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Abstract The objective of the present study was to use the
simple cokriging methodology to characterize the spatial vari-
ability of Penman–Monteith reference evapotranspiration and
Thornthwaite potential evapotranspiration methods based on
Moderate Resolution Imaging Spetroradiometer (MODIS)
global evapotranspiration products and high-resolution surfaces
of WordClim temperature and precipitation data. The climatic
element data referred to 39 National Institute of Meteorology
climatic stations located in Minas Gerais state, Brazil and sur-
rounding states. The use of geostatistics and simple cokriging
technique enabled the characterization of the spatial variability
of the evapotranspiration providing uncertainty information on
the spatial prediction pattern. Evapotranspiration and

precipitation surfaces were implemented for the climatic classi-
fication in Minas Gerais. Multivariate geostatistical determined
improvements of evapotranspiration spatial information. The
regions in the south of Minas Gerais derived from the moisture
index estimated with the MODIS evapotranspiration (2000–
2010), presented divergence of humid conditions when com-
pared to the moisture index derived from the simple kriged and
cokriged evapotranspiration (1961–1990), indicating climate
change in this region. There was stronger pattern of crossed
covariance between evapotranspiration and precipitation rather
than temperature, indicating that trends in precipitation could be
one of the main external drivers of the evapotranspiration in
Minas Gerais state, Brazil.
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1 Introduction

The evapotranspiration refers to the total loss of water into
the atmosphere from the surface of the soil and plants. The
simultaneous combination of the soil evaporation and plant
transpiration is correspondent to the opposite process of
rainfall, also expressed in millimeters (Pereira et al. 1997).
The available water for humans and ecosystems in a given
region can be approximated by the difference between ac-
cumulated precipitation and evapotranspiration (Donohue et
al. 2007). The evapotranspiration is a vital component of the
water cycle, which includes precipitation, runoff, stream-
flow, soil water storage, and evapotranspiration (Mu et al.
2009). Land evapotranspiration is a central process in the
climate system and a nexus of the water, energy, and carbon
cycles, returning about 60 % of annual land precipitation to
the atmosphere (Jung et al. 2010).

Evapotranspiration zoning is extremely important for the
implantation of infrastructures of water resources, climatic
classification, and for the efficiently using of water resour-
ces. According to Irmak et al. (2006), accurate and consis-
tent estimates of evapotranspiration in agriculture are also
crucial for optimizing crop production at different crop
phenological stages, planning for water allocation, schedul-
ing irrigation, evaluating the effects of changing land use on
water yields, and assessing the impacts of management
practices on environmental quality.

In general, the methodologies most used and recommen-
ded to estimate crop water requirements are based on mete-
orological data (Lemos Filho et al. 2007, 2010). Thus, the
evapotranspiration can be estimated by empirical models,
semiempirical and physical–mathematical formulation of
the evapotranspirative process, using weather variables.
The choice of a method depends on the availability of
weather data as well as on the accuracy and precision of
model estimates for a given region. Therefore, to investigate
which method is the best for the characterization of a par-
ticular region, it is necessary to make a comparison of
different models, observing the quality of the estimates.

The potential evapotranspiration (ETp) can be estimated
by Thornthwaite (1948) method in order to represent the
water loss process in the soil plant system, using tempera-
ture information. Despite the simplicity of this method, it
has been demonstrated that temperature is not sufficient as
an indication of the energy available for evapotranspiration,
considering that, in some regions, the winds, solar radiation,
and relative humidity can play an important role in evapo-
transpiration, but were not considered by this method
(Pereira et al. 1997; Allen et al. 1998).

However, in 1990, the methods recommended by Food
and Agriculture Organization of the United Nations (FAO)
(Doorenbos and Pruitt 1977) concluded that the best evapo-
transpiration results were obtained by the Penman–Monteith

method. It has been subsequently recommended, after some
parameterizations, as the standard method to estimate the
reference evapotranspiration (Allen et al. 1998; Smith et al.
1990; Smith 1991). In this method, the best evapotranspira-
tion (ETo) estimates were obtained in function of their
physic–mathematic formulation of the evapotranspiration
process and the greatest number of considered variables,
increasing the accuracy of the estimates (Allen et al.
1998). However, the ETo method was restricted due to the
requirement of a great number of climatic elements.

Remote sensing can be used to minimize the absence of
weather stations in land surface, being recognized as the most
feasible means to provide spatially continuous and temporally
distributed regional evapotranspiration information on Earth
(Mu et al. 2007a,b, 2009, 2011). Remotely sensed data can
also be used to monitor surface biophysical variables affecting
evapotranspiration, including albedo, biome type, leaf area
index, and gross and net vegetation primary production (Mu
et al. 2011; Zhao et al. 2005; Zhao and Running 2010).

The radiometric, geometric properties, atmospheric correc-
tion, cloud screening, and the high temporal and spatial reso-
lution of the Moderate Resolution Imaging Spetroradiometer
(MODIS) products, onboard NASA's Terra and Aqua satel-
lites, provided a significantly improved basis for evapotrans-
piration monitoring in near real-time and intermediate spatial
resolution (Mu et al. 2011). Remotely sensed elevation data
obtained from the Shuttle Radar TopographyMission (SRTM)
were used to generate high-resolution interpolated climate
surfaces of the global land areas using multivariate thin-plate
smoothing spline algorithm, enabling to capture environmen-
tal variability that can be partly lost at lower resolutions,
particularly in mountainous and other areas with steep climate
gradients (Hijmans et al. 2005).

When the Earth’s surface has distinct spatial properties,
the brightness values in imagery constitute a record of the
spatial characteristics in the form of texture or pattern. The
spatial autocorrelation relationships of a pixel and its neigh-
bors can be used to quantify the spatial pattern in the images
using geostatistics (Jensen 2005). Geostatistical interpola-
tion techniques could be used to evaluate the spatial rela-
tionships associated with the existing data to create a new,
improved systematic grid of values at unsampled locations
(Goovaerts 2000). Other applications were related to image
classification and the allocation of sampling sites for map
accuracy assessment (Atkinson and Curran 1995; Atkinson
and Lewis 2000; Curran 1988; Maillard 2003; Woodcock et
al. 1988a,b; Chappell 1998).

Global annual evapotranspiration increased from 1982 to
1997, and after that, coincident with the last major El Niño
event in 1998, the global evapotranspiration increase seems to
have ceased until 2008 (Jung et al. 2010). Large-scale droughts
have reduced regional net primary production (NPP), and a
drying trend in the Southern Hemisphere has decreased NPP in
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that area, counteracting the increased NPP over Northern
Hemisphere in the past decade (2000–2009) (Zhao and
Running, 2010). The terrestrial gross primary production
(GPP) over 40 % of the vegetated land was associated with
precipitation, suggesting the existence of missing processes or
feedback mechanisms which attenuate the vegetation response
to climate (Beer et al. 2010). According to Teuling et al. (2009),
in central Europe occurred a strong trend of evapotranspiration
correlated with radiation, but in central North America, the
correlation was weak.

