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Abstract Regional frequency analysis and spatial–temporal
patterns of precipitation extremes are investigated based on
daily precipitation data covering 1960–2009 using the index-
flood L-moments method together with some advanced sta-
tistical tests and spatial analysis techniques. The results
indicate that: (1) the entire Yangtze River basin can be
divided into six homogeneous regions in terms of extreme
daily precipitation index. Goodness-of-fit test indicates that
Pearson type III (PE3, three parameters), general extreme-
value (GEV, three parameters), and general normal (GNO,
three parameters) perform well in fitting regional precipita-
tion extremes; (2) the regional growth curves for each ho-
mogeneous region with 99 % error bands show that the

quantile estimates are reliable enough and can be used when
return periods are less than 100 years, and the results indicate
that extreme precipitation events are highly probable to
occur in regions V and VI, and hence higher risk of floods
and droughts; and (3) spatial patterns of annual extreme daily
precipitation with return period of 20 years indicate that
precipitation amount increases gradually from the upper to
the lower Yangtze River basin, showing higher risks of
floods and droughts in the middle and lower Yangtze River
basin, and this result is in good agreement with those derived
from regional growth curves.

1 Introduction

Changes in precipitation extremes in both time and space
have a strong influence on human society. Higher frequen-
cies of weather extremes (e.g., Easterling et al. 2000; Alan
et al. 2003) pose a potential threat to the at-risk populations.
Tropical storms, floods, and droughts affect human welfare
directly through catastrophic damage or indirectly through
adverse effects on crop productivity (e.g., Huntington 2006).
In recent years, climate changes and related impacts on
human society, particularly on agriculture and food security,
have received an unprecedented attention (e.g., Schmidhuber
and Tubiello 2007; MacDonald 2010; Piao et al. 2010)
because of the significant role of the availability, accessibil-
ity, and security of food and water in the stability and
sustainability of human society. Moreover, investigation of
precipitation changes could be the first step into thorough
understanding of variations of hydrological cycles in the
backdrop of global climate changes (e.g., Allen and Ingram
2002; Alan et al. 2003; Dore 2005). All these could be the
reasons that the precipitation changes have drawn over-
whelmingly increasing concerns from researchers around
the world in recent decades (Fatichi and Caporali 2009),
and it is particularly true for the precipitation extremes
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(Easterling et al. 2000; Emori and Brown 2005; Zhang et al.
2011, 2012).

The Yangtze River (Fig. 1), being the longest river in
China and the third longest river in the world, plays an
important role in the sustainable development in China.
However, frequent floods in the Yangtze River basin
inflicted considerable loss on economy and human life. In
1998, disastrous floods occurred to large parts of the basin,
which was the largest flood since 1954. The economic loss
was 166 billion RMB (nearly 28 billion US dollars). This
flood hazard was the direct result of unusually high precip-
itation that occurred between June and August (670 mm) due
to a strong El Niño event (Yin and Li 2001). Therefore, more
and more investigations have been conducted on floods and
the possible mechanisms behind (e.g., Zhang et al. 2006,
2007). Extreme precipitation events are the main causes for
the flood hazards in the Yangtze River basin (Zhang et al.
2005).

The southern part of the Yangtze River basin is climati-
cally close to tropical climate and the northern part to the
temperate zone. The annual mean temperature in the south-
ern and northern parts of the middle and lower Yangtze River
basin is roughly 19 and 15 °C, respectively; and the mean
annual precipitation in the basin varies from 300 to 500 mm
in the western region to 1,600–1,900 mm in the southeastern
region and the precipitation is mostly concentrated in the
summer season (from June to August), accounting for nearly
half of the annual total precipitation amount (Guo et al.
2012). In this regard, uneven distribution of precipitation
changes is one of the major causes behind the frequent floods
and droughts across the Yangtze River basin. Therefore,
regionalization of precipitation extremes and the related
statistical behaviors do definitely merit further study. There
are some studies pertaining to the precipitation extremes in

the Yangtze River basin (e.g., Su et al. 2005). Zhang et al.
(2008) analyzed the changing characteristics of precipitation
maxima using Mann–Kendall trend test and explored the
possible causes for the changes by using NCEP/NCAR
reanalysis dataset. The research results indicate changes of
precipitation maxima from relatively stable patterns to the
significant increasing/decreasing trend in the mid-1970s.
With respect to the intra-annual variability, the rainy days
are decreasing and precipitation intensity is increasing, and
significant increasing trend of precipitation intensity was
detected in the middle and lower Yangtze River basin.

