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Abstract This work presents a functional clustering pro-
cedure applied to meteorological time series. Our pro-
posal combines time series interpolation with smoothing
penalized B-spline and the partitioning around medoids
clustering algorithm. Our final goal is to obtain homoge-
neous climate zones of Italy. We compare this approach
to standard methods based on a combination of principal
component analysis and Cluster Analysis (CA) and we dis-
cuss it in relation to other functional clustering approaches
based on Fourier analysis and CA. We show that a func-
tional approach is simpler than the standard methods from
a methodological and interpretability point of view. Indeed,
it becomes natural to find a clear connection between math-
ematical results and physical variability mechanisms. We
discuss how the choice of the basis expansion (splines,
Fourier) affects the analysis and propose some comments on
their use. The basis for classification is formed by monthly
values of temperature and precipitation recorded during
the period 1971–2000 over 95 and 94 Italian monitoring
stations, respectively. An assessment based on climatic pat-
terns is presented to prove the consistency of the clustering
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and a comparison of results obtained with different methods
is used to judge the functional data approach.
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1 Introduction

A key issue in meteorological field analysis is played by
the study of their spatiotemporal variability. There exists a
structural variability which describes the nature of a phe-
nomenon both to intra-annual (seasonality) and long-term
variability (climate trend) and it is relevant to be able to
analyze them over homogeneous climate areas. A set of
different methods are used for climate zone determination,
typically a combination of principal component analysis
(PCA) and cluster analysis (CA). Guidelines on the use of
PCA in meteorology and climatology have been set in the
work of Preisendorfer and Mobley (1988). A theoretical and
applied framework of the principal component analyses of
climate-related fields is given in Chapter 13 of Von Storch
and Zwiers (1999). The spatial domain PCA (S-mode) is a
reduction of the information related to the temporal patterns
of the locations (Ehrendorfer 1987). Thus, each compo-
nent generates a mapping of mixed physical features. On
the other hand, the temporal domain PCA (T-mode), by
reducing the information seen from the time series point of
view, attempts to describe climate regime (Richman 1986).
Finally, the R-mode approach points at local similarity in
mean and variances of meteorological fields across a fixed
time by means of CA (Fovell and Fovell 1993). The main
drawback of PCA-based techniques is that the reduced
space they return as output does not have an immediate
connection with the physical one.
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In this work, a combination of functional data analysis
(FDA) and partitioning around medoids (PAM) clustering
technique is applied in Italy to monthly surface temperature
and precipitation fields in order to delineate local climate
zones. FDA is a collection of techniques to model data
from dynamic systems in terms of some set of basis func-
tions, which are a linear combination of known functions.
FDA consists of converting observations gathered at dis-
crete time into functional data. The choice of the basis to
implement this conversion is crucial. The functional data
approach is typically used in genetic (Kim et al. 2008) and
pollution’s diffusion analysis (Ignaccolo et al. 2008) and
only very recently in climate studies (Laguardia 2011). Kim
et al. (2008) used functional data approach for modeling the
time-dependent expression value of genes in the genome
of yeast and they found that the features of those genes
are properly modeled by a 3-order Fourier series approx-
imation. Ignaccolo et al. (2008) fit the functional data to
pollutant concentrations time series using B-spline system
of basis, with a fixed number of knots. Then, they produce
a zonal index of pollutant’s concentration in Northern Italy
based on a clustering of estimated coefficients. In Laguardia
(2011), a Fourier basis expansion is adopted to model a very
large amount of precipitation data (2,043 rain gauges). The
clustering is performed using a k-means clustering algo-
rithm. Our approach differs from his, first of all, for the
choice of the clustering algorithm and, secondly, as in our
setting, penalized B-splines are preferred to Fourier basis.
Our choices are discussed below in details. We also note that
in our work, a smaller amount of data than in Laguardia is
considered, nevertheless returning very coherent results.

Temperature and precipitation time series can be con-
sidered as realizations of continuous processes recorded in
discrete time. Thus, they are converted into functional data
through the estimation of spline coefficients and the latter
used for the final classification as each time series is rep-
resentative of location climate variability. Here, a penalized
B-spline basis system is adopted to map observations gath-
ered at discrete time into functional data. Our proposal is
named Bsplines30 model and reproduces data intra-annual
variability by means of B-spline basis system over a 30-year
period (1971–2000). A fixed number of knots guarantees a
comparability of responses from the 95 and 94 time series,
which constitute the dataset for the analysis of temperature
and precipitation, respectively. On the contrary, a system
with a free number of knots would lead each series to be
smoothed according to different scale of variability and, de
facto, the delineation of homogeneous zones would not be
done. Finally, the estimated coefficients are partitioned by
PAM classification technique and average silhouette width
method is used to determine the number of climate zones
(Rousseeuw 1987).

The main advantage of a functional approach to this
type of data is dimensional reduction, as the information on
monthly temporal pattern given by a large number of obser-
vations (time series) is summarized by a small number of
coefficients that describe the basis spanning the functions
(Ramsay and Silverman 1997). Furthermore, the proposed
approach overcomes the problem of connecting the reduced
space to the physical one. Indeed, the fitting of B-splines
allows to define in a clear way which type of variability is
considered.

The paper is organized as follows. The next section
introduces the available data. In Section 3, we illustrate
functional clustering in general terms and then we move to
illustrate our proposal. Section 3.1 is devoted to the presen-
tation of penalized B-spline; in Section 3.2, a description of
the k-medoids clustering procedure is reported and Section
3.3 details our proposal. In Section 4, we prove and discuss
the validity of the method and we compare the final group-
ing with the same results obtained by means of PCA method
in T-mode. Relations of our proposal to Fourier analysis
approach are discussed in the same section. Finally, in the
last section, some concluding remarks are presented.