Spatial correlation among evapotranspiration, precipita-
tion, and temperature in Minas Gerais state is still lacking,
and the evidence of evapotranspiration increase in the recent
years is a long-standing paradigm in climate research.
Considering the existence of a systematic collection of cli-
mate elements in macroscale spatial resolution of the
National Network of Meteorological Surface Observations
(INMET), as well as the existence of remotely sensed me-
teorology data in high spatial resolution, we aimed to: (1)
determine the spatial variability and pattern of the evapo-
transpiration estimated by FAO Penman–Monteith and
Thornthwaite approaches; (2) evaluate the spatial correla-
tion between evapotranspiration, WorldClim precipitation,
temperature and MODIS evapotranspiration; and (3) imple-
ment evapotranspiration and precipitation surfaces for the
climatic classification in Minas Gerais state, Brazil.

2 Methods

2.1 Study area

Minas Gerais presents extensive mountain ranges with differ-
ent characteristics of moisture (Carvalho et al. 2010) as well as
evapotranspiration, solar radiation, relative humidity, and
wind speed spatial variability (Lemos Filho et al. 2010).
According to the Thornthwaite climatic classification, climatic
types ranged from semiarid to superhumid in Minas Gerais
(Carvalho et al. 2010). Based on the Köppen climate classifi-
cation, Minas Gerais was characterized by the major climatic
groups A–C, corresponding to tropical rainy, dry, and warm
temperate climates. The climate classes were Aw, Am, BSh,
Cwa, and Cwb, with Aw, Cwa, and Cwb occupying 99.89 %
of the territorial area of the state (Sá Júnior 2011).

2.2 Data description

2.2.1 Satellite land surface data

WorldClim mean air temperature, precipitation, and MODIS
evapotranspiration high-resolution land surface data were
used to improve the spatial information of the INMET
evapotranspiration dataset.

WorldClim dataset Mean air temperature and precipita-
tion land surface data were obtained in Hijmans et al.
(2005) and called WorldClim dataset. WorldClim mean
air temperature (Temp) (°C) and precipitation (Prec)
(mmyear−1) high-resolution surfaces were referent to
the 1950–2000 period, with 1-km spatial resolution,
derived from longitude, latitude, and elevation generated
by the SRTM. The thin-plate smoothing spline algo-
rithm implemented in the ANUSPLIN package was used
for the multivariate interpolation of the data and pre-
sented overall agreement when compared with existing
dataset at 10 arcmin resolution. When compared to
previous global climatologies, the WorldClim dataset
presented the advantages of higher spatial resolution,
more weather station records, improved elevation data,
and more information about the uncertainty of spatial
patterns (Hijmans et al. 2005).

MODIS evapotranspiration product The terrestrial evapo-
transpiration (mmyear−1) dataset, from 2000 to 2010 pe-
riod (1 km spatial resolution), was derived from the
Moderate Resolution Imaging Spectroradiometer sensor
(ET MODIS), onboard NASA's Terra and Aqua satellites
(Mu et al. 2011). The MODIS global evapotranspiration
products were the first regular 1-km2 land surface evapo-
transpiration dataset for the 109.03 million km2 global
vegetated land areas at an 8-day interval (Mu et al.
2007a,b). The evapotranspiration algorithm was further
improved in Mu et al. (2011) by simplifying the calcula-
tion of vegetation cover fraction; calculating evapotrans-
piration as the sum of daytime and nighttime components;
adding soil heat flux calculation; improving estimates of
stomatal conductance, aerodynamic resistance, and bound-
ary layer resistance; separating dry canopy surface from
the wet; and dividing soil surface into saturated wet sur-
face and moist surface. The improved evapotranspiration
algorithm had satisfactory performance in generating glob-
al evapotranspiration data products, providing critical in-
formation on global terrestrial water and energy cycles
and environmental changes (Mu et al. 2011).

2.2.2 Weather stations

The annual evapotranspiration estimates were obtained
from primary data collected by the national network of
surface meteorological observations of the National
Institute of Meteorology (INMET), represented by 39
weather stations located in Minas Gerais and and sur-
rounding states of Distrito Federal (DF), Goiás (GO),
Bahia (BA), Espírito Santo (ES), Rio de Janeiro (RJ),
São Paulo (SP), and Mato Grosso do Sul (MS), pre-
sented in the Climatological Normals, from 1961 to
1990 period (Brasil 1992) (Fig. 1).
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Evapotranspiration calculation Despite the FAO Penman–
Monteithmethod is adopted, in conceptual terms, as an evapo-
transpiration estimator, commonly applied in irrigation man-
agement, in the context of the present study, this method was
considered an estimator of the potential evapotranspiration.

The reference evapotranspiration was estimated by the
FAO Penman–Monteith method from monthly data of
mean, maximum and minimum air temperature, atmospheric
pressure, sunlight, relative humidity and wind. The model
adopted for the estimation of evapotranspiration was defined
by (Allen et al. 1998):

ETo ¼
X12
i¼1

s

sþ g�
Rn� Gð Þ 1

l
þ g900

sþ g�ð Þ T þ 273ð Þ U2 es� eað Þ
� �

NDM

ð1Þ
where,

ETo is the reference evapotranspiration (mmmonth−1), i
refers to number of the month in the year, g is the psico-
metric coefficient (kPa°C−1), s is the slope vapor pressure

curve saturation (kPa°C−1), g* is the modified psicometric
coefficient (kPa°C-1), Rn is the balance radiation on the crop
surface (MJm−2day−1), G is the flow of heat in the soil (MJ
m−2day−1), l is the latent heat of evaporation (MJkg−1), T is
the mean temperature of the air (°C), U2 is the wind speed in
the height of 2 m (ms−1), es is the pressure of saturation of
water vapor (kPa), and ea is the actual vapor pressure of
water (kPa). The equations used to estimate the parameters
of FAO Penman–Monteith equation were presented by
Allen et al. (1998) and Pereira et al. (1997). After estimating
the ETo for each month, it was proceeded the sum of all
months to generate a value of annual evapotranspiration
(mmyear−1).

The potential evapotranspiration estimated based on
Thornthwaite (1948) and Thornthwaite and Mather (1955),
was obtained by:

ETp ¼
X12
i¼1

16
10T

I

� �a� �
FC ð2Þ

Fig. 1 Input INMET dataset used to perform simple cokriging for
evapotranspiration spatial characterization in Minas Gerais and sur-
rounding states (1961–1990) (top-left panel), WorldClim mean air
temperature (Temp) (°C) and precipitation (Prec) (mmyear−1) high-

resolution surfaces (1950–2000) (top-right and bottom-left panels),
and the MODIS terrestrial evapotranspiration (mmyear−1) (2000–
2010) (bottom-right panel)
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where ETp is the potential evapotranspiration (mm
month−1), n refers to number of the month in the year,
T is the mean temperature of the air (°C), I is the
annual calorific index, a is the index obtained as a
cubic function of I, FC is the factor of correction
regarding the month and maximum insolation (N). The
equations used to estimate the parameters of the equa-
tion of Thornthwaite were derived from Thornthwaite
(1948). After estimating the ETp for each month, it was
proceeded the sum of all months to generate a value of
annual potential evapotranspiration (mmyear−1).

