaling results corresponding to climate change
scenarios

In the training of the LM-FFNN models, the numbers of
neurons in the hidden layer were determined by trial
and error approach. The number of neurons in the
hidden layer making the statistical performance of train-
ing and testing sets highest for the precipitation and
temperature downscaling modeling were determined as

9 and 3, respectively, their μ0 parameters were selected
as 0.001, and their β parameters chosen as 0.1. Various
types of the activation function are possible for feed
forward neural networks but sigmoid activation function
and linear activation were used for hidden and output
layers, respectively. When the early stopping method
was considered, the training of precipitation and tem-
perature downscaling models were finalized in 48 and
14 iterations, respectively (Fig. 3).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
a b

c d

5 7 9 11 13 15 17
C

D
F

Temperature (oC)

1950-1999

Observed

20C3M (uncorrected)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 7 9 11 13 15 17

C
D

F

Temperature (oC)

2010s

A1B(uncorrected)

A1B (corrected)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 7 9 11 13 15 17

C
D

F

Temperature (oC)

2020s

A1B(uncorrected)

A1B (corrected)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 7 9 11 13 15 17 19

C
D

F

Temperature (oC)

2030s

A1B(uncorrected)

A1B (corrected)

Fig. 6 Correction for bias in
downscaling GCM simulations
for winter temperature

350

450

550

650

750

850

950

1050

1150

1250

O
b

se
rv

ed

20
C

3M
 

(u
n

co
rr

ec
te

d
)

20
C

3M
 

(c
o

rr
ec

te
d

)

A
n

n
u

al
 P

re
ci

p
it

at
io

n
 (

m
m

)

PAST
(1950-1999)

350

450

550

650

750

850

950

1050

1150

1250

20
10

s

20
20

s

20
30

s

FUTURE            
(uncorrected)

350

450

550

650

750

850

950

1050

1150

1250

20
10

s

20
20

s

20
30

s

FUTURE
(corrected)

Fig. 7 Uncorrected and corrected precipitation forecasts produced from the trained downscaling model for annual periods (The horizontal lines in the
middle of the boxes and the circles represent the median and mean values, respectively. The blue lines joining the circles denote the precipitation trends)

Evaluating climate change effects on runoff 353



Some statistical approaches are suggested for modeling
accuracy evaluation according to literature related to training
and testing of models. In this study, five statistical perfor-
mance measures were considered (Nash and Sutcliffe 1970;
Krause et al. 2005; Nayak et al. 2005). LM-FFNNmodel with
optimum parameters and structure provided the best training
result in terms of the minimum RMSE, weighted mean abso-
lute percentage error (WMAPE), and the maximum determi-
nation coefficient (R2), the maximum adjusted determination
coefficient (Adj.R2), and Nash–Sutcliffe efficiency (NS) were
also employed for the testing period. RMSE statistics evalu-
ates the residual between desired and output data, and
WMAPE measures the weighted mean absolute percentage
error of the prediction. R2 and Adj.R2 evaluate the power of
regression relation between desired and output data, while NS
evaluates the capability of the model in simulating output data
away from the mean statistics. The detailed descriptions of

these statistical performance measures were presented by
Okkan and Serbes (2012).

The scatter plots of the LM-FFNN models are presented in
Fig. 4, statistical performance measures are presented in
Table 6. It can be observed in Table 6 that LM-FFNN models
have good performances during both training and testing
periods, and they outperform multiple linear regression
models (MLR) in terms of the different performance mea-
sures. Thus, by using precipitation at surface (prate), air tem-
perature at 850 hPa (air850), and geopotential height at
200 hPa (hgt200) as an input of LM-FFNN-based downscal-
ing model, determination coefficient (R2) values of training
and testing period were obtained as 75.88 and 73.13 %;
RMSE were 39.35 and 40.77 mm, respectively. Moreover,
by using mean air temperature at surface level (air) as an input
of LM-FFNN-based downscaling model, the determination
coefficient (R2) values of training and testing period were
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Table 7 Before and after bias
correction, the annual descriptive
statistics of precipitation and
temperature

Std . Dev standard deviation, Cv
variation coefficient, Range third
quartile–first quartile

Precipitation

Mean Std. Dev. Cv Upper whisker Lower whisker Range

(mm/year) (mm/year) (%) (mm/year) (mm/year) (mm/year)

