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Abstract This study evaluated the ability of Weather
Research and Forecasting (WRF) multi-physics ensembles
to simulate storm systems known as East Coast Lows
(ECLs). ECLs are intense low-pressure systems that develop
off the eastern coast of Australia. These systems can cause
significant damage to the region. On the other hand, the
systems are also beneficial as they generate the majority of
high inflow to coastal reservoirs. It is the common interest of
both hazard control and water management to correctly
capture the ECL features in modeling, in particular, to
reproduce the observed spatial rainfall patterns. We simulat-
ed eight ECL events using WRF with 36 model configura-
tions, each comprising physics scheme combinations of two
planetary boundary layer (pbl), two cumulus (cu), three
microphysics (mp), and three radiation (ra) schemes. The
performance of each physics scheme combination and the
ensembles of multiple physics scheme combinations were
evaluated separately. Results show that using the ensemble
average gives higher skill than the median performer within
the ensemble. More importantly, choosing a composite av-
erage of the better performing pbl and cu schemes can
substantially improve the representation of high rainfall both
spatially and quantitatively.
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1 Introduction

East Coast Lows (ECLs) are intense low-pressure systems
that occur off the eastern coast of Australia. Extreme rainfall
events associated with ECLs frequently cause significant
flash flooding near the coast, as well as major flooding in
river systems with headwaters in the Great Dividing Range.
In spite of its destructive capacity, the rainfall associated
with ECLs has a beneficial role for coastal communities, as
it provides significant inflow to coastal storages along the
New South Wales (NSW) coast (Pepler and Rakich 2010).
Large events can even provide inflow to the headwaters of
western flowing rivers, particularly in northeastern NSW. It
is important for both hazard control and water management
to correctly capture the ECL features in modeling, in par-
ticular, to reproduce the observed rainfall amounts and spa-
tial patterns.

The Weather Research and Forecasting (WRF) model
(Skamarock et al. 2008) is a numerical weather prediction
and atmospheric simulation system designed for operational
forecasting, atmospheric research, and dynamical downscal-
ing of Global Climate Models. Previous studies have shown
that the WRF model performs well for simulating the regional
climate of south-eastern Australia (Evans and McCabe 2010,
2013; Evans and Westra 2012). Evans et al. (2012) evaluated
physics scheme combinations for hind-cast simulations of
four ECL events using the WRF model. The authors investi-
gated the influence of selecting different planetary boundary
layer (pbl), cumulus (cu), microphysics (mp), and radiation
(ra) schemes on accuracy of maximum and minimum temper-
ature, wind speed, mean sea level pressure, and rainfall.
Similar sensitivity study was done for other regions too
(Yuan et al. 2012; Jankov et al. 2005; Awan et al. 2011). For
example, Yuan et al. (2012) used the WRF model configured
with two alternative schemes of mp, cu, ra, and land surface
physics schemes when forecasting winter precipitation in
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China. The authors of these studies struggled to identify
a single “best” physics scheme combination for all vari-
ables, although it was clear that some combinations
performed better than others for certain variables
(Evans et al. 2012).

While sensitivity analysis cannot agree on a best model
configuration (Jankov et al. 2005; Evans et al. 2012), other
methods can be utilized to maximize the information gained
from multiple model runs using different parameterizations.
Ensemble averaging is one of them, which is widely used in
weather forecasting, seasonal predictions, and climate simu-
lations (Fraedrich and Leslie 1987; Hagedorn et al. 2005;
Phillips and Gleckler 2006; Schwartz et al. 2010; Schaller et
al. 2011). Many studies have investigated the ensemble aver-
ages of various regional climate models and perturbed initial
conditions in simulating regional rainfall (Cocke and LaRow
2000; Yuan and Liang 2011; Carril et al. 2012; Ishizaki et al.
2012). Some of them showed that an ensemble average had
skill in reproducing heavy rainfall events (Yuan and Liang
2011; Yuan et al. 2012), while others reported that the results
were far from satisfactory (Carril et al. 2012).