However, the regional frequency analysis of precipitation
extremes with the state-of-art L-moments techniques has not
been conducted in the whole Yangtze River Basin, except
similar study in the Pearl River basin (Yang et al. 2010), as a
highly complicated river system that encompasses a large
area with various random and systematic variations so far.
This is definitely instrumental in terms of sound understand-
ing of spatial and temporal variations of precipitation ex-
tremes, and is also greatly helpful for understanding of
occurrence of floods and droughts in both space and time.
Therefore, efforts should be made to carry out the regional
frequency analysis of extreme precipitation in the basin and
this is the major motivation of this study.

The major objectives of this study are to: (1) identify and
delineate the hydrological homogeneous regions for precip-
itation extremes defined in this study; (2) determine the best
probability distribution for rainfall extremes, conduct region-
al frequency analysis with uncertainty assessment including
the corresponding error bounds and root mean squared error
using the L-moments; and (3) characterize the spatial–tem-
poral patterns of extreme precipitation events in order to
reveal the underlying impacts of climate variations dominat-
ed in the Yangtze River basin. The study results will

Fig. 1 Locations of the Yangtze River basin and selected meteorological stations
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definitely benefit further development of understanding of
the unique and complex features of extreme rainfall in the
Yangtze River basin, the largest river basin in China, and
hence the basin-scale water resources management in the
backdrop of changing climate.

2 Data

Daily precipitation data covering 1960–2009 were collected
at 141 precipitation stations and the precipitation dataset has
been provided by the National Climate Center of the China
Meteorological Administration. The locations of the stations
are shown in Fig. 1. There are 42 precipitation stations
containing missing daily precipitation data, as illustrated in
circles with dots (Fig. 1). We excluded the stations with
missing values for a month or longer and the largest missing
data rate is only 1.09 %. The missing data were filled by the
long-term average of the same days of other years. Given the
objectives of this study, the gap-filling method, which was
similarly employed by Zhang et al. (2011), does not signif-
icantly affect the final results. As for precipitation extremes,
Alexander et al. (2006) has set an exact definition and
formula for 27 extreme daily precipitation and temperature
indices and there are 11 extreme daily precipitation indices,
involving five different categories that are percentile-based
indices, absolute indices, threshold indices, duration indices,
and so on. In this study, four indices are selected: (1) the
annual number of heavy precipitation days with precipitation
>10 mm (R10); (2) the annual amount of rainfall exceeding
the 95th (R95P) percentiles, and the 95th percentile of pre-
cipitation was defined on the wet days (defined as the rainy
day with daily precipitation larger than 1 mm) in a 30-year
period, and is selected during the period of 1971–2000; (3)
maximum 1-day precipitation amount (RX1DAY); and (4)
maximum 5-day precipitation amount (RX5DAY).

3 Methodology

Regional frequency analysis based on L-moment method has
been used to characterize the spatial pattern of precipitation
extremes within the Yangtze River basin. The methods are
presented in this section, including the stationarity test, serial
correlation check, L-moments approach, regional frequency
analysis based on the L-moment, and spatial analysis.

3.1 Stationarity test and serial correlation check

Both stationarity and independence are important underlying
assumptions inherent in frequency analysis, thus the analysis
without stationarity and serial correlation tests may lead to
incorrect results and conclusions (Yang et al. 2010).

Therefore, it is beneficial to conduct stationarity and serial
correlation tests prior to the regional frequency analysis. A
stationary series is usually defined as constant mean, vari-
ance and autocorrelation, etc., and in this paper we mean a
flat-looking series. The trend test is one of the most popular
methods for examining the stationarity in hydrological se-
ries. With the advantage of not requiring any distribution
assumptions in the data while having the same power as its
parametric counterparts, the rank-based Mann–Kendall
method (Mann 1945; Kendall 1975) is recommended by
the World Meteorological Organization for assessing the
significance of monotonic trends in hydrological series
(Mitchell et al. 1966). The effect of the serial correlation on
the Mann–Kendall (MK) test was eliminated using the pre-
whitening technique developed by Yue et al. (2002) in this
study.

The serial correlation check was carried out mainly by
examining the autocorrelation coefficients of the time series.
When the autocorrelation coefficients of different lag times,
calculated for a time series, are within the 95 % confidence
level, the observations in this time series can be accepted as
being independent from each other. In this study according to
the calculated autocorrelation coefficients of lag-1, for each
annual series, the observations in that series can be accepted
as being independent at the 95 % significance level. In the
paper, for the stations that are not stationary or independent
are excluded in the dataset for the regional frequency analy-
sis of extreme daily precipitation index.

3.2 L-moments theory

L-moments have the theoretical advantages over convention-
al moments for being able to characterize a wider range of
distributions and being more robust to the presence of out-
liers in the data. Details about the L-moments approach can
be found in Hosking and Wallis (1997). In brief, it is a
modification of the probability weighted moments method
with the advantage of offering a description of the shape of a
probability distribution by L-skewness and L-kurtosis (Yang
et al. 2010). The L-moment is a linear combination of the
probability weighted moments. The sample L-moment ratios
are defined as

t ¼ l2=l1 and tr ¼ lr=l2; r ¼ 3; 4;… ð1Þ
where lr being the unbiased rth L-moments, being analogue
to the traditional ratios, that is, t is the coefficient of variation
(L-CV), t3 the L-skewness, and t4 the L-kurtosis. The L-
moment ratios will be used for homogeneity analysis in the
regional frequency analysis.