After obtaining the evapotranspiration values for each
location, nonspatial exploratory analysis of minimum,
mean, maximum values, standard deviation, and kurtosis
were used to characterize the climate of Minas Gerais
and surrounded states based on the evapotranspiration
estimated by the Penman–Monteith and Thornthwaite
methods (mmyear−1). The same analysis was also ap-
plied to other explanatory variables mean air tempera-
ture (°C), precipitation (mmyear−1), Thornthwaite
humidity index (Carvalho et al. 2010), and elevation
derived from the same INMET climatological stations,
1961–1990 period.

Quintile spatial exploratory analysis were used to
characterize the climate of Minas Gerais and sur-
rounded states by circle plots of the evapotranspiration
estimated by the Penman–Monteith and Thornthwaite
methods (mmyear−1), and the explanatory variables
mean air temperature (°C), precipitation (mmyear−1),
Thornthwaite humidity index (Carvalho et al. 2010),
and elevation, derived from INMET climatological sta-
tions, 1961–1990 period.

After exploratory data analysis, it was proceeded the
simple cokriging geostatistical analysis (Isaaks and
Srivastava 1989; Chilès and Delfiner 2008; Wackernagel
2003), in order to characterize the spatial dependency mag-
nitude and structure of the data and to make spatial predic-
tion at unsampled locations, based in the measurement of
the data spatial continuity and variability.

2.3 Geostatistical modeling

2.3.1 Measures of spatial continuity and variability

Covariance function Covariance could be used to charac-
terize the structure and magnitude of spatial dependence of
the evapotranspiration (Goovaerts 1997).

The covariance between data values separated by a vector
h was computed as:

CðhÞ ¼ 1

NðhÞ
XNðhÞ

i¼1

z xið Þz xi þ hð Þ � mðhÞm xi þ hð Þ ð3Þ

where,

mðhÞ ¼ 1

NðhÞ
XNðhÞ

i¼1

z xið Þ ð4Þ

m xi þ hð Þ ¼ 1

NðhÞ
XNðhÞ

i¼1

z xi þ hð Þ ð5Þ

N(h) is the number of data pairs within the class of distance
and direction, and m(h) and m(xi+h) are the means of the
corresponding tail and head values (lag means). The covari-
ance was computed for different lags, h1, h2, …hn, and the
ordered set of covariances C(h1),C(h2),…C(hn), generated
the experimental autocovariance function or the experimen-
tal covariance function.

Variogram Unlike the covariance and correlation func-
tions, which are measures of similarity, the experimental
variogram γ(h) measured the average dissimilarity be-
tween evapotranspiration data separated by a vector h.
The variogram was computed as half the average
squared difference between the components of every
data pair (Goovaerts 1997):

gðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

z xið Þ � z xi þ hð Þ½ �2 ð6Þ

where, z xið Þ � z xi þ hð Þ is an h increment of attribute z.
The variogram was applied to the evapotranspiration

data estimated by Penman–Monteith and Thornthwaite
methods, to study the structure, magnitude, and spatial
variability of the evapotranspiration estimated by FAO
Penman–Monteith and Thornthwaite approaches, for the
1961–1990 period.

Crossed covariance function Crossed covariance func-
tions were used to characterize the structure and mag-
nitude of spatial dependence of the evapotranspiration
estimated by FAO Penman–Monteith or Thornthwaite
approaches, for the 1961–1990 period, with the
WorldClim mean air temperature and precipitation
high-resolution surfaces from 1950 to 2000, as well as
the MODIS evapotranspiration product from 2000 to
2010 period. The crossed covariance functions between
the variables and co-variables were performed as
(Goovaerts 1997):

CðhÞ ¼ 1

NðhÞ
XNðhÞ

i¼1

zi xið Þzj xi þ hð Þ � miðhÞmjðhÞ ð7Þ

where
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miðhÞ ¼ 1

NðhÞ
XNðhÞ

i¼1

zi xið Þ ð8Þ

mjðhÞ ¼ 1

NðhÞ
XNðhÞ

i¼1

zj xi þ hð Þ ð9Þ

N(h) is the number of data pairs within the class of distance
and direction, and mi(h) and mj(h) are the means of tail zi
values and head zj values related to two different attributes,
zi and zj, respectively. The covariance can be computed for
different lags, h1, h2, …hn, and the ordered set of crossed
covariances Cij(h1), Cij(h2), …Cij(hn), is the experimental
crossed covariance function.

Crossed variogram The crossed variogram, when neces-
sary, was computed as (Goovaerts 1997):

g ijðhÞ ¼
1

2NðhÞ
XNðhÞ

i¼1

�
zi xið Þ � zi xi þ hð Þ� zj xið Þ � zj xi þ hð Þ� �

ð10Þ

Unlike the cross covariance or cross correlogram, the cross
semivariogram is symmetric in i, j and (h, -h); interchanging i
and j or substituting -h for h makes no difference in the
expression 10.

2.3.2 Parameter estimation

Theoretical covariogram models were estimated by the
weighted least squares method (Cressie 1985), with
spherical model parameters (Chilès and Delfiner 2008):

Spherical model : CðhÞ ¼ C0 þ C 1� 3h
a þ 1

2
h3

a3 if h � a
0 if h � a

�
ð11Þ

where C0 is the nugget variance, C is the partial sill, C0+C
equals the sill, a is the range, and h is the lag distance.

2.3.3 Spatial prediction

Simple kriging: accounting for a single attribute estimation After
the experimental variogram determination and parameter
estimation, the simple kriging method interpolation was
used to estimate the evapotranspiration estimated by FAO
Penman–Monteith or Thornthwaite approaches, for the
1961–1990 period, at 1,000-m spatial resolution in Minas
Gerais state and boundary regions.

The modeling of the trend component m(x) as a
known stationary mean m allows to write the linear
estimator as a linear combination of the n(x) random
variables Z(xi) and the mean value m (Goovaerts 1997):

Zsk*ðxÞ ¼
PnðxÞ
i¼1

lski ðxÞ Z xið Þ � m½ � þ m

¼ PnðxÞ
i¼1

lski ðxÞZ xið Þ þ 1� PnðhÞ
i¼1

lski ðxÞ
" #

m

ð12Þ

where n(x) weights lski ðxÞ are then determined such as to

minimize the error variance σ2
EðxÞ ¼ Var Z*

skðxÞ � ZðxÞ� �
un-

der the unbiasedness constraint that E Z*ðxÞ � ZðxÞ� � ¼ 0.
The simple kriging estimator is already unbiased since

the error mean is equal to zero:

E Z*
skðxÞ � ZðxÞ� � ¼ m� m ¼ 0 ð13Þ
Using matrix notation, the simple kriging system can be

written as (Goovaerts 1997):

KsklskðxÞ ¼ ksk ð14Þ
where Ksk is the nðxÞ � nðxÞ matrix of data covariances:

Ksk ¼
C x1 � x1ð Þ . . . C x1 � xnðxÞ

	 

..
. ..