In this paper, we evaluated the skill of ensemble averages
(for the full ensemble and subsets of particular physics
schemes) relative to the use of individual ensemble members
to capture spatial and distributional properties of rainfall as-
sociated with eight ECLs. We used the same physics scheme
combinations as those used by Evans et al. (2012) but extend-
ed the modeling to cover four more events, in order to give a
complete representation of the different types of synoptic
events typically associated with ECLs (Speer et al. 2009).

2 Method
2.1 Physics scheme ensemble and model domain
This study used version 3.2.1 of WRF with the Advanced

Research WRF dynamical core (Skamarock et al. 2008).
Initial and boundary conditions were provided by European

Table 1 WRF physics parameterization schemes used in the study

Centre for Medium-Range Weather Forecasts interim re-
analyses (ERA Interim) (Dee et al. 2011). The experimental
configuration consists of: 2 pbl, 2 cu, 3 ra, and 3 mp schemes,
giving a total of 36 runs for each event (Table 1). The full
details of the experiment setup are described in Evans et al.
(2012).

Two model domains with one-way nesting (with spectral
nudging of wind and geopotential above 500 hpa in the
outer domain) were used in this study (see Fig. 1), with grid
spacing of 50 and 10 km for the outer and inner model
domain, respectively. Both domains had 30 vertical levels.
Each run was started 1 week prior to the event for a 2-week
period, thus encompassing pre- and post-storm days. The
total number of events simulated and resolution chosen were
limited by the available computational resources.

2.2 Case study periods

Using mean sea level pressure, wind speed, rainfall, and
wave height, Speer et al. (2009) identified six different types
of ECLs: (1) ex-tropical cyclones, (2) inland trough lows,
(3) casterly trough lows, (4) wave on front lows, (5)
decaying front lows, and (6) lows in the westerlies. Unlike
Evans et al. (2012), our study of eight ECL events includes
examples of all common synoptic ECL types (Table 2). The
events were subjectively named based on the location,
timing, or type of event.

The eight ECL events were subjectively divided into two
categories (strong and weak) according to the observed
rainfall amount. Four strong events (NEWY, SURFERS,
JUN, and FEB) generally produced more than 200-mm
cumulate rainfall and caused regional or local flooding. In
contrast, four weak events (CTLOW, OCT, MAY and
SOLOW) generated less rainfall.

2.3 Observation and evaluation methodology

Gridded daily rainfall data over land with ~5-km horizontal
grid spacing obtained from the Australian Water Availability

Physics schemes Options

Planetary boundary layer/surface layer

Cumulus convection
Kain 2004)

Cloud microphysics

Radiation (long/short wave)
Dudhia 1989)

Land surface

Yonsei University (YSU)/Similarity
theory (MMS5) (Hong et al. 2006;
Paulson 1970; Webb 1970)

Kain-Fritsch (Kain and Fritsch 1990, 1993;

WSM 3 class (Hong et al. 2004; Hong
and Lim 2006; Dudhia 1989)
RRTM/Dudhia (Mlawer et al. 1997;

Mellor-Yamada-Janjic (MYJ)/Similarity
theory (Eta) (Janjic 1994)

Betts-Miller-Janjic (Betts and Miller 1986;
Betts 1986; Janjic 1994, 2000)

WSM 5 class (Hong et al. 2004;  WDM 5 class
Hong and Lim 2006)
CAM/CAM RRTMG/RRTMG

(Collins et al. 2004) (Clough et al. 2005)

Noah LSM (Chen and Dudhia 2001)
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Fig. 1 Topographic map
showing WRF model domains
with grid spacing of about 50 10°N m
and 10 km for the outer and
inner domain, respectively
(inner domain marked by red 0° 2600
box). All evaluations are
conducted in the inner domain 1 2200
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Project (AWAP) (Jones et al. 2009) were used for evaluation
of model simulations. For the evaluation, 13-days accumu-
lated AWAP rainfall was re-gridded to the 10-km resolution
domain. Figure 2 shows accumulated AWAP rainfall maps
for the eight ECL events.