Compared with conventional moments, L-moments have
less bias in estimation and their asymptotic are closer to the
normal distribution in finite samples. And the L-moments
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approach covers the characterization of probability distribu-
tions, the summary of observed data samples, the fitting of
probability distributions to data, and the testing of the distri-
butional form (e.g., Yang et al. 2010).

3.3 Regional frequency analysis based on L-moments
method

Suppose that there are N sites in a region with sample size n1,
n2, . . . , nN, respectively. And the sample L-moment ratios
(L-CV, L-skewness, and L-kurtosis) at site i are denoted by
t(i), t3

(i), and t4
(i), respectively. Then the regional weighted

average L-moment ratios are given by:

t ¼
X
i¼1

N

nit
ið Þ.X

i¼1

N

ni and tr¼
X
i¼1

N

nit
ið Þ
r

.X
i¼1

N

nir ¼ 3; 4;… ð2Þ

The regional frequency analysis using L-moments con-
sists of five steps (Hosking and Wallis 1993, 1997): (1)
identification of homogenous regions by cluster analysis;
(2) screening of the data using the discordancy measure Di;
(3) homogeneity testing using the heterogeneity measure H;
(4) distribution selection using the goodness-of-fit measure
Z; and (5) regional estimation of precipitation quantiles using
the L-moment approach. These five steps were followed to
conduct a regional frequency analysis for the Yangtze River
basin and the statistical methods employed are introduced
below.

3.3.1 Identification of homogenous regions by cluster
analysis

In this study, five variables are adopted to characterize the
precipitation changes, i.e., latitude, longitude, elevation, the
mean annual precipitation, and the standard deviation of
annual precipitation. And then the Fuzzy c-mean based on
the five variables was used to cluster the stations in the
Yangtze River basin with the number of clusters identified
based on the cluster validity index for the fuzzy c-mean as
proposed by Wu and Yang (2005).

The output from the cluster analysis is not the final results.
Subjective adjustments can often be found to improve the
physical coherence of regions and to reduce the heterogene-
ity of regions as measured by the heterogeneity measure.
Several adjustments of regions may be recommended
(Hosking and Wallis 1997): (1) move a site or a few sites
from one region to another; (2) delete a site or a few sites
from the dataset; (3) subdivide the region; (4) break up the
region by reassigning its sites to other regions; (5) merge the
region with another or others; (6) merge two or more regions
and redefine groups; and (7) obtain more data and redefine
groups.

3.3.2 Screening the data using the discordancy measure

Let ui=[t
(i),t3

(i),t4
(i)]T be the vector containing the t, t3, and t4

values for site iwhere the superscript T denotes transposition
of a vector or matrix. And the (unweighted) regional average
is defined as (Hosking and Wallis 1993):

u ¼
X
i¼1

N

ui
.
N ð3Þ

Then the discordancy measure for site i is defined as
(Hosking and Wallis 1993):

Di ¼ 1

3
N ui−u
� �T

A−1 ui−u
� �

ð4Þ

where A ¼ ∑
i¼1

N

ui−uð Þ ui−uð ÞT .

Obviously, a large value ofDi indicates the discordancy of
site i with other sites. Hosking and Wallis (1997) found that
there was no single fixed number which can be considered to
be a “large” Di value and suggested some critical values for
discordancy test which are dependent on the number of sites
in the study region.

3.3.3 Homogeneity testing using the heterogeneity measure

The regional average L-CV, L-skewness, and L-kurtosis,
represented by tR, t3

R, and t4
R, respectively, are computed

as (Hosking and Wallis 1993; Yang et al. 2010):

tR ¼
X
i¼1

N
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R
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3
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R
4
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4
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where ni=∑
i¼1

N

ni denotes the weight applied to sample L-

moment ratios at site i. And the regional average mean l1
R

is, without loss of generality, set to be 1. As Hosking and
Wallis (1997) found that H2 is a weaker test of heterogeneity
thanH1, the measures of dispersion in this study is defined as
(Hosking and Wallis 1997; Yang et al. 2010):

V 1 ¼
X
i¼1

N

ni t
ið Þ−t Rð Þ

h i2.X
i¼1

N

ni

( )1=2

ð6Þ

Let μv and σv denote the mean and standard deviation
values of V1 computed on the basis of a large number of
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simulated homogeneous regions. Hence the statistic that
measures the heterogeneity of a set of sites is given by:

H1 ¼ V 1−μvð Þ
σv

ð7Þ

In order to obtain reliable values of μv and σv, the number
Nsim of simulations needs to be large and Nsim=1,000 was
used in this study, and these were calculated using the R
package lmomRFA maintained by Hosking (2012a). The
region is regarded to be “acceptably homogeneous” if
H1<1, “possibly heterogeneous” if 1≤H1<2, and “definitely
heterogeneous” if H1>2. In this study a region has been
accepted as homogeneous if H1<2.

