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Abstract This paper tried to reconstruct the time series (TS)
of monthly average temperature (MAT), monthly accumulated
precipitation (MAP), and monthly accumulated runoff (MAR)
during 1901–1960 in the Kaidu River Basin using the Delta
method and the three-layered feed forward neural networkwith
backpropagation algorithm (TLBP-FFNN) model. Uncertain-
ties in the reconstruction of hydrometeorological parameters
were also discussed. Available monthly observed hydromete-
orological data covering the period 1961–2000 from the Kaidu
River Basin, the monthly observed meteorological data from
three stations in Central Asia, monthly grid climatic data from
the Climatic Research Unit (CRU), and Coupled Model Inter-
comparison Project Phase 3 (CMIP3) dataset covering the
period 1901–2000 were used for the reconstruction. It was
found that the Delta method performed very well for calibrated
and verified MAT in the Kaidu River Basin based on the
monthly observed meteorological data from Central Asia, the
monthly grid climatic data from CRU, and the CMIP3 dataset
from 1961 to 2000. Although calibration and verification of
MAP did not perform as well as MAT, MAP at Bayinbuluke
station, an alpine meteorological station, showed a satisfactory

result based on the data from CRU and CMIP3, indicating that
the Delta method can be applied to reconstruct MAT in the
Kaidu River Basin on the basis of the selected three data
sources and MAP in the mountain area based on CRU and
CMIP3. MAR at Dashankou station, a hydrological gauge
station on the verge of the Tianshan Mountains, from 1961 to
2000 was well calibrated and verified using the TLBP-FFNN
model with structure (8,1,1) by taking MAT and MAP of four
meteorological stations from observation; CRU and CMIP3
data, respectively, as inputs; and the model was expanded to
reconstruct TS during 1901–1960. While the characteristics of
annual periodicity were depicted well by the TS ofMAT,MAP,
and MAR reconstructed over the target stations during the
period 1901–1960, different high frequency signals were cap-
tured also. The annual average temperature (AAT) show a
significant increasing trend during the 20th century, but annual
accumulated precipitation (AAP) and annual accumulated run-
off (AAR) do not. Although some uncertainties exist in the
hydrometeorological reconstruction, this work should provide
a viable reference for studying long-term change of climate
and water resources as well as risk assessment of flood and
drought in the Kaidu River Basin, a region of fast economic
development.

1 Introduction

Climatic conditions play a fundamental role in shaping the
environment, which are usually simulated using computer
simulation models (Ninyerola et al. 2000; Jeffrey et al.
2001). These models require climate data for efficiently
modeling a wide variety of environmental processes. While
the nature of individual models may vary depending on data
availability, most have the fundamental requirement of a
dataset that is complete on a spatial and/or temporal basis
(Chapman and Thornes 2003; Marquinez et al. 2003;
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Skirvin et al. 2003). Facts on past climate are critical for
discovering the background and variability of natural cli-
mate (Wu et al. 2010). The length and continuity of climate
data series are preconditions for studying climate change.
Although the 20th century may be considered as the warm-
est century of the last 1,000 years in the world or the
Northern hemisphere, uncertainty still exists on the warming
in the whole 20th century in a few parts of the earth, such as
in Northwestern China. The climate in Northwest China
experienced a shift from warm-dry to warm-wet in the
middle of 1980s (Shi et al. 2002). For Xinjiang, a typical
mountain–basin system that lies in the semiarid and arid
areas of Northwest China, temperature, precipitation, and
streamflow had increased obviously during the past 50 years
in most parts of Xinjiang. Climate change also significantly
influenced streamflow of rivers located at the southern slope
of Tianshan Mountain (Chen et al. 2009; Wu et al. 2010;
Tao et al. 2011; Li et al. 2011a and b). Unfortunately, the
recorded meteorological and hydrological data in Xinjiang
prior to the 1950 are seldom available (Fang et al. 2011).
Consequently, there is no exact and believable answer
whether the time scale of climate or streamflow change is
decadal or centennial. The shortage of instrumental records
limits the ability to assess long-term climate change and its
impacts on water resources, ecosystem, and agriculture. In
addition, Xinjiang is staying at an economy-booming peri-
od, which requires a better understanding on carrying ca-
pacity of water resources under climate change in the
region. In the past decades, many studies focused on recon-
structing local climate variability by applying climatic proxy
data including historical documents, tree-rings, fossil pol-
lens, ice cores, and lake sediment cores (Bradley and Jones
1992; Shen et al. 2001; Esper et al. 2002; Yang et al. 2002;
Fang et al. 2011). However, few studies focus on drawing
upon longer-term data available at nearby locations to study
climate variability in Xinjiang. In its neighboring region,
Central Asia, the period of instrumental monitoring starts
from the 1900s or before for some stations. Meanwhile,
interpolated station data such as CRU data and global climate
model (GCM) data also provide historical climate data about
100 years or more. Available data offer an opportunity to
hindcast the historical climate data referring to the station data
from neighboring region on the correlation theory between
two neighboring climate variable fields or the grid data from
CRU and GCMs.