The first day of each simulation was considered as
the spin-up period, and was hence excluded from the
analysis. The skill of each WRF physics scheme com-
bination and their ensembles to simulate accumulated
rainfall was assessed using: spatial correlation (R), bias,
mean absolute error (MAE), root mean square error
(RMSE), and equitable threat score (ETS), also known
as the Gilbert Skill Score (Wilks 2006). Higher values
of R and ETS indicate better forecasts, with a perfect
ETS achieving a score of 1. An ETS below zero in-
dicates that random chance would provide a better sim-
ulation than the model. MAE, RMSE and bias are all
better as they approach zero.

The ETS is commonly used in forecast verification to
investigate the overall spatial performance of the simula-
tions for different rainfall thresholds (10, 25, 50, 100, 200,
and 300 mm for all ECL events). It should be noted that the

150°E 180° 150°W

higher rainfall thresholds have smaller sample sizes with
the 200-mm threshold sampling 1,136 grid points and
the 300-mm threshold sampling only 197 grid points
from AWAP. For each threshold, an observation can be
classified as either: “a” (forecast and observed agree on ex-
ceedance of threshold, i.e., hits), “d” (forecast and observed
agree on non-exceedance of threshold), “c” (exceeded in
observed but not in forecast, i.e., missed event), and “b”
(exceeded in forecast but not in observed, i.e. false
alarm). Having classified all grid cells according to a—d, the
ETS is then calculated as ETS = (a —ar)/(a+b + ¢ — ar),
where ar is the number of hits due to random chance and is
givenbyar=(a+b) x (a+c)/(a+b+c+d).

2.4 Ensemble integration

Ensemble averages were calculated for each event, using all
36 members and subsets of runs simulated with common pbl,
cu, mp, or ra physics schemes. The names and the collection
of runs used in ensembles are summarized in Table 3. For
example, the “YSU” ensemble is averaged over the 18 runs
that use the YSU pbl scheme.

Table 2 Eight events used in the

study Name Occurred on
MAY 19 May 2007
NEWY 8 Jun 2007
JUN 14 Jun 2007
OCT 31 Oct 2007
CTLOW 4 Nov 2007
SURFERS 4 Jan 2008
SOLOW 23 Aug 2008
FEB 8 Feb 2009

Type Intensity Impact

Lows in westerlies Weak Widespread rain

Easterly trough low Strong Extensive flooding
Decaying front low Strong Significant rain

Inland trough low Weak Widespread rain

lows in westerlies Weak Widespread rain
Ex-tropical cyclone Strong Flash flooding

Wave on a front low Weak Widespread showers
Inland trough low Strong Significant widespread rain
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Fig. 2 Observed rainfall totals for each event (millimeter): a NEWY, b SURFERS, ¢ JUN, d FEB, e CTLOW, f OCT, g MAY, and h SOLOW

3 Results

The skill of the ensemble averages was assessed using the
metrics described in Section 2.3 and the results compared
with each other and with the median of the 36 individual
members. Inter-event comparisons showed similarity in re-
sults for all but the SURFERS event. Therefore, in this
section, we focused on the results from the JUN event
(typical of the seven events that give similar results) and
the SURFERS event to demonstrate our findings.

For the JUN event, the ensemble average using all mem-
bers (ALL) provided substantially higher spatial correlation,

lower MAE and RMSE, and better ETS (except for the 300-
mm threshold) than those from the median of the 36 indi-
vidual members (Fig. 3a), but also resulted in more negative
bias than the median. Some of the results using ALL (i.e. R,
RMSE, ETS10) were even better than the 75th percentile
estimate of the 36 individual members. This suggests that
ALL provides better estimates for rainfall amounts and
patterns compared to the median of the 36 individual mem-
bers at all thresholds below 300 mm.