3.3.4 Distribution selection using the goodness-of-fit
measure

For each candidate distribution, the goodness-of-fit measure:

ZDIST ¼ τDIST4 −t4 þ β4

� �.
σ4 ð8Þ

was used, as suggested by Hosking and Wallis (1993) using
the L-kurtosis, where τ4

DIST is the L-kurtosis of the fitted
distribution to the data using the candidate distribution, and:

β4 ¼
X
m¼1

N sim

t4
m−t4

� �.
N sim ð9Þ

is the bias of t4 estimated using the simulation technique as
before with tm4 being the sample L-kurtosis of the mth sim-
ulation, and:

σ4 ¼ N sim−1ð Þ−1
X
m¼1

N sim

t4
m−t4

� �
−N simβ

2
4

" #( )1
2

ð10Þ

is the standard deviation of t4 . The fit is considered to be
adequate if |ZDIST| is sufficiently close to zero, and a reason-
able criterion being |ZDIST| ≤1.64.

As the goodness-of-fit test allows only to decide to keep a
distribution or not but does not allow to select among the
distributions kept, then if more than one candidate distribu-
tion is acceptable, the L-moment ratio diagram has been used
to identify the distribution by comparing its closeness to the
L-skewness and L-kurtosis combination in the L-moment
ratio diagram furthermore.

3.4 Spatial interpolation

To understand the spatial patterns of statistical characteristics
of extreme precipitation regimes across the Yangtze River
basin, the geostatistical or stochastic methods were used as
they capitalize on the spatial correlation between neighbor-
ing observations to predict attributed values at unsampled

locations (Goovaerts 1999). And Goovaerts (1999) indicated
that the major advantage of the Kriging method over other
simpler interpolation methods is that sparsely sampled ob-
servations of the primary attribute can be complemented by
secondary attributes that are more densely sampled. There-
fore, the Kriging interpolation method has been used in this
study to characterize the spatial patterns of the extreme
precipitation for the study region.

4 Results and discussion

4.1 Regionalization of precipitation extremes based
on L-moment technique

The topographical features and the climate types of the
Yangtze River basin are complex. The elevation of the Yang-
tze River basin is gradually decreasing from the northwest to
the southeast and the river basin is generally affected by the
southeast monsoon with the southern part of the basin is
climatically close to tropical climate and the northern part
to the temperate zone. The precipitation changes are far from
being spatially homogeneous, so different precipitation cli-
mate patterns were identified. In this case, the homogeneous
regions were first differentiated using the fuzzy c-means
clusters in terms of the latitude, longitude, elevation, mean
annual precipitation, and the standard deviation of annual
precipitation. Generally, six homogeneous regions were
identified based on the cluster validity index for the fuzzy
c-mean proposed by Wu and Yang (2005) and the results of
the cluster validity index are not shown in the paper.

As suggested by Yang et al. (2010), it is beneficial to make
stationarity and serial correlation tests prior to the regional
frequency analysis. And the Mann–Kendall test was
conducted on the observations of precipitation extremes
(R10, R95P, RX1DAY, and RX5DAY) for all of the stations
in the study basin. For the stations with trends being signifi-
cant at >95% confidence level are considered as not stationary
and excluded from the dataset analyzed in this study and the
results of stations with significant trend at >95 % confidence
level are shown in Fig. 2. Besides, the stations are considered
as not independent if the autocorrelation coefficients of lag-1
are beyond the 95 % confidence level and the results of the
stations, considered as not independent are also shown in
Fig. 2. Similarly, for the stations considered as not indepen-
dent will also be removed from the dataset for analysis.

Then the discordance test was done for each homoge-
neous region of R10, R95P, RX1DAY, and RX5DAY, re-
spectively. Results of the initial cluster show that there are
some sites being discordant with other sites within a homo-
geneous region. For these discordant stations, subjective
adjustments are often necessary to improve the physical
coherence of regions and to reduce the heterogeneity of
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regions as measured by the heterogeneity measure, and these
can be done as illustrated in Section 3.3.1. After several
adjustments, the final results of the identified homogeneous
regions for each extreme precipitation index are obtained and
illustrated in Fig. 3, which shows that the entire Yangtze
River basin can be categorized into six homogeneous regions
for each extreme daily precipitation index. The homogeneity
measure H1 defined in Eq. 7 was calculated for the detected
homogeneous regions and the results (Fig. 3) indicate that
the homogeneous regions identified for each extreme daily
precipitation index are corroborated statistically to be homo-
geneous with H1<2. And for the sites discordant with the

other sites in a homogenous region are also illustrated in
Fig. 3.