2 Data

In this paper, we define “Regime” as the signal obtained
by averaging monthly values over the years in each station.
The dataset is composed of daily precipitation and daily
minimum and maximum temperature data collected by the
CRA-CMA Research Unit for Climatology and Meteorol-
ogy Applied to Agriculture for the period 1971–2000 from
98 Italian stations (Fig. 1). The total number of stations is
98, but only 92 are in common with temperature and pre-
cipitation; then, we have 96 stations for temperature and 94
for precipitation. This dataset is composed of climatic time
series with a relatively small amount of missing values over
the considered time window. This fact in addition to the con-
tinuity of these time series is a considerable advantage over
other more numerous, in terms of monitoring stations, Ital-
ian dataset, such as SIMN (SIMN is affected by a severe
missing data problem and, moreover, its collection ends
around 1989 when it was dismissed). Among the 98 stations,
seven are located above 1,500 meters and it is natural to
expect that, due to correlation between temperature and alti-
tude, they may form a cluster. For those stations, especially
during winter season, observed values of precipitation might
be due to snow events which amount is usually transformed
into equivalent precipitation quantity. Nevertheless, this fact
does not affect the analysis provided that all the mountains’
stations were grouped in a unique cluster. One station time
series (Pian Rosà) has been removed as the station is located
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Fig. 1 Location of weather stations

at 3,480 m and becomes an outlier with respect to the other
stations (see Fig. 2).

Minimum and maximum temperatures were averaged
to obtain a rough estimate of daily medium temperatures.
Then monthly mean of medium temperature (Tmed-MM)
and monthly cumulated precipitation (Prec-MC) were cal-
culated provided that at least 21 daily data in a month were
registered. If not, the corresponding monthly value is set
to Not Available (NA), i.e., missing value. Besides, a non-
parametric test for outlier detection of these monthly values
is performed. This test is based on median absolute devia-
tion (MAD) and is suggested in Sprent (1998) as “simple
and reasonably robust test.” In fact, MAD is itself a robust
estimator of the spread of a univariate data series. More
specifically, let xi be the element of a data series with
i = 1, . . . , n and xMed the median of the series; then, MAD
is the median of the absolute deviation from the median:

MAD = Median(|xi − xMed|) (1)

and xi is detected as outlier if

|xi − xMed|
MAD

> M (2)

where M = 5 following Sprent and Smeeton (2001). They
suggest this rule of thumb because of the approximate
relation 5MAD = 3Sd, with Sd denoting standard devia-
tion. The cross stations’ outliers detected and successively
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Fig. 2 Altitude of weather stations

removed by the MAD-based test applied over the period
1971–2000 are zero for Tmed-MM and 150 for Prec-MC.
The latter is not significant with respect to the 33,840 overall
number of data (360 monthly values × 94 stations). Sum-
mary statistics for Tmed-MM and Prec-MM are reported in
Table 1 together with the overall number of missing data.

An imputation of missing monthly data has been per-
formed accounting for seasonal variability and 3-year cli-
mate cycle, since the completeness of the series makes
the application of FDA method easier from a computa-
tional point of view and it eases the output interpretation. In
particular, to estimate spline coefficients from a series, com-
pleteness is necessary, but the values of the curve—giving
rise to that series—can be observed on an irregular grid.
Therefore, if the amount of missing data is small, it is possi-
ble to omit NAs and estimate spline coefficients even when
time series is not complete. Nevertheless, the completeness
of the series is fundamental for establishing the announced
connection to physical variability. Briefly, the missing data
ỹij in year i and month j , are imputed as

ỹij = 1/3(yj + [1/2 · (yi−1,j + yi+1,j )]
+ [1/2 · (yi,j−1 + yi,j+1)]) (3)

where yj is the 30-year average corresponding to the j th
month value. Whenever contiguous missing data are found,
they are directly imputed with the 30-year average. With
the number of the monthly missing values being small, we
decided not to adopt a complex statistical model (such as
ARIMA or VARMAX) for imputation. We use the above-
described procedure that takes into account the general
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Table 1 Tmed-MM and
Prec-MC summary statistics
and percentage of monthly
missing data calculated across
the overall locations

Variables Min 1st Quartile Median Mean 3rd Quartile Max % of missing data

Tmed-MM −14.2 8.5 13.5 13.7 20.0 30.2 4.36

Prec-MC 0 19.6 46.7 60.1 86.3 393.6 5.36

features of monthly regimes, and it is conservative in terms
of variability since we use climatological levels. We experi-
mented with other techniques, such as spline imputation as
implemented in the na.spline() function in R (pack-
age “zoo”) and other versions of our approach, observing
that the proposed functional clustering approach is robust to
imputation of missing values, i.e., stations are classified in
the same way regardless of the chosen imputation technique.
This result is most likely due to the reduced number of miss-
ing values present in the data. Besides, because of extremely
high variability of precipitation, a Cox–Box transformation
with coefficient λ = 0.5 has been performed on monthly
precipitation data (Box and Cox 1964). This transforma-
tion corresponds to a square root of the initial data and
determines tighter high-scale data and looser low-scale data.
Finally, our dataset is composed by 95 and 94 time series
of 360 monthly values of Tmed-MM and square root Prec-
MC, respectively, since the removed station of Pian Rosà
was originally included only in the temperature dataset. In
the following, we mention Prec-MC which always refers to
the square root of Prec-MC whereas the levels expressed in
millimeters are back-transformed to the original scale.

At the end of this section, we want to draw the atten-
tion on a major result of the exploratory data analysis, that
is the strong influence of local factors in determining both
temperature and precipitation spatial patterns. In fact, the
complex topography of the Italian Peninsula along with the
strong influence of sea over air masses flow generates a
large amount of small-scale atmospheric variability which is
able to modulate not only the temperature field but also the
precipitation one (Trigo and Coauthors 2006). These local
variabilities make the building of climatic homogeneous
classification particularly challenging.

3 Methodology: functional clustering

Functional clustering combines the functional representa-
tion through a given basis expansion of a time series with
a cluster algorithm with the aim of finding observed units
homogeneous groups. The choice of a basis implies the type
of features of the series that are to be enhanced or hidden in
the representation (Ramsay and Silverman 1997) and then
become relevant in the classification building. The two most
commonly chosen bases are Fourier and B-splines. The first
one is mostly adopted when data are assumed to have an
important periodic component; the second one is particularly

suitable when no periodicity is anticipated in the data or
periodicity is affected by some type of changing compo-
nent. A B-spline smoothing is able to incorporate the shifts
in the mean level of the time series caused by a breakpoint
into the estimates of the coefficients. This may constitute
an advantage especially in the study of climate variables
and obviously depending on the scope of the analysis. For
instance, an ad hoc analysis can be conducted combining
two B-spline systems of basis: the first smoothing involves
placing a knot every year in order to model the trend compo-
nent and, in case, the breakpoints and the second smoothing
involves placing a knot every 2, 3, or 4 months for model-
ing the seasonal component (see Chapter 7 of Ramsay and
Silverman (2002)). In particular, the penalized version of
B-splines, which we adopt here, becomes useful when the
interest is in representing smooth functions without com-
pletely removing local behavior in time, such as changes in
the time series level that persist for a limited time (Ramsay
and Silverman 1997). Furthermore, this basis allows to cap-
ture specific variability patterns with an appropriate choice
of knot localization.