. ..
.

C xnðxÞ � x1
	 


. . . C xnðxÞ � xnðxÞ
	 


264
375 ð15Þ

lsk (x) is the vector of simple kriging weights, and ksk is the
vector of data-to-unknown covariances:

lsk ¼
lsk1 ðxÞ

..

.

lsknðxÞðxÞ

264
375 ksk ¼

C x1 � xð Þ
..
.

C xnðxÞ � x
	 


264
375 ð16Þ

The kriging weights required by the simple kriging estima-
tor are obtained by multiplying the inverse of the data covari-
ance matrix by the vector of data-to-unknown covariances:

lskðxÞ ¼ K�1
sk ksk ð17Þ

The matrix formulation of the simple kriging variance is
correspondingly

σ2
skðxÞ ¼ Cð0Þ � lTskðxÞksk ¼ Cð0Þ � kTskK

�1
sk ksk ð18Þ

The covariance function matrix and variogram matrix are
related by:

ΓðhÞ ¼ Cð0Þ � 1
2 CðhÞ þ C �hð Þ½ �

¼ Cð0Þ � CðhÞ; if lag effect is ignored: ð19Þ

where the matrix C(0) is the traditional variance-covariance
matrix.

Log transformation and first trend was applied to the
evapotranspiration estimated by FAO Penman–Monteith
and Thornthwaite approaches. The trend order was defined
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according to the minor kriging standard error. Polynomials
were used to model the trend.

The first order trend in R2 was:

mðxÞ ¼ m x; yð Þ ¼ ao þ a1xþ a2yþ a3xy ð20Þ
where (x, y) are the coordinates of the location x and ao, a1,
…, an are the parameters.

The transformed evapotranspirationwere back-transformed to
the original scale to generate the spatial variability maps.

Simple cokriging: accounting for a secondary information The
simple cokriging was used to characterize the dependency
of spatial magnitude and structure of the evapotranspiration
influenced by the WorldClim temperature, precipitation and
MODIS evapotranspiration.

After fitting the crossed covariance functions, the simple
cokriging method was used to interpolate the data. The simple
cokriging estimator was presented here considering a single
secondary attribute z2. Modeling the primary and secondary
trend componentsm1(x) andm2(x) as stationary meansm1 and
m2, the linear estimator was (Goovaerts 1997):

Zð1Þ�
sck ðxÞ � m1 ¼

Xn1ðxÞ
i1¼1

lscki1 ðxÞ Z1 xi1ð Þ � m1½ �

þ
Xn2ðxÞ
i2¼1

lscki2 ðxÞ Z2 xi2ð Þ � m2½ � ð21Þ

where the Zð1Þ�
sck ðxÞ is the simple cokriging estimator of the

primary attribute z1 at the location x. The superscripted (1)
imply that data locations were not the same from one variable
to another. The [n1(x)+n2(x)] cokriging weights are deter-
mined such as to ensure unbiasedness and minimum error
variance. Unbiasedness is guaranteed by:

E Zð1Þ�
sck ðxÞ � Z1ðxÞ

n o
¼ Pn1ðxÞ

i1¼1
lscki1 ðxÞ E Z1 xi1ð Þ � m1f g½ �

þ Pn2ðxÞ
i2¼1

lscki2 ðxÞ E Z2 xi2ð Þ � m2f g½ �

þ m1 � E Z1ðxÞf g½ � ¼ 0

ð22Þ
Considering a single secondary attribute, the matrix no-

tation of the simple cokriging system is written (Goovaerts
1997):

KscklsckðxÞ ¼ ksck ð23Þ

with

Ksck ¼ C11 xa1 � xb1
	 
� �

C12 xa1 � xb2
	 
� �

C21 xa2 � xb1
	 
� �

C22 xa2 � xb2
	 
� �� �

ð24Þ

lsckðxÞ ¼
lsckb1 ðxÞ
h iT
lsckb2 ðxÞ
h iT

8><>:
9>=>;

; ksck ¼ C11 xa1 � xð Þ½ �T
C21 xa2 � xð Þ½ �T

� � ð25Þ

where Cij xai � xbj
	 
� �T

is the niðxÞ � njðxÞ matrix of data
auto and crossed covariances, lsckb1 ðxÞ

h iT
is an niðxÞ � 1

vector of cokriging weights, and Ci1 xai � xð Þ½ �T is an ni
ðxÞ � 1 vector of data-to-unknown auto and crossed
covariances. The cokriging weights are obtained by
multiplying the inverse of matrix Ksck by the vector
Ksck:

lsckðxÞ ¼ K�1
sckksck ð26Þ

The simple cokriging variance is then computed as:

σ2
sckðxÞ ¼ C11ð0Þ � lTsckðxÞksck

¼ C11ð0Þ � kTsckK
�1
sck ksck

ð27Þ

If primary and secondary variables are uncorrelated, the
simple cokriging estimator reverts to the simple kriging
estimator. Both simple kriging and simple cokriging estima-
tor are exact interpolators, honoring the primary data at their
locations.

Log transformation and third trend was applied to the
evapotranspiration estimated by FAO Penman–Monteith
and Thornthwaite approaches. The trend order was defined
according to the minor kriging standard error. Polynomials
were used to model the trend.

The third order trend in R2 was:

mðxÞ ¼ ao þ a1xþ a2yþ a3x
2 þ a4y

2 þ a5xy

þ a6x
3 þ a7y

3 þ a8x
2yþ a9xy

2 ð28Þ
where (x, y) are the coordinates of the location x and ao, a1,
…, an are the parameters.

Similarly to the simple kriging, the transformed data were
back-transformed to the original scale to generate the cok-
riging spatial variability maps.

2.3.4 Assessment of spatial uncertainty

Simple kriging and cokriging predictions were evaluated us-
ing cross-validation analyses. Cross-validation is a powerful
validation technique used to check the performance of the
models. It consists of removing data, on at a time, and then
trying to predict it. The predicted values can be compared to
the observed values in order to assess how well the prediction
is working, based on self-consistency and lack of bias (Isaaks
and Srivastava 1989; Cressie 1993; Goovaerts 1997; Chilès
and Delfiner 2008; Burrough and McDonnell 1998).
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The simple kriging and cokriging standard deviation is
the square root of the kriging and cokriging variance, re-
spectively, providing the error associated with the estimator
(Diggle and Ribeiro 2007):

SEðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Z*ðxÞjZðxÞ½ �

q
ð29Þ

If the nugget is 0, the prediction standard error would
have been exactly zero at each sampling locations and the
predicted surface Z*(x) would have interpolated the ob-
served responses Z(x).

Notice that the standard error does not depend on the
values of the data but only on their locations (Chilès and
Delfiner 2008).