Observed 820.03 188.89 23.0 1,244.46 421.67 216.49

20C3M (uncorrected) 827.31 138.15 16.7 1,122.93 546.93 153.80

20C3M (corrected) 820.97 168.51 20.5 1179.68 488.35 185.10

Temperature

Mean Std. Dev. Cv Upper whisker Lower whisker Range

(°C/year) (°C/year) (%) (°C/year) (°C/year) (°C/year)

Observed 17.74 0.51 2.9 19.04 16.71 0.67

20C3M (uncorrected) 17.72 0.71 4.0 19.30 16.28 0.96

20C3M (corrected) 17.75 0.56 3.2 19.02 16.29 0.87
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obtained as 98.58 and 98.81 %; RMSE were obtained as 0.81
and 0.87 °C, respectively. When the statistical performance
measures are considered, proposed statistical downscaling
models are found satisfactory to simulate the scenario results
of CGCM3.

After the training of the downscaling models using NCEP/
NCAR data set, CGCM3 variables including precipitation at
surface level (prate), air temperature at surface level (air), air
temperature at 850 hPa (air850) level, and geopotential height
at 200 hPa (hgt200) level both for the past and the future
periods were compiled. According to the downscaling strate-
gy summarized in Fig. 2, the compiled scenario variables of
CGCM3 were used as the new inputs of the trained statistical
downscaling models. Therefore, the precipitation and temper-
ature forecasts at basin scale for 20C3M (1950–1999) scenar-
io representing the climate of the past period and A1B scenar-
io representing the future climate were obtained.

For validation purpose, seasonal precipitation and tempera-
ture were evaluated for the baseline period of years 1950–1999
with downscaled CGCM3 20C3M scenario outputs. In this
stage, several parametric probability distributions were fitted
to the seasonal precipitation and temperature and the best
probability density functions were chosen among them with
the help of Anderson–Darling tests. Considering these good-
ness of fit tests, Gamma distribution was found suitable for both
seasonal precipitation and temperature. The cumulative distri-
bution functions (CDFs) obtained from observed data and
GCM outputs (downscaled 20C3M scenario outputs), using
probability plotting formulas of selected distributions, are
presented for only winter seasons due to space limitation
(Fig. 5a and Fig. 6a).

According to CDF results, downscaled GCM outputs for
20C3M scenario have significant deviations from the observed
data and such biases are detected for each season (bias=
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Table 8 The mean statistics (in millimeter) of corrected scenario fore-
casts and examining statistically significant changes (in percent) on
precipitation for future periods (α=5 %; italic values indicate the non-
homogeneous future periods in terms of medians, and bold values show

that means of the forecasts representing the future climate are significant-
ly different from means of 20C3M scenario representing the climate of
the past period)

Scenario Period Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Annual

Mean statistics (in millimeter) of corrected scenario forecasts

20C3M 1950–1999 152.14 122.14 93.92 59.21 26.71 13.08 0.24 0.61 8.85 48.49 109.59 185.99 820.97

A1B 2010s 113.31 99.31 89.39 62.78 29.35 7.01 0.24 0.48 4.62 28.35 115.48 151.37 701.68

2020s 137.75 87.05 81.89 55.59 40.83 10.30 0.79 4.19 5.39 23.97 104.61 116.22 668.56

2030s 153.08 98.83 72.53 55.33 27.52 1.63 4.97 6.76 7.45 16.80 78.67 156.63 680.20

Statistically significant changes (in percent) on precipitation for future periods

A1B 2010s −25 .52 −18 .70 −4.83 6.03 9.85 −46.42 −0.35 −21 .14 −47 .77 −41.53 5.37 −18.61 −14 .53
2020s −9.46 −28.73 −12.81 −6.12 52.83 −21.21 231 .51 588 .63 −39 .04 −50.57 −4.55 −37.51 −18.56
2030s 0.62 −19 .09 −22 .78 −6.55 3.03 −87.56 1,992.29 1 ,012 .08 −15.79 −65.35 −28.21 −15.78 −17.15

Table 9 The mean statistics (in centigrade) of corrected scenario fore-
casts and examining statistically significant changes (Δt =t2− t1) on
temperature for future periods (α=5 %; italic values indicate the non-
homogeneous future periods in terms of medians, and bold values show

that means of the forecasts representing the future climate are significant-
ly different from means of 20C3M scenario representing the climate of
the past period)