The second element of functional clustering is the clus-
tering algorithm. In the literature, k-means algorithm has
already been used in application to precipitation data
(Laguardia 2011). Here, we prefer a partitioning around
medoids algorithm (Kaufman and Rousseeuw 1990). The k-
medoids algorithm is a clustering algorithm related to the
k-means algorithm. Both the k-means and k-medoids algo-
rithms are partitional (breaking the dataset up into groups)
and both attempt to minimize the distance between points
labeled to be in a cluster and a point designated as the cen-
ter of that cluster. In contrast to the k-means algorithm,
the k-medoids algorithm chooses data points as centers
(medoids or exemplars), making easier to identify group
features. It is more robust to noise and outliers as compared
to k-means because it minimizes a sum of pairwise dissim-
ilarities instead of a sum of squared Euclidean distances
(Kaufman and Rousseeuw 1990).

In what follows, we report a brief description of our
main tools: penalized B-spline basis and partitioning around
medoids algorithm.

3.1 Functional data smoothing

FDA transforms discrete data yj in a functional form using
a system of basis. B-spline basis is piecewise polynomials
of degree d joined at k + 1 fixed points named knots. Two
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adjacent polynomials are required to have matching d − 1
(continuous) derivatives. The order of the polynomial B-
splines is d + 1 and the free parameters are k + d + 1.
The degree of smoothing is determined both by the loca-
tion and the number of knots. Thus, a function x(t) can be
represented as a linear combination of k known basis func-
tions φj :

x(t) =
k+d+1∑

j=1

cjφj (t). (4)

The coefficients of the expansion cj are determined by min-
imizing a least squares criterion. In the penalized B-splines
basis, a penalization term is added to ensure control over
local variability and to reduce outliers’ influence on the least
squares estimates. The penalization term involves a smooth-
ing parameter λ and a linear differential operator PEN(x)

which is a measure of the function roughness (it is the value
of an approximate integral over the x range of the square
of the d − 1 derivative of the curve, which quantifies the
total curvature of the function). The penalized least squares
criterion adopted for coefficients estimation is

PENSSEλ(x | y) = [y − x(t)]′W[y − x(t)] + λPEN(x) (5)

where W is a symmetric, positive definite weight matrix.
The smoothing parameter λ is chosen by generalized cross
validation (GCV) criterion:

GCV(λ) =
(

n

n − df (λ)

)(
PENSSE

n − df (λ)

)
(6)

where df are the degrees of freedom in the smoothing curve
and its value depends on the number of knots and the spline
degree that will be specified in Section 4. The best choice of
λ is associated to the minimum value of GCV(λ). For large
values of λ, the curve approaches the standard linear regres-
sion. A penalized B-spline smoothing with a small number
of coefficients is able to capture the shape of the curve and
accommodate for local features. Indeed, by using penalized
B-spline, we found that outliers in the data do not affect
coefficient estimates. We run our method with and without
outliers in the data and the interesting feature is that conclu-
sions are not affected by the presence of outliers. However,
in our data, we have only few anomalies; then, as a good
practice, we suggest to remove outliers identified by MAD.
Notice that this identification method finds very extreme
values (approximately larger than three times the standard
deviation) and no outliers are found for Tmed-MM while
150 values are identified for Prec-MC. Thus, the estimate of
the coefficients we use in the clustering method is robust.
Simple polynomial regression does not have this kind of

robustness, and small changes in the data can dramatically
affect the coefficients estimates (Abraham et al. 2003).

In practice, the construction of the “best” penalized B-
spline representation proceeds by iterating two steps: (i) fix
the number of parameters (knots and polynomial degree)
and choose λ by GCV and (ii) compute root-mean-square
error (RMSE), then change the number of parameters and
go back to (i); repeat this two steps until no more sensible
reduction in RMSE is obtained. Finally, the combination of
λ and parameters’ number that returns the smallest RMSE
is chosen. In general, this sequence of steps can be carried
on automatically or a data-driven choice of parameters can
be performed. In our case study we choose the latter as we
want the final clustering to have a physical meaning and, at
the same time, we want to minimize the number of estimated
parameters (details are given in Section 3.3).

3.2 Partitioning around medoids classification method

k-medoids algorithm is based on the object called medoid
(most centrally located point in the cluster) instead of the
centroid of k-means algorithm (average of objects coordi-
nates in the cluster). This has two advantages: firstly, the
medoid is a real object and it is representative of group
features; secondly, there is no need to calculate distances
at each iteration since the reference is the distance matrix
between objects. The steps of k-medoids algorithm can be
summarized as follows:

1. Choose randomly k objects of the n data points to be the
initial cluster medoids;

2. Assign objects to the cluster with the closest medoid;
3. Recalculate the k medoids of clusters formed at step 2;
4. Repeat steps 2 and 3 until the medoids do not change.

Step 3 is performed by finding the object i which
minimizes
∑

j∈Ci

d(i; j) (7)

where Ci is the cluster including i and d(i; j) is any mea-
sure of dissimilarity (common choices are Euclidean and
Manhattan norms) between observations i and j.