The root mean square prediction error indicated how
closely the model predicted the measured values:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Z*ðxÞ � ZiðxÞ½ �2

n

vuuut ð30Þ

The average standard errors, representing the average of
the prediction standard errors, were defined by:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
σb 2 xið Þ
n

vuuut ð31Þ

The mean standardized prediction errors were defined by:Pn
i¼1

Z*ðxÞ � ZiðxÞ
� �

σb xið Þ=

n
ð32Þ

The root mean square standardized prediction errors were
defined by:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Z*ðxÞ � ZiðxÞ½ � σb xið Þ=f g2

n

vuuut ð33Þ

where Z*(x) was the simple kriging or cokriging estimation,

Zi(x), the observed value,σb xið Þ, the prediction standard error
for xi location. Considering an ideal cokriging performance,
mean standardized prediction errors should be 0 and root-
mean square standardized prediction errors should be 1
(Cressie 1993). If the root mean squared standardized error
is greater than one, the variability in the predictions is been
underestimated. If the root mean square standardized error is
less than one, the variability in the predictions is been
overestimated

After interpolate the values of ETo and ETp, predic-
tion maps in raster format were generated in spatial

resolution of 1 km2, making possible the assessment
of evapotranspiration variability in mesoclimatic scale.
Prediction standard error maps were also generated, in
order to evaluate the error magnitude across the studied
area caused by the interpolation technique.

2.4 Evapotranspiration implementation for the moisture
index calculation

Thornthwaite annual moisture index was commonly used to
characterize climates (Thornthwaite and Mather 1955;
Willmott and Feddema 1992) and other aspects of the envi-
ronment such as vegetation (Mather and Yoshioka 1968).
When Thornthwaite and Mather’s (1955) expression is in-
tegrated over the average year, S ! max P � Eð Þ; 0½ � , and
the moisture index (Im) becomes (Willmott and Feddema
1992):

Im ¼ 100
P

Eo
� 1

� �
ð30Þ

where S is the moisture surplus, P is the precipitation, E is
the actual evapotranspiration, and Eo is the potential
evapotranspiration.

Different moisture index products were generated based
on map algebra calculation in GIS, using WorldClim pre-
cipitation (Prec WorldClim) and the different evapotranspi-
ration surfaces: simple kriging Penman–Monteith
evapotranspiration (ETo sk), simple kriging Thornthwaite
evapotranspiration (ETp sk), simple cokriging Penman–
Monteith evapotranspiration (ETo sck), simple cokriging
Thornthwaite evapotranspiration (ETp sck), and MODIS
evapotranspiration (ET MODIS).

The algebra calculations were performed as:

Im ETosk ¼ 100
PrecWorldClim

ETo sk
� 1

� �
ð31Þ

ImETpsk ¼ 100
PrecWorldClim

ETp sk
� 1

� �
ð32Þ

ImETosck ¼ 100
PrecWorldClim

ETo sck
� 1

� �
ð33Þ

ImETpsck ¼ 100
PrecWorldClim

ETp sck
� 1

� �
ð34Þ

ImET MODIS ¼ 100
PrecWorldClim

ET MODIS
� 1

� �
ð35Þ
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3 Results

3.1 Exploratory data analysis

Using the primary data collected by the national network of
surface meteorological observations of the National Institute
of Meteorology (INMET), represented by 39 weather sta-
tions located in Minas Gerais and surrounding states, pre-
sented in the Climatological Normals, from 1961 to 1990
period, it was possible to determine the evapotranspiration
values using FAO Penman–Monteith and Thornthwaite
methods. Examining the preliminary investigation of non-
spatial aspects of the analyzed variables, it was observed
that ETo and ETp presented similar statistical values, but
ETo presented higher kurtosis, minimum, mean, and maxi-
mum values (Table 1).

The humidity index ranges indicated the occurrence of
different climate types in the evaluated weather stations.
Mean air temperature, precipitation, and altitude also
presented different magnitude values, indicating spatial
variation between the studied stations. The dataset de-
rived from high spatial resolution data, presented low
kurtosis values and the ranges were, in general, within
acceptable range values, considering that the information
collected by the sensor covered a much wider range than
that collected by the weather stations. The values of
kurtosis below 1 indicates symmetry and does not sug-
gest any obvious outliers, but data transformation could
add some support to the use of a Gaussian model as an
approximation for these data (Table 1).

The first stage in spatial exploratory data analysis is
simply to plot the response data in relation to their locations,
for example, using a circle plot. Quintile spatial exploratory
plots of the ETo, ETp, and the explanatory variables mean
air temperature, precipitation, Thornthwaite humidity index,
and elevation, derived from INMET climatological stations,

1961–1990 period, enabled to observe spatial correlation
between the studied variables. Observing the north–south
direction, it was possible to verify positive spatial correla-
tion between evapotranspiration and temperature, as well as
negative spatial correlation between evapotranspiration and
precipitation, humidity index, and elevation (Fig. 2). Careful
inspection of this plot revealed spatial trends, suggesting the
need to include a trend surface model for a spatially varying
mean, considering that was something special about the
north–south direction, related to the physical environment
dependence on longitude, latitude, and altitude.

3.2 Measures of spatial continuity, variability, and parameter
estimation

Circle plots can be difficult, especially when analyzing
small dataset, to distinguish between a spatially varying
mean response and correlated spatial variation about a con-
stant mean. Visual assessment of spatial correlation from a
circle plot was also difficult. For a sharper assessment, a
useful exploratory tool was the empirical variogram (Diggle
and Ribeiro 2007).

Variograms, covariance functions, and crossed covari-
ance functions enabled to characterize the spatial variability
of ETo and ETp, as well as the spatial correlation of these
variables with high-resolution surfaces of temperature, pre-
cipitation, and MODIS ET. The choice on the transforma-
tion type and order of trend removal was chosen observing
the cross validation results. The log transformation was
chosen for all the evaluated variables. The third order of
trend removal was adopted for the variables submitted to the
simple cokriging analysis and, the first order, to the simple
kriging analysis. The spherical model, with weighted least
square fit, was useful to define parameters for the spatial
prediction. The range values were 185,418.1 m, except for
the ETo submitted to the simple kriging, with the range of

Table 1 Nonspatial exploratory analysis used to characterize the cli-
mate of Minas Gerais and surrounded states based on the Penman–
Monteith (ETo) and Thornthwaite methods (ETp) (mmyear−1) evapo-
transpiration, and the explanatory variables mean air temperature
(Temp) (°C), precipitation (Prec) (mmyear−1), Thornthwaite humidity

index, and elevation (m), derived from the INMET climatological
stations (1961–1990), as well as the high spatial resolution variables
derived from the Worldclim data set of temperature (WorldClim
Temp), precipitation (WorldClim Prec) (1950–2000) and the MODIS
evapotranspiration product (ET MODIS) (2000–2010)