4.2 Selection of probability functions

Within each homogeneous region for R10, R95P, RX1DAY,
and RX5DAY, the regional distribution of each extreme daily
precipitation index was fitted by the general normal (GNO,
three parameters); Pearson type III (PE3, three parameters),
general extreme-value (GEV, three parameters), generalized
logistic (GLO, three parameters), and generalized Pareto
(GPA, three parameters) distributions and these distributions

Fig. 2 Homogeneous regions clustered by the fuzzy c-means and the stations being not stationary or independent, where a for R10; b for R95P; c for
RX1DAY, and d for RX5DAY

Fig. 3 Homogeneous regions identified for each extreme daily precipitation index and the sites discordant with the other sites in a homogenous
region are also illustrated by circles with dots, where a for R10, b for R95P, c for RX1DAY, and d for RX5DAY
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are introduced in the Appendix. The goodness-of-fit test was
carried out to generate the results as shown in Table 1, where
the criterion value was 1.64 for the absolute value of
goodness-of-fit measure statistic Z (Hosking and Wallis
1997), corresponding to acceptance of the hypothesized
distribution at a confidence level of 90 %. As the criterion
that the absolute value of Z less than 1.64 is used only to
decide whether or not a distribution should be accepted but
does not allow to decide the probability distributions with the
highest goodness-of-fit value. In this case, the L-moment
ratio diagram is also used to scrutinize the distribution by
comparing its closeness to the L-skewness and L-kurtosis

combination in the L-moment ratio diagram. The L-moment
ratio plot for R10, R95P, RX1DAY, and RX5DAY at six
homogeneous regions for extreme daily precipitation index
R10, R95P, RX1DAY, and RX5DAYare illustrated in Figs. 4,
5, 6, and 7, respectively.

Table 1 and Figs. 4, 5, 6, and 7 indicate that the regional
distributions with the highest goodness-of-fit performance
for R10, R95P, RX1DAY, and RX5DAY for each homoge-
neous region are displayed in Table 2. It can be observed that
PE3, GEV, and GNO perform well in fitting regional precip-
itation extremes. And then the regional growth curves of
R10, R95P, RX1DAY, and RX5DAY for each homogeneous

Table 1 Goodness-of-fit test of regional distribution for each homogeneous region

Regions GLO GEV GNO PE3 GPA GLO GEV GNO PE3 GPA
R10 R95P

Region I 3.88 0.12 0.82 0.75 −7.02 6.02 1.39 2.10 1.92 −7.57

Region II 5.32 0.23 1.46 1.46 −9.05 3.60 −0.36 −0.22 −0.78 −8.53

Region III 6.12 0.58 1.51 1.35 −10.06 5.88 2.13 1.92 1.02 −5.95

Region IV 4.53 −2.02 −0.57 −0.60 −14.15 6.44 0.92 1.09 0.30 −10.51

Region V 6.06 −0.40 0.58 0.32 −12.93 6.65 2.08 1.80 0.65 −7.79

Region VI 5.33 −0.46 0.60 0.48 −11.47 4.99 1.41 0.99 −0.17 −6.52

RX1DAY RX5DAY

Region I 3.07 −0.19 −0.27 −0.95 −7.12 3.93 −0.42 0.55 0.53 −8.49

Region II 1.67 −0.59 −1.31 −2.69 −6.00 3.94 −1.29 −0.11 −0.14 −10.96

Region III 3.20 0.39 −0.37 −1.89 −6.20 6.88 0.81 1.78 1.58 −10.91

Region IV 3.63 0.47 −0.66 −2.78 −7.18 5.47 −1.58 −0.16 −0.24 −14.82

Region V 2.02 −0.32 −1.48 −3.58 −6.24 5.66 −0.39 0.61 0.42 −12.03

Region VI 2.60 0.29 −0.67 −2.43 −5.42 4.87 −0.79 0.27 0.16 −11.53

Fig. 4 L-moment ratio plot for
R10 at six homogeneous regions
and a, b, c, d, e, and f are for
regions I to VI, respectively
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region are demonstrated in Figs. 8, 9, 10, and 11, respective-
ly, and the 99 % error bounds are also shown in these figures.
It can be identified from these figures that the quantile
estimates are valid and justified to be used when return
periods are less than 100 years. Meanwhile, Fig. 8 also
shows that the regional growth curve of R10 for each homo-
geneous region is convex, i.e., the precipitation increments in
all of the homogeneous region are generally decreasing when
occurrence frequencies increase for precipitation extremes
with return periods of 5, 10, 50, and 200 years. This means
that the extreme values of R10 deviate little from the mean or
the median in the Yangtze River basin. As the skewness is a

measure of the asymmetry of the probability distribution of a
real world random variable; and kurtosis is a measure of the
“peakedness” of the probability distribution of a real world
random variable, it can be seen from the L-moment ratio
diagram of R10 (Fig. 4) that the regional average L-skewness
and L-kurtosis are also small, which is in good agreement
with the results of regional growth curves.