Among k-medoids algorithm, the most used and power-
ful is PAM algorithm proposed by Kaufman and Rousseeuw
(1990). This algorithm is characterized by an efficient pro-
cedure for determining the set of medoids, which can be
described in two phases: the “build” and the “swap.” The
gain in the algorithm efficiency introduced with PAM is
described in Reynolds et al. (1992). In the build phase, the
algorithm looks for a good initial set of medoids. Then, in
the swap phase, it calculates the loss in the objective func-
tion determined by changing medoid. More specifically,
consider the effect of removing object i from the set of
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medoids and replacing it with object h. The total cost of the
change is given by the sum of the cost associated to each
object j that moves from other clusters to the new cluster
h determined by the change. In particular, there are three
cases:

(a) The cost is zero since object j does not move;
(b) Object j is closer to the initial medoid i than any other

medoid before the swap; then, the cost associated to
the moving is d(j, h) − d(j, i);

(c) j is further from i than from some other medoid; then,
the cost of the moving is d(j, h) − Dj , where Dj is
the distance of object j from the closest medoid (if the
closest is h, then the cost is zero).

If the total cost is negative, then the move gives an improve-
ment in the clustering. The whole neighborhood is eval-
uated in each iteration of the algorithm. Here, Kaufman
and Rousseeuw (1990) suggest that calculating the change
in cost rather than the total cost at each iteration is less
operationally demanding.

Once the medoids have been fixed, clustering quality
indexes can be calculated. Let a(i) be the average dissimi-
larity between i and all objects in cluster Ci and let d(i; C)

be the average dissimilarity of i to all objects in C, with
C �= Ci . Denote with b(i) the smallest distance d(i; C)

found among all clusters C �= Ci ; then, C is the neighbor
cluster of i. An evaluation of how well the object i is classi-
fied in Ci or in the neighbor cluster is given by the silhouette
width index:

s(i) = b(i) − a(i)

max(a(i), b(i))
. (8)

Observations with a s(i) value close to 1 are very well
clustered, a small value of s(i) means that the observa-
tion can be assigned to two clusters, and observations with
a negative s(i) are misplaced. The number of clusters can
be determined by the average silhouette width, which is
the mean of s(i) over all objects of any possible clustering
(Rousseeuw 1987).

3.3 Proposed functional clustering

In Section 3.1, we describe a general functional smooth-
ing for one time series. We now consider the multiple
time series framework that is proper to climatological stud-
ies. The first point that requires attention is how to apply
the protocol of Section 3.1 to all series in order to obtain
comparable results. We propose to use the same penal-
ized B-splines for all time series, i.e., we modify, following
Ramsay and Silverman (1997), steps (i) and (ii) as follows:
(i.a) we fix the same number of knots (or their position)
and polynomial degree for all time series and we choose

a unique smoothing parameter λ by GCV. First, for each
time series, the GCV corresponding to a given value of λ is
computed and then the average of these GCV values is asso-
ciated to the specific λ; (ii.a) we compute RMSE for each
time series and then the average RMSE. We repeat (i.a) and
(ii.a) until no sensible changes are obtained in the average
RMSE. Finally, we choose the combination of λ and param-
eters’ number that returns a meaningful clustering and,
simultaneously, a small average RMSE. In fact, a key point
in our procedure is the choice of the number of knots and
their positions. Sometimes it is necessary to compromise
between a small average RMSE value and a set of knots that
return a meaningful representation of the time series. For
instance, in our study, by placing a knot every 4 months,
we capture intra-annual variability with considerable accu-
racy. With a knot placed every 3 months, we obtain a smaller
average RMSE but the series representation becomes more
sensitive to outliers and, if no outliers are present, it is iden-
tical to the 4 months one with a considerable increase in
the number of parameters to be estimated from the data.
Remark that the introduction of a large number of param-
eters not necessarily helps the understanding of climatic
features as not only information is thus added but also noise
(variability).

Once the representation of the time series is obtained, the
coefficients of the functional smoothing become input of the
clustering algorithm with the aim of obtaining climate zones
delineation. Here, we use the k-medoids algorithm PAM as
implemented in the R cluster library of the R Develop-
ment Core Team (2011) and illustrated above (Section 3.2)
The number of clusters is chosen by average silhouette and
climatological considerations. In other words, if the largest
silhouette value is given by a very small number of clusters,
say 2, that does not have a climatological meaningful inter-
pretation, we look for the second best or the third best and
so on. Besides, the choice of the proper number of clusters
is done taking into account also the information associated
to the PAM algorithm, as isolation, diameter of clusters,
separation, and silhouette width of each group.

In the present study, we are going to call our procedure
Bspline30 as here we eventually adopt a penalized B-spline
basis with a knot placed every 4 months over a 30-year
period (1971–2000), which is a period commonly used as
climatic normals (WMO 1989). We fix the two knots corre-
sponding to the edges of the smoothing interval respectively
on January 1971 and on December 2000 whereas the posi-
tion of the interior knots, the degree of the polynomial, and
the smoothing parameter are determined as illustrated in
Section 3.1 and above, using fda library (Ramsay et al.
2011), implemented in R Development Core Team (2011).
The clustering is performed using PAM implemented in the
R library cluster. Details of the results are given in the
next section.
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4 Results

This paper is motivated by the need of finding a segmen-
tation procedure of the available time series leading to
homogeneous classes. Most of the analyses regarding the
determination of homogeneous climatic regions are based
on the monthly time scale. Then, we adopt the monthly
scale using monthly averages. This time space truncation
is commonly adopted in order not to include the synop-
tic and subsynoptic variability signals in the atmosphere
variability. The climate framework of the Italian Peninsula
is made complex by both the sea mitigation effect on tem-
perature and the presence of Alps in the north as well
as Appennini along the latitude extension which affect
precipitation distribution. In fact, some studies based on
standard clustering techniques classify Italian climate in
seven-eight homogeneous subregions (Laguardia 2011;
Toreti et al. 2009; Brunetti et al. 2006). On the other hand,
the Mennella’s basic work in 1972 describes at least 20
climate micro-regions using both observations and phys-
ical features (Mennella 1972). From a phenomenological
point of view, the main advantage of functional clustering
is a clear identification of variability mechanisms whereas
standard methods need to find a relation between selected
principal components (Pcs) and climate patterns. Recall
that, with the S-mode of PCA, we look for the most signif-
icant Pcs of the information matrix over the stations; then,
we map the elements of the corresponding eigenvectors
(loadings) which are associated to each station (Ehrendorfer
1987). On the other hand, with the T-mode, we look for the
most significant Pcs of information matrix over time, then
mapping the scores (Richman 1986). In this study, we focus
on intra-annual variability by placing penalized B-spline