Scenario Period Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Annual

Mean statistics (in centigrade) of corrected scenario forecasts

20C3M 1950–1999 8.84 8.34 11.96 15.27 20.49 24.96 27.26 28.09 22.97 19.57 13.53 11.68 17.75

A1B 2010s 9.56 9.28 13.23 17.63 22.28 25.63 27.96 28.78 24.36 20.30 13.88 12.11 18.75

2020s 9.74 9.51 14.66 18.21 23.27 25.81 28.07 28.83 24.42 21.16 15.15 13.00 19.32

2030s 10.42 9.87 16.05 18.80 24.25 26.36 28.34 29.02 25.23 21.87 15.05 13.02 19.86

Statistically significant changes on temperature for future periods

A1B 2010s 0.72 0 .94 1.27 2 .36 1 .79 0 .67 0 .70 0 .69 1 .39 0.73 0.35 0.43 1 .00

2020s 0 .90 1 .17 2 .70 2 .94 2 .78 0 .85 0 .81 0 .74 1 .45 1 .59 1 .62 1 .32 1 .57

2030s 1 .58 1 .53 4 .09 3 .53 3 .76 1 .40 1 .08 0 .93 2 .26 2 .30 1 .52 1 .34 2 .11



observed data−simulated GCM output). The biases may be
caused by partial ignorance about geophysical process, assump-
tions for numerical modeling, and parameterization. In the
phase of modeling hydrometeorological variables under the
climate change scenarios, such biases should be taken into
consideration; otherwise, it will propagate in the computations
for future periods (Ghosh and Mujumdar 2008). The standard-
ization procedure before statistical downscaling can reduce the
biases in the mean and standard deviations of the predictors but
the biases in large-scale patterns of atmospheric circulation in
GCMs or unrealistic intervariable relationships may not be
removed by only standardization procedure (Wilby and
Dawson 2004; Ghosh and Mujumdar 2008).

Ghosh and Mujumdar (2008) have proposed a methodolo-
gy after downscaling process to remove such biases from
downscaled outputs. The proposed methodology consists of
following steps for this study content:

& CDFs are obtained with observed and downscaled CGCM3
20C3M scenario outputs for the 1950–1999 period using the
determined probability potting position formulas.

& For a given value of generated output under 20C3M sce-
nario (seasonal uncorrected precipitation/temperature), the
value of CDF is computed.

& Corresponding to CDF value of used GCM the observed
precipitation/temperature values are obtained from the
CDFs of observed data.

& The CGCM3 generated precipitation/temperature are re-
placed by the observed data, thus computed, having the
same CDF values.

& The CDFs of CGCM3 generated and observed precipitation/
temperature, obtained for the 1950–1999 periods, act as
reference, and based on them the corrections are applied to
precipitation/temperature values obtained from CGCM3
model for future periods.

Thus, corrected 20C3M and A1B scenario outputs were
produced for both seasonal precipitation and temperature. The
box plot graphs of corrected downscaled annual total precip-
itation and annual mean temperature are presented in Fig. 7
and Fig. 8. On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, and the
whiskers extend to the extreme data points, not considered as
outliers, are indicated. After bias correction, descriptive sta-
tistics of precipitation and temperature are presented in
Table 7. For example, the annual mean and standard deviation
of observed precipitation are 820.03 and 188.89mm and those
of CGCM3 20C3M scenario precipitation before bias correc-
tion were 827.31 and 138.15 mm. After bias correction pro-
cess for precipitation, the annual mean and standard deviation
statistics are 820.97 and 168.51mm, respectively, which show
bias has been significantly reduced. Similarly, after bias cor-
rection for temperature, obtained statistics prove that bias has
been reduced. Other statistics involving upper/lower whisker

Fig. 9 Diagram of the
hydrological model GR2M
(Mouelhi et al. 2006)

Table 10 Calibrated pa-
rameters of hydrological
model for Tahtali River

X1 (mm) X2 θ Ω

484.778 0.705 6.422 0.096
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and range values are as much as possible corrected. The CDFs
projected near future precipitation and temperature of winter
season are presented for 10-year time slices 2010s, 2020s, and
2030s in Fig. 5b–d and Fig. 6b–d.