It can be seen from Fig. 9 that the regional growth curve of
RX95P for homogeneous regions I to IV are evidently con-
vex; but for regions Vand VI, the regional growth curves are
nearly the straight lines, especially for region VI. Similarly,
this can also be discerned from the L-moment ratio diagram

Fig. 5 L-moment ratio plot for
R95P at six homogeneous
regions and a, b, c, d, e, and f are
for regions I to VI, respectively

Fig. 6 L-moment ratio plot for
RX1DAY at six homogeneous
regions and a, b, c, d, e, and f are
for regions I to VI, respectively
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for R95P (Fig. 5), which shows that the regional average L-
skewness and L-kurtosis are small in regions I to IV, while
larger in region V and region VI. This means that the values
of R95P in region V are in more asymmetrical distribution
and are prone to extreme value events, especially for region
VI. It can be observed from Fig. 10 that the regional growth
curves of RX1DAY for each homogeneous region are con-
cave, opposite of convex, except for region I which is nearly
a straight line, and this can also be expected from the L-
moment ratio diagram of RX1DAY (Fig. 6). It can be seen
from Fig. 6 that the regional average L-skewness and L-
kurtosis are large in each homogeneous region and this
means that it is prone to extreme value events in the Yangtze
River basin for 1-day maximum precipitation. Figure 11
indicates that the regional growth curves of RX5DAY for
homogeneous regions Vand VI are evidently concave which
can be identified from the L-moment ratio diagram of
RX5DAY (Fig. 7) that the regional average L-skewness
and L-kurtosis in regions V and VI are larger than other
regions. And this means that, taking account of consecutive
5 days precipitation amount, it is prone to extreme value
events only in regions Vand VI, implying that regions Vand

VI are more likely to suffer from extreme precipitation
events.

4.3 Spatial patterns of precipitation extremes of different
return periods

Spatial patterns of the precipitation extremes can serve as
one of the most important environmental indicator for inte-
grated basin-scale water resources management, thus it is
instrumental to quantify the spatial associations of precipita-
tion extremes between sites and to map precipitation ex-
tremes with different return periods across the Yangtze River
basin using the Kriging interpolation technique. To improve
the accuracy of spatial interpolation of precipitation ex-
tremes, the stations which could not be grouped into any
differentiated homogeneous region are not excluded in the
dataset. It can be seen from the above that the performance of
PE3, GEV, and GNO are good in fitting the regional distri-
bution for R10, RX95P, RX1DAY, and RX5DAY. The dis-
cordant stations of R10, RX95P, RX1DAY, and RX5DAY
are fitted by the three distributions, the goodness-of-fit tests
by Kolmogorov–Smirnov method show that for all of the

a b

c d

e f

Fig. 7 L-moment ratio plot for
RX5DAY at six homogeneous
regions and a, b, c, d, e, and f are
for regions I to VI, respectively

Table 2 The best-fitted regional distributions of R10, R95P, RX1DAY, and RX5DAY for each homogeneous region

Region I Region II Region III Region IV Region V Region VI

R10 GEV GNO GEV GNO PE3 PE3

R95P GEV GEV PE3 PE3 PE3 GNO

RX1DAY GNO GEV GEV GNO GEV GEV

RX5DAY GEV GEV PE3 PE3 GNO GNO
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stations these three distributions are all significant at 95 %
level (the results not shown here). Then the best-fitted dis-
tributions are selected by plotting position figure, here taking
the station 114 which is discordant for the regional frequency
analysis of RX1DAY as an example, the plotting position
figure of station 114 is illustrated in Fig. 12. It can be seen
from Fig. 12 that the GEV fits well the RX1DAY. And then
the best-fitted distributions for all of the discordant stations
are selected and the results are shown in Table 3.