knots every 3, 4, and 6 months, which let us to capture intra-
annual variation with scale of variability larger or equal than
3 months. The functional smoothing performed in this way
preserves the bell-shaped temperature monthly distribution
typical of the Italian Peninsula and the largest intra-annual
precipitation pick. As an abbreviation, we use the term
4-monthly (or 3-monthly or 6-monthly) to recall the vari-
ability scale and the placement of penalized B-spline knots.
Following the approach proposed in Section 3.3 for the
functional smoothing, the most interesting models among
all those investigated are reported in Table 2 where the
average RMSE is reported together with the penalization
coefficient (λ), the number of total knots of the B-splines,
and the degree of the piecewise polynomials used. Notice
that with a knot placed every 3 months, the average RMSE
is a little smaller than the one obtained with a knot placed
every 4 months, but the total number of parameters to be
estimated from the data considerably increases, without any
advantage in the subsequent classification (details to support
this statement are given in Sections 4.1 and 4.2).

The assessment for determining the proper number of
clusters and the corresponding index to evaluate the qual-
ity of the chosen clustering are visualized in panels a and
panel b of Figs. 3 and 7, for the temperature and precip-
itation, respectively. Medoids’ locations are representative
of the climate features of all stations belonging to the cor-
responding cluster and are enhanced in the classification
maps of Figs. 4 and 8. Besides, the functional smooth-
ing of medoids’ time series over the period 1971–2000
is represented in Figs. 5 and 9. The maps of classifica-
tion obtained by Bsplines30 model are reported in Figs. 4a
(Tmed-MM) and 8a (Prec-MC). In the comparison pro-
cedure, we adopted different ways of summarizing time

Table 2 Tmed-MM and Sqrt
Prec-MC model selection for
functional data transformation
with penalized B-splines
piecewise polynomials degree,
number of knots, penalty
coefficient (lambda), and
averaged across stations RMSE

Tmed-MM functional model Degree Knots Lambda RMSE (◦C)

Bsplines30 6-monthly 3 60 0.06 1.97

Bsplines30 6-monthly 5 60 1 1.89

Bsplines30 4-monthly 3 90 0.16 1.58

Bsplines30 4-monthly 5 90 3.98 1.44

Bsplines30 3-monthly 3 120 0.25 1.35

Bsplines30 3-monthly 5 120 0.63 1.35

Sqrt Prec-MC functional model Degree Knots Lambda RMSE (mm)

Bsplines30 6-monthly 3 60 3.98 8.78

Bsplines30 6-monthly 5 60 15.85 8.70

Bsplines30 4-monthly 3 90 6.31 8.44

Bsplines30 4-monthly 5 90 63.1 8.39

Bsplines30 3-monthly 3 120 3.98 7.79

Bsplines30 3-monthly 5 120 63.1 8.29
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Fig. 3 Cluster algorithm assessment of Tmed-MM for 4-monthly variability functional data: a Silhouette average width for determining the
number of clusters and b silhouette width index for each group and for each unit included in the correspondent six-group clustering

series features: PCA in T-mode and Fourier basis functional
smoothing. The latter includes, following Laguardia (2011),
12- and 6-monthly harmonics that should be enough to cap-
ture monthly regimes. The final classifications have always
been obtained using PAM as in Section 3.3. Classifica-
tion maps of temperature and precipitation clusters obtained
trough PCA standard method are reported in Figs. 4b
and 8b; finally, the Fourier functional smoothing clusters
are mapped in panel c of the same figures to facilitate
comparison.

4.1 Results for Tmed-MM

The chosen model for Tmed-MM is Bsplines30 4-monthly
5-degree with 90 fixed knots (a knot placed every 4 months)
and five-degree piecewise polynomials which corresponds
to functional smoothing of order 6 (see Table 2). This choice
produces a good smoothing with an average RMSE value
of 1.44 ◦C although the 1.35 ◦C minimum value of RMSE
is achieved with Bsplines30 3-monthly 3-degree. Neverthe-
less, as mentioned above, the gain in the smoothing is not
enough to justify the increase in the number of parame-
ters to be estimated (from 94 to 122) as the bell shape
of monthly temperature distribution typical of the Italian
Peninsula is well reproduced by the 4-monthly scale of
variability and, moreover, it does not add any useful infor-
mation for the final classification. In fact, the best number

of groups obtained from Bsplines30 3-monthly 3-degree
model is 5. This choice is done taking into account all clus-
tering indexes and climate patterns. The maximum value of
average silhouette width index corresponds to three-group
clustering that has no climatic meaning. The five-group
clustering has an average silhouette width of 0.36 with
one misplaced unit and returns equivalent results to our 4-
monthly 5-degree model except for the northern mountain
region. There is a single cluster found by the 3-monthly
model, while two clusters (clusters 1 and 2 in our classifica-
tion mapped in Fig. 4a) are given by the 4-monthly model,
the latter being more meaningful from a climatic point of
view.

The average silhouette width index reported in panel a
of Fig. 3 is our tools to choose the number of clusters, and
we report its value from 2 to 20 groups derived from our
chosen model. The best value is obtained with two groups,
which is not very meaningful from a climatological point of
view. As mentioned in Section 3.3, we take into account cli-
mate features in the choice of the optimal number of clusters
and we select the six-group partition as a good compromise
between average silhouette width value and description of
climate features. Moreover, the silhouette width values of
single groups shown in panel b of Fig. 3 suggest an appro-
priate classification with no misclassified units (recall that
with misclassified units, a negative value of silhouette width
index is obtained).
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Fig. 4 Cluster maps of Tmed-MM for 4-monthly variability functional data (a), PCA T-mode method using three principal components (b), and
Fourier with five bases of 12- and 6-monthly harmonics. Crosses in the maps indicate the location of cluster’s medoids