After bias correction analyses, some statistical tests includ-
ing M-W homogeneity and two-sample t test of equality of
mean statistics were applied to examine the significances of
computed variations. For all projection periods (2010s, 2020s,

and 2030s), these tests are applied at 5 % level of significance
to check whether means and homogeneities of the forecasted
series at basin scale for the A1B scenario representing the
future climate are significantly different from the statistics for
20C3M (1950–1999) representing the past periods (Table 8
and Table 9). The downscaled precipitation results were eval-
uated on scenario basis, and they were interpreted in terms of
their mean statistics and homogeneities as follows. According
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Fig. 10 Observed and modeled
runoff of Tahtali river for (a)
calibration period and (b)
verification period

Table 11 Performance measures of calibrated hydrological model GR2M for the calibration and verification periods

MSE RMSE WMAPE R2 Adj.R2 NS Mean Std. Dev. Min. Max.
(mm2) (mm) (%) (%) (%) (%) (mm) (mm) (mm) (mm)

Calibration

Observed – – – – – – 22.52 37.47 0.00 168.45

Modeled 218.95 14.80 33.93 85.77 85.53 84.27 22.82 30.12 0.29 129.32

Verification

Observed − − − − − − 24.98 45.86 0.02 276.86

Modeled 135.23 11.63 23.36 94.52 94.41 93.51 26.96 40.45 0.14 211.81

MSE mean squared error, RMSE root mean squared error, WMAPE weighted mean absolute percentage error, R2 determination coefficient, Adj .R2

adjusted determination coefficient, NS Nash–Sutcliffe coefficient
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to the annual statistics, there are foreseen decreases for all
projection periods. In the 2020s, it is foreseen that there will be
decrease at the levels of 18.6%. Significant changes on annual
precipitation are not foreseen during the 2010s. Similar anal-
yses were carried out for annual variance statistics by applying
f test and, in general, significant changes were not seen in this
statistics for future. After assessing precipitation statistics,
similar tests have been applied at 5 % level of significance
to check whether the future temperature statistics are signifi-
cantly different from the 20C3M scenario statistics. It is found
that, for all projection periods, the homogeneities and mean
statistics of future and 20C3M scenario temperature series are
significantly different so that they do not belong to the same
populations. According to the downscaled temperature results

obtained under the A1B scenario, it can be concluded that
statistically significant increases of 1.00, 1.57, and 2.11 °C in
annual mean temperature may be expected for the 2010s,
2020s, and 2030s, respectively. Moreover, in 2020s and
2030s, there are foreseen significant increases for nearly all
months. The equalities of variances have been also tested by f
test and annual variance statistics of temperature does not
display significant changes in future periods.

5 GR2M for climate change scenarios

In this section, the downscaled climate change scenarios of
the previous step are evaluated at watershed scale by means
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Table 12 The mean statistics (in millimeter) of corrected scenario fore-
casts and examining statistically significant changes (in percent) on runoff
for future periods (α=5 %; italic values indicate the non-homogeneous
future periods in terms of medians, and bold values show that means of

the forecasts representing the future climate are significantly different
from means of 20C3M scenario representing the climate of the past
period)

Scenario Period Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Annual

Mean statistics (in millimeter) of corrected scenario forecasts

20C3M 1950–1999 60.33 58.14 47.63 31.12 15.09 6.55 2.31 0.91 0.46 0.89 7.09 42.20 272.71

A1B 2010s 31.01 37.65 38.33 28.11 13.88 5.23 1.83 0.72 0.33 0.24 3.55 24.16 185.05

2020s 37.38 32.23 31.26 23.19 13.81 5.26 1.86 0.79 0.36 0.27 2.64 17.17 166.22

2030s 37.06 39.45 32.50 20.98 11.01 3.54 1.47 0.64 0.30 0.20 0.95 19.80 167.92

Statistically significant changes (in percent) on runoff for future periods

A1B 2010s −48.60 −35.24 −19.53 −9.66 −8.03 −20.21 −20.54 −20.44 −27 .28 −72.63 −49.92 −42.75 −32.14
2020s −38.05 −44.56 −34 .36 −25.47 −8.50 −19.63 −19.27 −12.48 −21.99 −69.58 −62.76 −59.32 −39.05
2030s −38.57 −32.14 −31 .77 −32 .58 −27.01 −46.01 −36.16 −29.05 −33.50 −77.42 −86.62 −53.07 −38.43