Then the spatial patterns of annual extreme daily precip-
itation index of R10, RX95P, RX1DAY, and RX5DAY with

return period of 20 years are illustrated in Fig. 13. It can be
seen from Fig. 13 that precipitation amount increases grad-
ually from the upper to the lower Yangtze River basin.
Meanwhile it can also be seen that there are two regions with
the highest precipitation extremes in the eastern part of the
Yangtze River basin and the regions covered by the stations
21, 24, and 25 (Fig. 1), specifically the regions east of the
107° E. However, there is also another region with higher
precipitation extremes in the central parts of the basin, spe-
cifically the region between 100° E–107° E, and it is partic-
ularly the case for R95P, RX1DAY, and RX5DAY (Fig. 13b–

Fig. 8 Estimated regional
growth curves of R10, with 99 %
error bands for six homogeneous
regions and A, B, C, D, E and F
are for regions I to VI,
respectively

Fig. 9 Estimated regional
growth curves of R95P, with
99 % error bands for six
homogeneous regions and a, b,
c, d, e, and f are for regions I to
VI, respectively
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d). Figure 1 shows that the locations of stations 21, 24, and
25 are in the boundary of a basin, which is also called as the
Szechwan Basin. The elevation at the southeastern part of the
Szechwan Basin is relatively lower, and the water vapor of
southeast monsoon is conducive to input to the Szechwan
Basin while the water vapor is blocked in the other boundary
of the basin, causing the convection of water vapor. Then the
precipitation in the boundary of the Szechwan Basin will be
more than other regions in the vicinity of the precipitation
center. It can be seen from Figs. 13 and 1 that the precipita-
tion in the boundary of the Szechwan Basin, except the

southeastern part, is more than the ambient regions. And
there is an obvious precipitation center at the west part of
the Szechwan Basin. Meanwhile it can be seen from Fig. 13a
that precipitation in the center part of the Yangtze River basin
is large in amount and this is due to the fact that stations 21,
24, and 25 with significant trends of R10 are not included in
the spatial interpolation analysis.

The result that higher precipitation amount of precipitation
events with return periods of 20 years is identified in the
middle and southeastern parts of the Yangtze River basin, or
mainly in the lower Yangtze River basin is consistent with our

Fig. 10 Estimated regional
growth curves of RX1DAY, with
99 % error bounds for six
homogeneous regions and a, b,
c, d, e, and f are for regions I to
VI, respectively

Fig. 11 Estimated regional
growth curves of RX5DAY, with
99 % error bands for six
homogeneous regions and a, b,
c, d, e, and f are for regions I to
VI, respectively
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previous studies (e.g., Zhang et al. 2008). Large-scale atmo-
spheric circulation analysis indicates decreasing strength of
East Asian summer monsoon during 1975–2005 as compared
to that during 1961–1974 and increasing geopotential height in
the north China, South China Sea, and west Pacific regions, all
of which combine to negatively impact the northward propa-
gation of the vapor flux. This circulation pattern will be bene-
ficial for the longer stay of theMeiyu front in the Yangtze River
basin, leading to more precipitation in the middle and lower
basin in summer months (Zhang et al. 2008). Larger precipita-
tion amount of precipitation events with return periods of 20-
years indicate higher risk of floods and droughts. Moreover,
Zhang et al. (2008) also demonstrated that the significant
increasing summer precipitation intensity and changing fre-
quency in the rain/no rain days in the middle and lower Yangtze
River basin have potential to result in higher occurrence prob-
ability of flood and drought hazards in the region. Therefore,
under the influences of changing climate, the risk of droughts
and floods will be significantly amplified.

5 Conclusions

Regional frequency analysis based on extreme daily precipi-
tation index has scientific and practical value in the context of
basin-scale water resource and flood risk management. This
paper presents a regional frequency analysis of precipitation
extremes and characterization of the spatial pattern of rainfall
extremes variations in the Yangtze River basin using the well-
known index-flood L-moments approach together with some
advanced statistical tests and spatial analysis methods.

The Yangtze River basin can be categorized into six homo-
geneous regions in terms of extreme daily precipitation index.
For each homogeneous region of R10, R95P, RX1DAY, and
RX5DAY, the regional distribution of each extreme daily
precipitation index was fitted by the general normal, Pearson
type III, general extreme-value, generalized logistic, and gen-
eralized Pareto distribution and the goodness-of-fit test results
indicated that PE3, GEV, and GNO performed well in fitting
regional distributions.
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Fig. 12 Fitted probability
functions for RX1DAYat station
114

Table 3 The best fitted distributions for all of the discordant stations of each extreme daily precipitation index

R10 R95P RX1DAY RX5DAY

Station Distribution Station Distribution Station Distribution Station Distribution

2 PE3 1 PE3 1 PE3 1 PE3

3 GEV 2 PE3 2 GEV 2 GEV

4 GEV 10 GEV 4 PE3 4 PE3

5 GEV 22 PE3 5 GEV 18 PE3

9 PE3 123 GEV 37 GNO 22 PE3

18 PE3 65 GNO 27 GNO

23 GEV 114 GEV 36 GEV

79 GEV

80 GEV

116 PE3
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Additionally, this study also presents the regional growth
curves of R10, R95P, RX1DAY, and RX5DAY for each
homogeneous region with the 99 % error bands. The results
indicate that the quantile estimates are reliable enough and
can be used when return periods are less than 100 years.
Furthermore, analysis results of the shape of the regional
growth curves and the regional average L-skewness and L-
kurtosis of R10, R95P, RX1DAY, and RX5DAY for each
homogeneous region indicate that, for R95P, RX1DAY, and
RX5DAY, the regional average L-skewness and L-kurtosis
in regions V and VI are larger than other regions, implying
that extreme precipitation events are highly probable to
occur in regions V and VI, and hence higher risk of floods
and droughts in regions V and VI.