Renaming clusters from colder (1) to warmer (6), we
obtain the map in Fig. 4a where the medoids are also
indicated. The mapping of Bsplines30 functional cluster-
ing highlights the following: there are two coldest clusters
of mountain stations in the north (clusters 1 and 2); clus-
ter 3 covers a part of the central area mainly close to the
Adriatic Sea and some mountain stations in the south which
are not included in the northern mountain stations’ clus-
ters because of latitude’s mitigation effect; and cluster 4

represents cold stations of the northern area, clusters 5 and
6 correspond to the warm southern region near the Adri-
atic Sea, and nearly the whole of stations located along the
Tyrrhenian Coast and both the islands of Sicily and Sardinia.
By visualizing the smoothed time series of medoids in Fig. 5,
it is also worth noticing the peculiarity of “hot winters”
occurred in mountain regions from 1988 to 1992 (clusters
1 and 2); how cluster 4 differs from cluster 3 for hotter
summer temperatures while cluster 5 differs from cluster 6
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Fig. 5 Functional smoothing of the six medoids of temperature time series 1971–2000 (B-splines 4-monthly 5-degree)

for colder winter temperatures. This cluster analysis can be
immediately related to the exposure to the main atmospheric
circulations of the different regions. Warm clusters’ (clus-
ters 5 and 6) location, in the south and along the Tyrrhenian
Coast, is linked to the southwestern flows forced by both
cyclonic and anticyclonic circulation over Western Mediter-
ranean Basin. In this area, only mountain stations such
as those over the Appennini ridge and Mount Argentario
belong to other clusters. The locations of cold clusters are
linked to northeastern flows driven by cyclonic circulation
over Eastern Europe and blocking condition over Central
Europe that bring cold air masses into the Mediterranean
Basin. A detailed summary of monthly and seasonal Tmed-
MM 30-year averaged values of each group is given in Fig. 6.
The Bsplines30 approach leads to results similar to the
benchmark PCA in T-mode using three Pcs with respect to
highlighted climatological features. The PCA based classi-
fication returns a unique coldest cluster of mountain stations
in the north, whereas in Bsplines30, this cluster is more cor-
rectly divided into two separated groups. Examining Fig. 6,
where the general features of cluster are depicted, it appears

that the monthly levels of cluster 1 and cluster 2 are clearly
different. In panel c, the Fourier-based map is reported.
There, we choose six groups. As for the Bsplines30, clusters
are very similar; however, there are some relevant differ-
ences: Sardinia is divided into two clusters and several
stations around Rome are in a colder cluster with respect to
the Bspline30; furthermore, the two Rome stations are clas-
sified into two different clusters. The general classification
has several unclear aspects from a phenomenological point
of view. In terms of the best clustering quality, Bspline30
with six groups reports an average silhouette width of 0.33
with no misclassified stations, PCA with five groups has an
average silhouette width equal to 0.42 and two misplaced
units, and Fourier with six groups reports an average sil-
houette width of 0.41 and one misplaced unit. Say k is the
number of groups of each cluster. In the case of PCA, the
best value of silhouette average width corresponds to k = 2,
k = 3 is the second best, and our choice k = 5 is the third
best. In the Fourier case, the best value of silhouette average
width is found for k = 3, k = 2 is the second best, k = 4 is
the third, and our choice k = 6 is the fourth best.



Functional clustering of temperature and precipitation data 49

Fig. 6 Monthly and seasonal
values of Tmed-MM averaged
over 1971–2000 for six areas
delineated by 4-monthly
variability functional data (DJF

December, January, February;
MAM March, April, May; JJA

June, July, August; SON

September, October, November)
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Fig. 7 Cluster algorithm assessment of square root Prec-MC for 4-monthly variability functional data: a Silhouette average width for determining
the number of clusters and b silhouette width index for each group and for each unit included in the corresponding nine groups clustering
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4.2 Results for Prec-MC

The more appropriate Bsplines30 model for Prec-MC is
Bsplines30 4-monthly 5-degree with 90 fixed knots and
five-degree piecewise polynomials. The value of average
RMSE is 8.39 mm. Similar comments as in Section 4.1 on
the model choice apply. Again, the smallest average RMSE
is obtained with Bsplines30 3-monthly 3-degree but the
increase in parameters number (from 94 to 122 parameters

to be estimated) (see Table 2) and the final classification
do not justify the choice of the 3-monthly model. For Prec-
MC B-splines30 3-monthly 3-degree, the chosen number of
groups is 7 with an average silhouette width of 0.15 which is
the fourth best value and the first one with a climatic mean-
ingful interpretation; there are 12 misplaced units according
to the silhouette index and the classification is quite consis-
tent with climate patterns. A comparison with our chosen
classification reveals that several locations are wrongly

1 (rainy)
2
3
4
5
6
7
8
9 (dry)

Precipitation: 9 clusters
Functional data 1971−2000 (B−Splines 4 monthly− 5 degree)
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Precipitation: 8 clusters
Fourier yearly/6−monthly harmonics

(c)

Fig. 8 Cluster maps of precipitation for 4-monthly variability functional data (a), PCA in T-mode method using five principal components (b),
and Fourier with five bases of 12- and 6-monthly harmonics (c). Crosses in the maps indicate the location of cluster’s medoids
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classified into cluster 1 (stations along Po river) and two
areas are not isolated in single clusters as it should be (sta-
tions near the Ligurian Sea and Sardinian stations). The
Sardinian stations are correctly grouped if we consider the
eight-group clustering, which is the sixth best choice in
terms of average silhouette width (0.13) and counts 11 mis-
placed units. On the contrary, using the chosen model, we
obtain an acceptable compromise between climatic interpre-
tation of groups and statistical clustering quality indexes.
This statement is corroborated by the following results. As
far as the number of groups to be chosen is concerned,
for precipitation data, the choice is less straightforward
than with temperature data. Thus, very similar values of
the average silhouette width index are obtained with 4-
up to 20-cluster partitions (see Fig. 7a). Nevertheless, in
spite of an average silhouette width value of 0.16 and 3
misplaced units (Fig. 7b), the nine-cluster partition is “the
best” if we take into account all the information asso-
ciated to the PAM algorithm, as isolation, diameter of
clusters, separation, and silhouette width of each group
(Fig. 8). Besides, this clustering returns a representation of
climate features of precipitation which is consistent with