Statistics Variables

ETo Etp Temp Prec Humidity Index Elevation WorldClim
Temp

WorldClim
Prec

ET MODIS

Number of data 39.0 39.0 39.0 39.0 39.0 39.0 1,465,867.0 1,173,640.0 1,173,640.0

Minimum 795.9 677.2 13.4 749.8 −52.3 77.5 8.7 489.0 133.4

Maximum 1,574.4 1,385.6 25.0 1,783.1 124.3 1578.8 26.5 2,431.0 2,865.6

Mean 1,129.5 1,036.2 21.2 1319.9 20.8 721.7 22.1 1,272.8 855.4

Standard Deviation 160.6 171.0 2.4 265.8 35.1 325.1 1.8 248.1 309.3

Kurtosis 1.7 −0.6 1.8 −0.6 1.2 0.5 0.0 0.0 -0.3
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253,003.5 m (Table 2). The solid line of the models fol-
lowed the binned and averaged values of the variograms,
covariance, crossed covariance in the simple kriging
(Fig. 3), and simple cokriging models (Figs. 4 and 5), with

typical behavior of stationary spatially correlated process.
ETp and WorldClim temperature presented stronger pattern
of spatial crossed covariance than ETo. ETo and MODIS
evapotranspiration presented stronger pattern of spatial

Fig. 2 Quintile spatial exploratory analysis used to characterize the
climate of Minas Gerais and surrounded states by circle plots of the
evapotranspiration estimated by the Penman–Monteith (ETo) and
Thornthwaite methods (ETp) (mmyear−1), and the explanatory

variables mean air temperature (Temp) (°C), precipitation (Prec) (mm
year−1), Thornthwaite humidity index, and elevation (m), derived from
INMET climatological stations (1961–1990)
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crossed covariance than ETp. MODIS evapotranspira-
tion presented weak pattern of spatial crossed covari-
ance with WorldClim temperature, but strong with
WorldClim precipitation. WorldClim temperature and
precipitation, as well as the spatial crossed covariance
between temperature and precipitation, presented strong
structure of spatial dependency. MODIS evapotranspi-
ration itself presented weak pattern of spatial structure
of the variogram, with higher nugget variance propor-
tion in relation to the sill (Figs. 4 and 5).

3.3 Simple kriging and cokriging spatial prediction

After the spatial dependency characterization, the spatial
prediction of the ETo and ETp was performed by simple
kriging, accounting for a single evapotranspiration estima-
tion (Fig. 6), or simple cokriging, accounting for a second-
ary information, based on the spatial cross-correlation of the
co-variables WorldClim temperature, precipitation and

MODIS ET (Fig. 7). The corresponding prediction stan-
dard error maps of the simple kriging and simple cokrig-
ing were generated. The simple cokriging technique
presented satisfactory performance to map the spatial
variability of ETo and ETp based on kriging error coef-
ficients, considering that the mean standardized prediction
errors and the root-mean square standardized prediction
errors presented values near to 0 and 1, respectively,
according to ideal conditions of the estimator (Cressie
1993) (Table 3). Observing the standard error maps, it
was verified that simple cokriging had better accuracy
when compared to the simple kriging spatial prediction.
Multivariate geostatistical improvements of detail in the
evapotranspiration spatial information were observed.
Regarding the spatial variability of the analyzed varia-
bles, minor evapotranspiration values occurred over most
of the south region of Minas Gerais. In contrast, regions
in the north of Minas Gerais presented higher evapotrans-
piration values (Figs. 6 and 7).

Table 2 Theoretical variograms, covariance, crossed covariance
parameters used to characterize the structure and magnitude of spatial
dependency of the evapotranspiration (ET) of Minas Gerais and sur-
round states, estimated by Penman–Monteith (ETo) and Thornthwaite

(ETp) methods (mmyear−1), mean air temperature (Temp) (°C), pre-
cipitation (Prec) (mmyear−1), and MODIS evapotranspiration (ET
MODIS) (mmyear−1), using simple kriging (sk) and simple cokriging
(sck) geostatistical analysis

Description Method

sck/ETo sck/ETp sk/ETo sk/ETp

Transformation type Log Log Log Log

Order of trend removal Third Third First First

Model type Spherical Spherical Spherical Spherical

ET Variogram Variogram Variogram Variogram

Temp Covariance Covariance None None

Prec Covariance Covariance None None

ET MODIS Variogram Variogram None None

Nugget [ET] 0.002124554 0.006570022 0.002670745 0.005839827

Nugget [Tem] 0.001258021 0.001258021

Nugget [Prec] 0.001340082 0.001340082

Nugget [ET MODIS] 0.08588594 0.08588594

Major Range 185,418.1 185,418.1 253,003.5 185,418.1

Partial Sill [ET] 0.00248048 0.006730452 0.004268635 0.01021115

Partial Sill [ET][Temp] 0.0004863111 0.002555286

Partial Sill [ET][Prec] −0.001418326 −0.002286813

Partial Sill [ET][ET MODIS] −0.00389691 −0.004185068

Partial Sill [Temp] 0.001966261 0.001966261

Partial Sill [Temp][Prec] −0.001278578 −0.001278578

Partial Sill [Temp][ET MODIS] 0.0001726661 0.0001726661

Partial Sill [Prec] 0.0109154 0.0109154

Partial Sill [Prec][ET MODIS] 0.002156619 0.002156619

Partial Sill [ET MODIS] 0.01990539 0.01990539

Lag Size 27,735.77 27,735.77 27,735.77 27,735.77

Number of Lags 12 12 12 12
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It was observed in the cokriged ETo maps, predom-
inance of subdivisions of climate types between meso-
termic and megatermic. However, in the cokriged ETp
maps, the magnitude of values was higher, ranging from
microtermic to megatermic climate types. Simple kriged
maps ranged from mesotermic to magatermic climate
types, based on the classification presented in Vianello
and Alves (1991).

3.4 Evapotranspiration implementation for the moisture
index calculation

The method proposed by Willmott and Feddema (1992)
was useful to generate different moisture index maps,
based on map algebra calculation in GIS, using
WorldClim precipitation (Prec WorldClim) and the dif-
ferent evapotranspiration surfaces derived from simple

kriging Penman–Monteith evapotranspiration (ETo sk),
simple kriging Thornthwaite evapotranspiration (ETp
sk), simple cokriging Penman–Monteith evapotranspira-
tion (ETo sck), simple cokriging Thornthwaite evapo-
transpiration (ETp sck), and MODIS evapotranspiration
(ET MODIS) (Fig. 8). The moisture index derived from
ETo evapotranspiration submitted to simple kriging and
simple cokriging presented similar extreme values. In
the case of ETp, the simple cokriging presented higher
values in the perhumid class, when compared to the
simple kriging. However, the simple cokriging defined
better the borders of classes with a detailed pattern
when compared to the simple kriging. The moisture
index derived from MODIS evapotranspiration presented
high spatial variation, in great detail, being difficult to
observe the dominant process that generated the climate
large-scale pattern. Regions in the south of Minas
Gerais presented divergence of humid conditions when
compared to the moisture index derived from the kriged
and cokriged evapotranspiration.