Spatial patterns of annual extreme daily precipitation in-
dex of R10, RX95P, RX1DAY, and RX5DAY with return
period of 20 years indicate that precipitation amount in-
creases gradually from the upper to the lower Yangtze River
basin. Moreover, there are two precipitation centers with
larger precipitation amount in the eastern part of the Yangtze
River basin and the western part of the Szechwan Basin
boundary. As the Yangtze River basin is dominated by the
southeast monsoon, it is obvious that the precipitation grad-
ually decreases from southeast to northwest, forming an
obvious precipitation center with higher precipitation
amount. The precipitation center with higher precipitation
amount in the western part of the Szechwan Basin boundary
should be attributed to the effects of topography because the
southeast monsoon is blocked in the boundary of the basin,
causing the convection of water vapor. Furthermore, de-
creasing strength of East Asian summer monsoon during
1975–2005 as compared to that during 1961–1974 and in-
creasing geopotential height in the north China, South China

Sea, and west Pacific regions combine to negatively impact
the northward propagation of the vapor flux, and which
should contribute much to the higher precipitation amount
in the middle and lower Yangtze River basin (Zhang et al.
2008).

Acknowledgments The National Natural Science Foundation of Chi-
na (grant no.: 41071020; 50839005), Program for New Century Excel-
lent Talents in University (NCET), and the Geographical Modeling and
Geocomputation Program under the Focused Investment Scheme
(1902042) of The Chinese University of Hong Kong.

Appendix

The univariate distributions used in this study are introduced
as follow, referring to Hosking (2012b):

1. GEV
The generalized extreme-value distribution with lo-

cation parameter ξ, scale parameter α, and shape param-
eter κ has distribution function

F xð Þ ¼ exp −exp −yð Þð Þ ð1Þ
where y=−κ−1log(1−κ(x−ξ)/α), with x bounded by
ξ+α/k from below if κ<0 and from above if κ>0.
Extreme-value distribution types I, II, and III (Gumbel,
Frechet, and Weibull) correspond to shape parameter
values κ=0, κ<0, and κ>0, respectively.

2. GNO
The generalized normal distribution with l location

parameter ξ, scale parameter α, and shape parameter κ
has distribution function

F xð Þ ¼ Φ yð Þ ð2Þ

Fig. 13 Spatial patterns of annual extreme daily precipitation index with return period of 20 years: a for R10; b for R95P; c for RX1DAY, and d for
RX5DAY
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where y=−κ−1log(1−κ(x−ξ)/α), and Φ(y) is the distri-
bution function of the standard normal distribution, with
x bounded by ξ+α/k from below if κ<0 and from above
if κ>0.

3. GLO
The generalized logistic distribution with location

parameter ξ, scale parameter α, and shape parameter κ
has distribution function

F xð Þ ¼ 1= 1þ exp −yð Þð Þ ð3Þ
where y=−κ−1log(1−κ(x−ξ)/α), with x bounded by
ξ+α/k from below if κ<0 and from above if κ>0.

4. GPA
The generalized Pareto distribution with location pa-

rameter ξ, scale parameter α, and shape parameter κ has
distribution function

F xð Þ ¼ 1−exp −yð Þ ð4Þ
where y=−κ−1log(1−κ(x−ξ)/α), with x bounded by
ξ+α/k from below if κ<0 and from above if κ>0. And
the exponential distribution is the special case κ=0. The
uniform distribution is the special case κ=1.

5. PE3
The Pearson type III distribution contains as special

cases the usual three-parameter gamma distribution (a
shifted version of the gamma distribution) with a finite
lower bound and positive skewness; the normal distri-
bution, and the reverse three-parameter gamma distribu-
tion, with a finite upper bound and negative skewness.
The distribution’s parameters are the first three
(ordinary) moment ratios: μ (the mean, a location pa-
rameter), σ (the standard deviation, a scale parameter),
and γ (the skewness, a shape parameter).

If γ≠0, let α=4/γ2, β ¼ 1
2σ γj j , ξ=μ−2σ/γ. The prob-

ability density function is

f xð Þ ¼
x−ξj jα−1exp − x−ξj j

.
β

� �
βαΓ αð Þ ð5Þ

with x bounded by ξ from below if γ>0 and from above
if γ<0. If γ=0, the distribution is a normal distribution
with mean μ and standard deviation σ.
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