well-known patterns of this variable for the Italian Penin-
sula. The smoothed time series of nine medoids represented
in Fig. 9 reveals the high variability of precipitation and
also highlights significant differences between groups. A
detailed summary of yearly and seasonal Prec-MC 30-
year averaged values of each group is given in Fig. 10,
where we use line chart instead of bar chart to make a
clearer graphical representation of precipitation regime. In
the following, we refer to those values for the ordination of
the groups from the rainiest to the driest and for a further
description of the groups. As it comes out from panel a of
Fig. 8, main patterns of variability are well reproduced and
their identification improved with respect to the benchmark
in PCA T-mode (panel b). In particular, it is worthwhile to
evaluate the separation of the stations near the Ligurian Sea
(cluster 5) and continental stations in the northwest (clusters
1 and 6) into different regions and the clear identification
of two precipitation patterns in the northern and southern
stations along the Po river (clusters 1 and 6). A central
area extends from the Tyrrhenian to the Adriatic Sea (clus-
ter 2) which is the second most rainy region (858 mm of
total annual precipitation) behind the northern Po river area
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Fig. 9 Functional smoothing of the nine medoids of precipitation time series 1971–2000 (B-splines 4-monthly 5-degree)
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Fig. 10 Monthly and seasonal
values of precipitation averaged
over 1971–2000 for nine areas
delineated by 4-monthly
variability functional data
(seasonal precipitation values
are obtained by cumulating
monthly values; DJF

December, January, February;
MAM March, April, May; JJA

June, July, August; SON

September, October, November)
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(966 mm). A coastal region along Tyrrhenian Sea (cluster
4) is also delineated which is fourth in the rainy ordered
classification (807 mm). Regarding the south of the penin-
sula, Puglia is longitudinally divided into two areas (clusters
7 and 8) because of drier summer regime registered in the
southern part (39 against 93 mm), which is similar to Sicily
precipitation features. This is an improvement of the PCA T-
mode classification. Finally, Sardinia is correctly classified
as a unique cluster with the driest annual precipitation vol-
ume (402 mm) whereas the PCA-based classification pro-
poses a unique cluster of Sicily and Sardinia. Besides, the
clustering of stations reflects atmospheric patterns respon-
sible for different precipitation regimes both at large scale
and local scale. In particular, the Atlantic storm track deter-
mines the grouping of western areas (clusters 2, 4, and 5),
of which clusters 2 and 4 are characterized by a prevalence
of frontal precipitation and convective events, whereas clus-
ter 5 precipitation signal is due to a more cyclogenetic and
convective type of events (Harnik and Chang 2003). The
continental and Alpine regions are characterized by large
amount of precipitation due to an orographic enhancement
mechanism driven by the presence of mountain ridges (clus-
ters 1 and 3) and a distinct area (cluster 6) in the east side of
Appennini lee ridge, which is dryer than the other northern
clusters since it is not directly exposed to the moist westerly

atmospheric flows. Similarly to the case of temperature, we
perform functional clustering using Fourier basis as well.
Following Laguardia (2011), we adopt 12- and 6-monthly
harmonics. The classification map shows noticeable dif-
ferences with respect to Bsplines30: the locations of the
rainiest cluster are far from each other and, moreover, this
spatial dispersion does not seem to have a physical motiva-
tion; cluster 2 is similar to cluster 1 of Bsplines30; locations
by the Ligurian Sea do not have a clear identification as
it is for our proposal; and, finally, the two major Italian
islands Sicily and Sardinia are aggregated in a unique clus-
ter (cluster 8), which is questionable as it is clear by looking
at the yearly volume of precipitation of those groups when
separated (Fig. 10). In terms of the best clustering quality,
Bspline30 reports an average silhouette width of 0.16 with
three misclassified units, PCA T-mode using five Pcs with
nine groups returns a value of 0.31 average silhouette width
and five misclassified units, while the Fourier-based analy-
sis with eight groups has 0.33 average silhouette width with
seven misplaced units. Say k is the number of groups of
each clustering. In the case of PCA, the best value of sil-
houette average width is obtained for k = 2; k = 11, 12,
and 13 have the same value of the index which correspond
to the second best; and our choice k = 9 is the third best. In
the Fourier case, the best value of silhouette average width
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corresponds to k = 2, k = 3 is the second best, k = 4 is the
third, and our choice k = 8 is the fourth best.

Finally, we replicate, as far as possible, the procedure
proposed in Laguardia (2011) by adopting the same basis
for the functional smoothing, i.e., the Fourier basis with
12- and 6-monthly harmonics and the k-means clustering
method (not shown). However, in Laguardia’s paper, the
clustering algorithm is not entirely specified and then we
choose the default Hartigan and Wong algorithm in the
“stats” library of the R software with 25 random starts
for the k-means clustering (Hartigan and Wong 1979). The
method for selecting the optimal number of clusters is not
specified in Laguardia; then, we choose the same num-
ber of clusters proposed by Laguardia, i.e., 6 for clustering
the 94 stations of our data set. The predicted values of
monthly regime obtained by Fourier functional smoothing
for our data set is consistent with the climatology of the
clusters’ location. However, with the six clusters, several
features captured by the Bsplines30 are not highlighted, and
when a larger number of clusters have been tried, the same
confusions seen with PAM classification are obtained.

5 Conclusion

This paper has presented a new protocol, based on func-
tional clustering for determining homogeneous climate
zones. We showed that by functional clustering, informa-
tion on temporal pattern relative to the monthly time scale
is summarized by a small number of coefficients and those
coefficients determine a clear identification of variability
mechanisms. The proposed method achieves this goal with
a parametrization of function using penalized B-spline basis
that returned a clear description of intra-annual variability.
Description of the current distribution of local precipita-
tion is made difficult by the high spatial and temporal
variability of this parameter. Nevertheless, the regional dis-
tributions obtained not only correspond fairly well to the
large, well-known physical regions of Italy but also go
further, improving the classification determined by the stan-
dard methods. In fact, to identify climate regions using
PCA-based methods requires a long and complex analysis
of the reduced space to connect it to the physical world. In
our approach, this is easily achieved by the choice of knot
number and locations. Changing place and/or number of
interior knots allows us to investigate different patterns of
variability: long-term variability or trend (yearly variability
over at least a 30-year interpolation period) and intra-annual
variability (bimonthly, quarterly, 4-monthly, or 6-monthly
variability across time series period). Further development
of this approach is possible and has been investigated in
our research to some extent (not reported in the present
work). For instance, a decomposition in trend and short-