Fig. 11 Simulated runoff forecasts obtained from uncorrected/corrected precipitation and temperature for annual periods (The horizontal lines in the
middle of the boxes and the circles represent the median and mean values, respectively. The blue lines joining the circles denote the runoff trends)



of the GR2M (Génie Rural à 2 paramètres au pas de temps
Mensuel) parametric conceptual hydrological model to ob-
serve the impacts of temperature and precipitation changes
on runoff regime in the study region. Makhlouf and Michel
(1994) reported this model for French watersheds, which
originated from a daily rainfall–runoff model. Despite hav-
ing only two free parameters, the GR2M has been shown
to perform well when compared to similar models; on a
benchmark test consisting of 410 basins in the world, it
shows the best performance among several models, some
of them counting five free model parameters (Mouelhi
et al. 2006).

Mouelhi et al. (2006) provide a detailed description of the
GR2M model, and hence only a summarized description of
model is presented here. The two free parameters of GR2M
model are X1, the soil moisture storage maximum capacity,
and X2, the water exchange term with neighboring catch-
ments. The internal state variables consist of soil moisture
accounting store (S ) and quadratic reservoir (R). The model
operates on a monthly basis with precipitation (P ) and poten-
tial evapotranspiration (Epot) as input variables. Users should
note that the parameter X1, the soil moisture store capacity,
controls the model response to precipitation event, and to a
certain extent, the variability of the modeled runoff. As X1

increases, the modeled runoff depends less on the current
precipitation and more on the store level, itself dependent on
past precipitation. For small X1, more precipitation is directed
as excess precipitation and directly routed as output runoff
(Mouelhi et al. 2006; Huard and Mailhot 2008). In this study,
monthly potential evapotranspiration (Epot) is defined as an
exponential function (Epot=θe

ΩT) of monthly mean tempera-
ture (Ozkul 2009), using two additional parameters θ and Ω.
Thus, two-parameter GR2M model was turned into a four-
parameter model for this study. Figure 9 shows a sketch of the
GR2M model and its running procedure.

The calibration of the GR2M is based on the maximization
of the value of the Nash–Sutcliffe efficiency (NS). For GR2M
model, using of this measure decreases rapidly as the magni-
tude of random errors over precipitation increases, but much
more slowly in the case of random errors over potential
evapotranspiration (Huard and Mailhot 2008). In the calibra-
tion process, Newton's method-based program, which was
constructed by MS-EXCEL, was used.

The reservoir of the Tahtali dam is fed by Tahtali River, and
runoff values of the river were observed by Derebogazi station
for the period between 1970 and 1988. For the study region,
the monthly data sets of runoff data were collected from the
records of II. Regional Directorate of State Hydraulic Works
of Turkey. The calibration of model is carried out with the
observed monthly runoff series of 1970–1979 water year
period, and verification is carried out for the water year period
1980–1988. The parameters obtained from calibration phase
are given in Table 10, and the modeled and observed runoff

series of the calibration and verification periods are presented
in Fig. 10. The performance measures of calibrated GR2M
model for the calibration and verification periods are given in
Table 11.

When the computed performance measures are investigat-
ed, calibrated GR2M model is found successful and can be
applied to simulate the runoff series under the future climate
conditions. Although the structure of GR2M model is simple,
it has an ability to model complex and nonlinear relations. In
addition, other parametric hydrological models that may be
much superior are used as alternative ways to GR2M for
monthly rainfall–runoff modeling.

After the building of the dam, the Derebogazi stream
gauging station was closed. The runoff values may be
obtained by usingwater budget equations inmonthly reservoir
operation reports. It is widely accepted that the use of this
approach in obtaining missing runoff values is insufficient.
Being able to obtain missing runoff series will give us infor-
mation about how watershed behaved after the building of the
dam. To simulate missing runoff series of 1950–1999 com-
mon period, we ran the calibrated GR2Mmodel, which is able
to obtain the better prediction accuracy in terms of different
performance measures during the planning period of dam,
with the observed precipitation and temperature inputs of
1950–1999 period.