Ensembles using certain mp (WSM3, WSMS5, and WDMS5)
and ra (Dudhia/RRTM, CAM/CAM, and RRTMG/RRTMG)
schemes showed little to no improvement in the skill relative

Table 3 List of ensembles and

the members used to calculate Ensemble name

Ensemble members

Ensemble size

them
All All members 36 members
YSU All members using YSU pbl scheme 18 members
MYJ All members using MYJ pbl scheme 18 members
KF All members using KF cu scheme 18 members
BMJ All members using BMJ cu scheme 18 members
YSU KF All members using YSU pbl and KF cu scheme 9 members
YSU BMJ All members using YSU pbl and BMJ cu scheme 9 members
MYJ_KF All members using MYJ pbl and KF cu scheme 9 members
MYJ_BMJ All members using MYJ pbl and BMJ cu scheme 9 members
WSM3 All members using WSM3 mp scheme 12 members
WSM5 All members using WSMS5 mp scheme 12 members
WDMS5 All members using WDMS5 mp scheme 12 members
Dudhia/RRTM All members using Dudhia/RRTMG ra scheme 12 members
CAM/CAM All members using CAM/CAM ra scheme 12 members
RRTMG/RRTMG All members using RRTMG/RRTMG ra scheme 12 members
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Fig. 3 Plots summarizing statistics from 36 members and ensemble
averages for the JUN (a) and SURFERS (b) events. The boxes and
whiskers show the results from 36 members. The boxes show the inter-
quartile, the middle horizontal lines show the median and the whiskers
show the best and the worst values. The bias, MAE and RMSE values
were divided by 30, 40, and 80, respectively, to allow them to be
plotted in the same graph. The results from five ensembles are shown

to ALL. However, there was a large difference in the
results from ensembles using different pbl (YSU, MYJ)
and cu (KF, BMJ) schemes. The ensemble using YSU
pbl scheme performed better than the ensemble using
MY]J pbl scheme, and similarly ensemble using KF cu
scheme performed better than the ensemble using BMJ
cu scheme (not shown). The ensembles using either
YSU pbl scheme or KF cu scheme outperformed ALL
except for ETS 25, where KF was worse than ALL. The
best performance is typically given by the ensemble
using a combination of the YSU pbl and KF cu scheme
(nine members). This ensemble also considerably
outperformed the combination using YSU pbl and BMJ cu
scheme. At high rainfall thresholds, this ensemble was even

in different markers. A/l represents an ensemble average of all the 36
members, YSU represents the ensemble average for all members using
YSU scheme, KF represents the ensemble average for all members
using KF scheme, YSU KF represents the ensemble average for all
members using both YSU and KF schemes, and YSU BM.J represents
the ensemble average for all members using both YSU and BMJ
schemes

superior to the best result in the 36 individual members (i.e.,
thresholds at 200 and 300 mm).

As mentioned above, results for the SURFERS event
were different to those of other events. While ALL gave a
higher spatial correlation and better ETS for multiple thresh-
olds (except for 10 and 300 mm) compared to the median of
the 36 individual members, it also produced larger bias,
MAE and RMSE compared to the median (Fig. 3b). The
ensemble using YSU pbl scheme performed better than
ALL, while the ensemble using KF cu scheme performed
worse than ALL at all rainfall thresholds for ETS but was
still better than ALL for bias, MAE and RMSE. The ensem-
ble using both YSU pbl scheme and KF cu scheme at the
same time showed higher R, smaller bias, MAE and RMSE,
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and better skill at rainfall threshold below 100 mm com-
pared to ALL, but the results were poorer at the 100- and
200-mm rainfall thresholds.

4 Discussion

Ensemble averages have been found to perform consistently
as well as, if not better than, the median of individual
members when evaluated using common metrics in weather
forecasting, seasonal predictions and climate simulations
(Fraedrich and Leslie 1987; Hagedorn et al. 2005; Phillips
and Gleckler 2006; Schwartz et al. 2010; Schaller et al.
2011). For many of these metrics (e.g., bias, RMSE), en-
semble averaging smoothens the field of interest, thus re-
moving any large errors present in the individual ensemble
members. However, this smoothing reduces the outlier
values and hence the ability to capture extremes. Results
presented in Fig. 3 suggest that judicial choice of ensemble
members allows the high rainfall centers to be captured by
an ensemble average. For all events, assessments showed
that the ensemble mean for all members (ALL) and for
members using YSU pbl scheme (YSU) provided better
estimates for rainfall amounts and patterns compared to the
median of the individual members, even though they also
resulted in larger bias, MAE and RMSE for the SURFERS
event relative to the median. The ensemble using the com-
bination of the YSU pbl scheme and KF cu scheme
(YSU_KF) was superior to all the other ensembles for seven

Fig. 4 Difference between the

of the eight events. For SURFER event, the ensemble using
the combination of the YSU pbl scheme and BMIJ cu
scheme (YSU _BMJ) gave the best performance for ETS
100-300.