term component of the time series is easily achieved by
fitting a B-spline with yearly knots (trend) and a second
B-spline with more knots to capture short-term features or
a Fourier expansion with few harmonics to capture long-
term cycles. Some caution must be used when using Fourier
basis with relatively small number of station such as in our
study. Indeed, the Fourier expansion reveals a tendency to
over-smoothing (not shown in the paper) that influences
classification results that may not be very clear, particularly
with highly variable quantities such as precipitation. Thus,
the Fourier smoothing seems to refer to a numerical smooth-
ing rather than to a physical framework, and this drawback
might be due to the loss of local element in the time domain.
In fact, unlike Bsplines30, the smoothing of Fourier with 12-
and 6-month harmonics attempts to reproduce the average
features of monthly distribution of the time series smoothing
out small and short-term changes. Moreover, the reproduc-
tion of Fourier predictive regime reveals that the addition of
one supplementary harmonics does not let us to catch local
element in time domain. However, if a very large number
of monitoring stations are available as in Laguardia (2011),
the strong smoothing effect of Fourier basis expansion may
mitigate problems deriving from the large variability that is
proper of large datasets.

In general terms our proposal, as described above, creates
a very flexible framework in which analysis of climatolog-
ical features can be carried out. In particular, the functional
smoothing can be modified including, for example, both
Fourier and penalized B-spline basis, the first to describe
periodic components (regime) and the second to describe
the trend; this combination of basis is especially effective
when the periodicity in the data is not subjected to large
changes in the considered time window. Other basis can be
considered such as wavelets or combinations of B-splines
with different number of parameters depending always on
the aim of the study and the type of available data. In con-
clusion, we believe that the presented functional clustering
approach is definitely much more flexible and easier to
implement than the current PCA-based methods, regardless
of the chosen basis of representation.

Acknowledgments This work has been developed within the con-
text of Agroscenari project “Adaptation of Agricultural Management
to climate change” funded by the Italian Ministry of Agriculture. The
authors would like to thank two anonymous referees for the useful
comments that helped in considerably improving the paper and Prof.
M. Maugeri for his suggestions.

References

Abraham C, Cornillon PA, Matzner-Loeber E, Molinari N (2003)
Unsupervised curve clustering using B-splines. Scand J Statist
30:581–595



54 E. Di Giuseppe et al.

Box GEP, Cox DR (1964) An analysis of transformations. J R Stat
Soc, B 26:211–246

Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature
and precipitation variability in Italy in the last two centuries
from homogenized instrumental time series. Int J Climatol 26:
345–381

Ehrendorfer M (1987) A regionalization of Austria’s precipitation cli-
mate using principal component analysis. Int J Climatol 7(1):
71–89

Fovell RG, Fovell MYC (1993) Climate zones of the contermi-
nous United States defined using cluster analysis. J Climate 6:
2103–2135

Harnik N, Chang EKM (2003) Storm track variations as seen in radio-
sonde observations and reanalysis data. J Climate 16:480–495

Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl
Stat 28:100–108

Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduc-
tion to cluster analysis. Wiley, New York

Kim BR, Zhang L, Berg A, Fan J, Wu R (2008) A computational
approach to the functional clustering of periodic gene-expression
profiles. Genetics 180:821–834

Ignaccolo R, Ghigo S, Giovenali E (2008) Analysis of air quality
monitoring networks by functional clustering. Environmetrics 19:
672–686

Laguardia G (2011) Representing the precipitation regime by means
of Fourier series. Int J Climatol 31(9):1398–1407

Mennella C (1972) Il clima d’Italia nelle sue caratteristiche e varieta’
quale fattore dinamico del paesaggi, vol II. Fratelli Conte Editore,
Napoli

Preisendorfer RW, Mobley CD (1988) Principal component analysis
in meteorology and oceanography. Elsevier, Amsterdam

R Development Core Team (2011) R: a language and environ-
ment for statistical computing. R foundation for statistical

computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.
R-project.org

Ramsay JO, Silverman BW (1997) Functional data analysis. Springer,
New York

Ramsay JO, Silverman BW (2002) Applied functional data analysis:
methods and case studies. Springer, New York

Ramsay JO, Wickham H, Graves S, Hooker G (2011) Fda: functional
data analysis. R package version 2.2.7. http://CRAN.R-project.
org/package=fda

Reynolds A, Richards G, De La Iglesia B, Rayward-Smith V (1992)
Clustering rules: a comparison of partitioning and hierarchical
clustering algorithms. Journal of Mathematical Modelling and
Algorithms 5:475–504. doi:10.1007/s10852-005-9022-1

Richman MB (1986) Rotation of principal components. J Climatol
6:293–335

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis. J Comput Appl Math 20:
53–65

Sprent P (1998) Data driven statistical methods. Chapman & Hall,
London

Sprent P, Smeeton NC (2001) Applied nonparametric statistical meth-
ods, 3rd edn. Chapman & Hall/CRC, London

Toreti A, Fioravanti G, Perconti W, Desiato F (2009) Annual and sea-
sonal precipitation over Italy from 1961 to 2006. Int J Climatol
29(13):1976–1987

Trigo R et al (2006) Relations between variability in the Mediterranean
region and mid-latitude variability. In: Lionello P, Malanotte-
Rizzoli P, Boscolo R (eds) Mediterranean climate variability.
Elsevier, Amsterdam, pp 179–226

Von Storch H, Zwiers FW (1999) Statistical analysis in climate
research. Cambridge University Press, Cambridge

WMO (1989) Calculation of monthly and annual 30-year standard
normals. WCDP n.10, WMO-TD/N.341, Geneva

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=fda
http://CRAN.R-project.org/package=fda
http://dx.doi.org/10.1007/s10852-005-9022-1

	Functional clustering of temperature and precipitation data
	Abstract
	Introduction
	Data
	Methodology: functional clustering
	Functional data smoothing
	Partitioning around medoids classification method
	Proposed functional clustering

	Results
	Results for Tmed-MM
	Results for Prec-MC

	Conclusion
	Acknowledgments
	References