4 Discussion

4.1 Exploratory data analysis

Exploratory data analysis is an integral part of modern
statistical practice. In the geostatistical setting, exploratory
analysis is naturally oriented towards the preliminary inves-
tigation of spatial aspects of the data, which are relevant to
check whether the assumptions made by any provisional
model were approximately satisfied. When relevant explan-
atory variables are available at the same data locations of the
main considered variables, the explanatory ones can be
treated such as additional responses to explain the environ-
mental factors affecting the main variables (Diggle and
Ribeiro 2007).

The different ranges in the studied stations with spatial
variability of the ETo, ETp, humidity index, mean air tem-
perature, precipitation, and altitude were already expected,
considering that Minas Gerais presented extensive mountain
ranges with different climate types, as well as evapotranspi-
ration, solar radiation, relative humidity, and wind speed
spatial variability (Carvalho et al. 2010; Lemos Filho et al.
2010; Sá Júnior 2011). The difference between the weather
station dataset and the high-resolution dataset could be
explained by different number of evaluated points and cov-
ered range (Fig. 1), as well as to different methods and means
of obtaining data. For example, the method for evapotrans-
piration estimation proposed by Mu et al. (2007a,b) and
Allen et al. (1998) are basically the same methods, based

Fig. 3 Evapotranspiration variograms (Y) of the Penman–Monteith
(ETo) and Thornthwaite methods (ETp) (mmyear−1), used in the simple
kriging model, derived from the INMET dataset (1961–1990)

166 M. de Carvalho Alves et al.



on the Penman–Monteith equation, but with some differ-
ences in function of certain conceptual way to get data.

Based on the quintile spatial exploratory plots of the ETo,
ETp, and the explanatory variables, mean air temperature,

Fig. 4 Variograms (Y)
covariance and crossed
covariance functions (C) of the
evapotranspiration estimated by
Penman–Monteith method
(ETo) (mmyear−1), temperature
(Temp) (°C), precipitation
(Prec) (mmyear−1), MODIS
evapotranspiration (ET MODIS)
(mmyear−1), and the
relationship between ETo and
Temp, ETo and Prec, ETo and
ET MODIS, Temp and Prec,
Temp and ET MODIS, and Prec
and ET MODIS, used in the
simple cokriging model
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precipitation, Thornthwaite humidity index, and elevation,
derived from INMET climatological stations, 1961–1990
period, it was possible to observe the physical environment
dependence on longitude, latitude, and altitude, suggesting

the inclusion of a trend surface in the model (Fig. 2).
Carvalho et al. (2010) also observed the need to include a
trend surface model in the simple cokriging analysis to
characterize the spatial variability of the humidity index in

Fig. 5 Variograms (Y),
covariance and crossed
covariance functions (C) of the
evapotranspiration estimated by
the Thornthwaite method (ETp)
(mmyear−1), temperature
(Temp) (°C), precipitation
(Prec) (mmyear−1), MODIS
evapotranspiration (ET
MODIS) (mmyear−1), and the
relationship between ETp and
Temp, ETp and Prec, ETp and
ET MODIS, Temp and Prec,
Temp and ET MODIS, and Prec
and ET MODIS, used in the
simple cokriging model
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the Minas Gerais state. In this case, the inclusion of a spatially
varying mean in the model was a better modeling strategy for
obtaining the typical behavior of a stationary, spatially corre-
lated process, with increase leveling off as the correlation
decayed to zero at larger distances.

4.2 Measures of spatial continuity, variability and parameter
estimation

The strong spatial crossed covariance between ETo and
MODIS evapotranspiration can be explained due to the
similar formulation between ETo and MODIS evapotrans-
piration (Allen et al. 1998; Mu et al. 2007a,b). Otherwise,
ETp strong spatial crossed covariance with WorldClim tem-
perature can be explained by the physical-mathematical
formulation of the ETo and the greatest number of consid-
ered variables when compared to the ETp estimated by the
Thornthwaite (1948) approach. Considering that tempera-
ture is not sufficient as an indicator of the energy available
for the evapotranspiration, higher spatial dependency be-
tween evapotranspiration and temperature could generate
undesirable erroneous tendencies.

The strong pattern of crossed covariance between evapo-
transpiration and precipitation rather than temperature indicated
that precipitation was a satisfactory explanatory variable of the
spatial trends of the evapotranspiration in Minas Gerais state.
Beer et al. (2010) observed that the GPP over 40 % of the
vegetated land was associated with precipitation. Higher spatial
correlations between GPP and precipitation, suggested the ex-
istence of missing processes or feedback mechanisms, which
attenuate the vegetation response to climate. Teuling et al.
(2009) studied the main external drivers of evapotranspiration,
related to the incident solar radiation and precipitation. There
was strong trend of evapotranspiration correlated with radiation
in central Europe, but in central North America, the correlation
was weak. In the last situation, trends in precipitation rather
than radiation explained trends in evapotranspiration.

The nugget variance proportion in relation to the sill in the
MODIS evapotranspiration spatial structure could be related to
the high spatial variability of the Earth surface detected by the
methodology employed by Mu et al. (2011). In practice, the
nugget effect has a dual interpretation as either measurement
error or spatial variation on a scale smaller than the smallest
distance between any two points in the sample design, or any

Fig. 6 Simple kriging prediction of the evapotranspiration estimated by Penman–Monteith (ETo) and Thornthwaite (ETp) methods (mmyear−1)
(left panels) and the corresponding prediction standard error maps (right panels), derived from the INMET dataset (1961–1990)
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combination of these two effects (Diggle and Ribeiro 2007).
Woodcock et al. (1988a), evaluating the extraction of informa-
tion from remotely sensed simulated images, observed that at
small units of regularization, the variograms presented a well-
developed drop from the sill in the range of influence.
Otherwise, at larger units of regularization, analogous to coarser
spatial resolution, the shape of the variogram became very
simple. Considering Woodcock et al. (1988a) observations,
the MODIS evapotranspiration product with high spatial resolu-
tion could reduce the size of the nugget variance and the range,
increasing the sill value. However, this situation was not ob-
served, considering the elevated value of the nugget. In this case,

according to Root and Schneider (1995), some of the most
conspicuous features observable at smaller scales may not reveal
dominant process that generate large-scale patterns. Mechanisms
creating larger-scale responses can easily be obscured in noisy or
unrelated local variations. This often leads to an inability to detect
at small scales a coherent pattern of associations among variables
needed for ecological impact assessments at large scales.