In the last step of the study, the calibrated GR2Mmodel was
operated with downscaled precipitation and temperature series
under the 20C3M and A1B climate change scenarios. Then, the
runoff series obtained from both uncorrected and corrected
precipitation and temperature forecasts are examined. The box
plot graphs for annual total runoff are presented in Fig. 11.
When Fig. 11 is considered, it can be shown that runoff oper-
ated with corrected precipitation and temperature can represent
the observed period statistics. For example, the annual mean
and standard deviation statistics of simulated runoff obtained
from observed precipitation and temperature are 273.72 and
106.16 mm and those of 20C3M uncorrected runoff were
267.23 and 75.64mm. The annual mean and standard deviation
statistics of runoff generated with corrected precipitation and
temperature are 272.71 and 94.19 mm, respectively, which
display bias correction procedure at the end of precipitation
and temperature downscaling affirmatively affects the runoff
modeling under the climate change scenarios.

After runoff simulations, the annual mean statistics
were evaluated by using statistical tests including M-W
homogeneity, f test of equality of variances, and t test of
equality of mean statistics. For all projection periods,
statistical tests are applied at 5 % level of significance
(α) to check whether means, variances, and homogeneities
of the simulated series at basin scale for the scenarios
representing that the future climate are significantly differ-
ent from 20C3M scenario statistics representing past cli-
mate (Table 12).

Evaluating climate change effects on runoff 359



The simulated runoff series were evaluated on scenario
basis, and they were interpreted in terms of their mean statis-
tics and homogeneities as follows. For all months, there are
foreseen decreases under the A1B scenario. Considering an-
nual mean runoff statistics, it is determined that statistically
significant decreases are respectively foreseen for the 2010s,
2020s, and 2030s as 32, 39, and 38 %. In addition, in 2030s,
the forecasted decreases are significant for nearly all
months. Similar assessments were carried out for annual
variances by using f test and, in general, significant
changes were not foreseen.

6 Conclusions

When the studies about climate change effects on river basins
are examined, it can be observed that almost all studies have
been carried out by researchers of developed countries (e.g.,
Arnell et al. 2001; Bates et al. 2008). Those studies are
performed in those countries even though they expect to have
an increase in their water potentials. On the contrary,
Mediterranean countries including Turkey who are expecting
to face a decrease on runoff are quite poor in regard to the
number of studies performed and published in the literature.
Having its motivation from the facts emphasized above, the
presented study intends to demonstrate the effects of climate
change on the runoff of Tahtali Dam which is the most
important water resource in the Aegean Region having
Mediterranean climate characteristic.

According to the presented assessment by statistical down-
scaling, bias correction at the end of statistical downscaling,
and GR2M rainfall-runoff model, in the 2010s, which repre-
sents the near future, the runoff feeding the reservoir will
decrease as 32 %, and thus there will be an important lack of
supply. If we take the increase in the population growth and
water demand into consideration, it is clear that in order to be
able to compensate the lack of supply, additional water re-
sources may be needed. Although there are several methods
such as water transferring between neighbor basins and puri-
fication of seawater, our foresight is that the optimum solution
is an additional reservoir capable of storing water and thus
regulating the fluctuations in the runoff regime.

As is known, climate scenarios for the future are based on
the predictions of GCMs. In this study, climate projections of
CGCM3 were evaluated. In the literature, the differences
between the atmospheric and surface variables of different
climate models thus the inner uncertainties of then have been
emphasized (Khan et al. 2006; Okkan and Fistikoglu 2012;
Okkan 2013). These uncertainties between the projections for
different GCMs constitute a current issue studied by the
climate researchers. Organizing these studies, IPCC
conducted some activities studying the uncertainties between
the projections for different climate models within the scope

of Fifth Assessment Report (AR5) which is intended to be
published (www.IPCC.CH). Therefore, it is considerably
important to use the new GCMs to be published within the
scope of AR5 with their new projections and to update the
results in terms of minimizing the uncertainties.

If we are tomake an overall evaluation, negative changes in
the climate will have an effect on the basins which are used to
supply drinking water and the ones used in agriculture, along
with the other basins, affecting their water supplies and runoff
regimes. In addition, in the drought period, there can be an
increase in the frequency, duration, and impact area of the
desertification and forest fires and thus problems will occur in
the drinking water supply and in agriculture. It is clear that
immediate measures must be taken in a national scale against
these problems caused by climate change. We hope that
results derived from this study will be of assistance in the
struggle against the negative effects of climate change on
Izmir-Tahtali freshwater basin in Turkey.
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