The unique response of SURFER prompted further in-
vestigation into the synoptic conditions prevailing during
this event. Comparing the complete rainfall field from WRF
(i.e., including ocean grid cells) with observational rainfall
data, we propose that the geographical positioning of the
main rainfall center of SURFER relative to the observational
rainfall data set could provide an explanation for the differ-
ent behavior of SURFER relative to the other events. As
described in Evans et al. (2012), the SURFERS event de-
veloped from a tropical low that persisted for 5 to 6 days
over the Coral Sea, classified as an ex-Tropical Cyclone
(xTC) type by Speer et al. (2009). While SURFER caused
flash flooding throughout the region including Surfers
Paradise in Queensland, information from satellite images
and Climate Prediction Center Merged Analysis of
Precipitation showed that the major rainfall center was oft-
shore, and hence was not captured in the land-based AWAP
observations, whereas for all other events, the major rainfall
centers were on land. As the rainfall evaluation was
conducted only over land, the SURFER simulations were
assessed on conditions peripheral to the main storm center.
Thus, we propose that geographical positioning of the main
rainfall center of SURFER relative to the observational
rainfall dataset could provide an explanation for the differ-
ent behavior of SURFER relative to the other events.
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To further investigate whether the ensembles using the YSU
pbl scheme, the KF cu scheme, or a combination of both will
give more realistic rainfall estimates in different weather con-
ditions, we compared these ensembles with the full member
ensemble (ALL) using an average of skill metrics from eight
events to evaluate their performance. Figure 4a shows differ-
ences between the three ensembles (YSU, KF, and YSU KF)
and the full member ensemble (ALL) averaged over eight
events. The bias, MAE and RMSE values were divided by
100, respectively, to allow them to be plotted in the same scale
with the other metrics. The positive values for R and ETSs and
the negative values for Bias, MAE, and RMSE indicate im-
provement relative to ALL. The results showed that the en-
sembles using either YSU pbl scheme, or KF cu schemes, or
their combination generally produce relatively small changes
in R, bias, MAE and RMSE relative to ALL. At higher rainfall
thresholds, the ensembles preformed much better than ALL
based on the ETS. This indicates that an ensemble based on
carefully chosen physics schemes can dramatically improve
the ability of the ensemble to capture centers of high rainfall.
When the SURFERS event was excluded from the statistics,
the performance of these ensembles became even better for
high rainfall (Fig. 4b). Considering that the ex-Tropical
Cyclone type (like SURFERS event) only constitutes 4 % of
observed ECL events (Speer et al. 2009), the climatological
performance of these ensembles would be more similar to
Fig. 4b.

5 Conclusions

The performance of 36 physics scheme combinations of the
WRF model and their ensembles were evaluated for model-
ing rainfall totals associated with eight ECL events (four
strong and four weak) using five statistical metrics (R, bias,
MAE, RMSE, and ETS for six rainfall thresholds).

The results show that the ensemble average generally
provides more realistic rainfall estimates compared to the
median performer of the individual members. Improvements
compared to individual ensemble members were seen in the
accuracy of rainfall amount and spatial pattern. Furthermore,
based on the sensitivity analyses of physics scheme combina-
tions, we found that the ensembles using the YSU pbl scheme
or the KF cu scheme provided improved rainfall estimates
compared to both the median performer of individual mem-
bers and the all member ensemble mean, particularly at high
rainfall thresholds. The ensemble average using the combina-
tion of YSU pbl scheme and KF cu schemes provided the best
results for simulating centers of high rainfall. This points to
the value of focusing only on a subset of ensemble runs when
calculating an ensemble mean. Depending on the rainfall
characteristics of interest, different parameterization based
sub-ensembles may improve the ensemble mean estimate.
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