4.3 Simple kriging and simple cokriging spatial prediction

Based on the standard error maps, it is possible to observe
the better accuracy of the simple cokriging when compared

Fig. 7 Simple cokriging prediction of the evapotranspiration estimated by Penman–Monteith (ETo) and Thornthwaite (ETp) methods (mmyear−1)
(left panels) and the corresponding prediction standard error maps (right panels)

Table 3 Quality coefficients of the estimates of the simple kriging (sk) and simple cokriging (sck) method used to characterize the evapotrans-
piration (mmyear−1) of Minas Gerais and surround states by the Penman–Monteith (ETo) and Thornthwaite (ETp) methods

Variable/
method

Samples Mean prediction
error

Root mean square
prediction error

Mean standardized
prediction error

Root mean square standardized
prediction error

Average standard
prediction error

ETo/sk 39 1.184712 92.11356 0.002569078 1.070641 87.70006

ETp/sk 39 −1.790814 131.785 −0.02209755 1.053235 126.78

ETo/sck 39 28.72169 114.1812 0.3364307 1.373752 71.09004

ETp/sck 39 29.43903 121.2148 0.1767776 1.280291 103.9878
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to the simple kriging spatial prediction, as well as the
multivariate geostatistical detailing improvements of the
evapotranspiration spatial information.

This result was expected because Goovaerts (1997) stated
that the cokriging estimator is theoretically better than

kriging because its error variance is always smaller than or
equal to the error variance of kriging, which ignores all
secondary information (Goovaerts 1997).

Martínez-Cob and Cuenca (1992) compared kriging and
cokriging prediction errors of evapotranspiration in Oregon,

Fig. 8 Moisture index algebra maps derived from WorldClim precip-
itation (Prec WorldClim) and different evapotranspiration products:
simple kriging Penman–Monteith evapotranspiration (ETo sk), simple
kriging Thornthwaite evapotranspiration (ETp sk), simple cokriging

Penman–Monteith evapotranspiration (ETo sck), simple cokriging
Thornthwaite evapotranspiration (ETp sck), and MODIS evapotranspi-
ration (ET MODIS)
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EUA, and verified higher accuracy of the ordinary cokriging
when compared to the kriging method. According to the
authors, the disadvantage of the cokriging was related to the
high computational effort required. Ashraf et al. (1997)
characterizing the spatial pattern of reference evapotranspi-
ration from 17 stations in the states of Nebraska, Kansas,
and Colorado, USA, observed better application of cokrig-
ing when compared to kriging and inverse distance square
methods.

Another advantage of the kriging and cokriging methods
is to perform the spatial prediction without bias and with
estimation variance less than for any other linear combina-
tion of the observed values. Burrough and McDonell (1998)
stated that geostatistical methods presented great flexibility
for interpolation, providing ways to yield smoothly varying
surfaces accompanied by an estimation variance surface, in
contrast to the smooth interpolators, which gave a single,
local average value. Hijmans et al. (2005) related that the
thin-plate smoothing spline algorithm used to generate the
high-resolution surfaces of temperature and precipitation,
resulted in negative bias under higher elevation and positive
bias in the tropics.

ETo and ETp presented, in general, minor evapotrans-
piration over most of the south region of Minas Gerais,
in contrast to higher values in the North of Minas Gerais,
with differences determined by the used method for
evapotranspiration estimation and the spatial correlation
between the WorldClim temperature, precipitation, and
MODIS evapotranspiration.

The multivariate geostatistics was a useful tool to char-
acterize the structure and magnitude of spatial dependence
of evapotranspiration in Minas Gerais and surrounding
states. The methodological approach for evapotranspira-
tion characterization presented in this study can be used
as a base for adequate decision making to minimize the
risks and negative impacts of climate change in agricul-
ture (Mitchell et al. 2004; Hansen 2002; Lioubimtseva et
al. 2005; Rivington et al. 2007; Skirvin et al. 2003) and
for the climatic characterization of Minas Gerais state and
surrounding regions, based on the obtained spatial vari-
ability maps.

As stated by Woodcock et al. (1988b), an improved
understanding of the nature and causes of the spatial varia-
tion in images would provide a basis for the development of
new image techniques and methods, with more logical ways
of spatial data using.

4.4 Evapotranspiration implementation for the moisture
index calculation

The moisture index derived from the simple kriging evapo-
transpiration when compared to the simple cokriging, pre-
sented differences in magnitude and in the spatial pattern of

the border of the climatic classes. However, the strong trend
configured by precipitation in Minas Gerais determined
similar spatial patterns of both kriged and cokriged moisture
index maps. Acccording to Jung et al. (2010), terrestrial
evapotranspiration affected precipitation, and the associated
latent heat flux helped to control surface temperature, with
important implications for regional climate characteristics
such as the intensity and duration of heat waves.

The moisture index derived from the MODIS evapotrans-
piration presented high spatial variation, in great detail,
being difficult to observe the dominant process that gener-
ated the climate large-scale pattern.

The regions in the south of Minas Gerais derived from
the moisture index estimated with the MODIS evapotrans-
piration presented divergence of humid conditions when
compared to the moisture index derived from the simple
kriged and cokriged evapotranspiration, indicating climate
change in this region. According to Jung et al. (2010),
global annual evapotranspiration increased on average by
7.1±1 mmyear−1decade−1 from 1982 to 1997. After that,
coincident with the last major El Niño event in 1998, the
global evapotranspiration increase seems to have ceased
until 2008. Evapotranspiration change was driven primarily
by moisture limitation in the Southern Hemisphere, indicat-
ing soil moisture decrease from 1998 to 2008. Zhao and
Running (2010) also observed that the past decade (2000–
2009) has been the warmest since instrumental measure-
ments began. According to the authors, large-scale droughts
have reduced regional net primary production (NPP), and a
drying trend in the Southern Hemisphere has decreased NPP
in that area, counteracting the increased NPP over Northern
Hemisphere.

5 Conclusions

The use of geostatistics and the simple cokriging tech-
nique enabled the characterization of the spatial vari-
ability of the evapotranspiration of Minas Gerais and
surrounding states for the average period from 1961 to
1990, using WorldClim temperature, WorldClim precip-
itation, and MODIS evapotranspiration as covariables,
providing uncertainty information on the spatial predic-
tion pattern of the evapotranspiration.

Multivariate geostatistical determined improvements of
the spatial information of evapotranspiration weather sta-
tions data using high spatial resolution land surface dataset.

ETp values were more influenced by the spatial variabil-
ity of temperature when compared to ETo, considering the
major number of variables in the FAO Penman–Monteith
physical–mathematical formulation.

Thorntwaite evapotranspiration presented stronger spatial
crossed covariance with WorldClim temperature, than FAO
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Penman–Monteith evapotranspiration. There was stronger
spatial crossed covariance between FAO Penman–
Monteith and MODIS evapotranspiration than Thorntwaite
evapotranspiration.

The regions in the south of Minas Gerais derived from
the moisture index estimated with the MODIS evapotrans-
piration (2000–2010), presented divergence of humid con-
ditions when compared to the moisture index derived from
the simple kriged and cokriged evapotranspiration (1961–
1990), indicating climate change in this region.

There was stronger pattern of crossed covariance be-
tween evapotranspiration and precipitation rather than tem-
perature, indicating that trends in precipitation could be one
of the main external drivers of the evapotranspiration in
Minas Gerais state, Brazil.
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