Based on the assessment of the relations between existing
station data from the Kaidu River Basin and three sources of
data including station data from Central Asia, CRU, and
GCMs data, this paper attempts to reconstruct the historical
monthly temperature and precipitation time series (TS) in the
Kaidu River Basin during 1901–1960 using the Delta method.
To reproduce the hydrological behavior of the Basin, a three-
layered feed forward neural network with backpropagation

algorithm (TLBP-FFNN) is trained and tested with observed
monthly temperature, precipitation, and runoff data from 1958
to 2002. Furthermore, the optimal combination of recon-
structed temperature and precipitation during 1901–1960 is
used as inputs for the TLBP-FFNN to reconstruct the monthly
runoff data. The uncertainty of reconstruction is also assessed.
The extension of the climate data series will provide a viable
reference for studying long-term change of climate and water
resources.

2 Study region and data

2.1 Study region

The Kaidu River is situated at the north fringe of the Yanqi
Basin on the south slope of Tianshan Mountains in Xinjiang
and extends from 42° 43′ to 43° 21′ N and from 82° 58′ to
86° 05′ E. It originates from the Hargat Valley and the Jacsta
Valley in Sarming Mountain with a maximum altitude of
5,000 m and drains into Bosten Lake, which is located in the
Bohu county of Xinjiang (Fig. 1). The records of meteoro-
logical parameters started in the late 1950s in the basin.
Based on available instrumental data, the average annual tem-
perature and the extreme minimum temperature are −4.26 °C
and −48.1 °C, respectively. The annual snow-covered days are
139.3 days and the largest average annual snow depth is 12 cm
(Xu et al. 2008). The mean annual, summer, and autumn
temperatures as well as winter precipitation significantly
increased during the period of 1958–2007 with the rates of
0.26 °C/10a, 0.28 °C/10a, 0.35 °C/10a and 1.34 mm/10a,
respectively (Li et al. 2011b).

The water flows out from the other side of the lake where
another river, i.e., the Kongque River, immediately starts
and extends to the Tarim River. The river finally disappears
in the desert. The basin is poorly gauged. Dashankou
hydrological station at 1,340 m above sea level and Bayin-
buluke meteorological station at 2,450 m above sea level are
only two field stations with long TS data. The catchment
area of the river above Dashankou station is 18,827 km2,
with an average elevation of 3,100 m (Tao et al. 2007).
Snowmelt is not only the main water source for the evolu-
tion of the Bayinbuluk grassland but also the principal
source of water required for agriculture, livestock industry,
and development of economy and society of these regions.
The streamflow in the basin consists of snowmelt in spring
and rainfall and perennial glacier melting in summer. There
are two flow peaks: the first one, mainly governed by
snowmelt, appears between March and April, and the sec-
ond one occurs between July and August, which is mainly
controlled by rainfall. The high volume of flow within a
short period will bring great hazards for downstream areas
with floods resulting from snowmelt event (Dou et al. 2011).
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2.2 Data

In order to reconstruct historical TS of hydrometeorolog-
ical variables for the Kaidu River Basin, three sources of
monthly data were used: (1) observed station data, (2)
CRU data, and (3) Coupled Model Intercomparison Proj-
ect Phase 3 (CMIP3) data of past and current climatic
conditions.

2.2.1 Station data

The target climate records for calibration and verification
are the monthly average temperature (MAT) and monthly
accumulated precipitation (MAP) at four stations including
Bayinbuluke, Baluntai, Hejing, and Yanqi meteorological
stations within the Kaidu River Basin or surrounding areas.
The target hydrological data for calibration and verification
is the monthly accumulated runoff (MAR) data from the
Dashankou hydrological station.

Both Central Asia and Xinjiang are located in the
hinterland of Asia–Europe continent and the zone of
westerly circulation. Tianshan Mountain goes over
Kazakhstan of Central Asia and the middle part of
Xinjiang from west to east. Therefore, the climate is
similar between the two regions to a certain extent.
Based on the evaluation of data availability and climate sim-
ilarity, three source stations located in the neighboring region,

Central Asia, were used as the reference data to recon-
struct hydrometeorological TS for the Kaidu River
Basin. The distance between three source stations and
four target stations are about 1,000–2,000 km (Fig. 1).
The basic information of both target and source stations
is shown in Table 1.

2.2.2 CRU data

The Climatic Research Unit (CRU), one of the leading
institutions concerned with the study of natural and anthro-
pogenic climate change, is a component of the University of
East Anglia. Consisting of approximate 30 research scien-
tists and students, the unit has developed a number of data-
sets, statistical software packages, and climate models
which are widely used in climate research.

The CRU TS3.1 datasets cover the period 1901–2009.
TS datasets are month-by-month variation in climate over
the last century with a spatial resolution of 0.5°×0.5°. Its
variables include cloud cover, diurnal temperature range,
frost day frequency, precipitation, daily mean temperature,
monthly average daily maximum temperature, vapor pres-
sure, and wet day frequency. The gridded values of MAT
and MAP were interpolated onto the four meteorological
stations of the Kaidu River Basin by bilinear interpolation.
These TS were used as reference data to reconstruct past
climate.

Fig. 1 Map of Central Asia
and Xinjiang showing locations
of selected stations
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2.2.3 CMIP3 data

CMIP3 multimodel dataset was integrated by the Program
for Climate Model Diagnosis and Intercomparison
(PCMDI) and the World Climate Research Programme
(WCRP). The data had been collected, analyzed, and pro-
vided by the National Climate Center in China. GCMs used
in this multimodel dataset included NCAR_CCSM3,
GFDL_CM2_0, GFDL_CM2_1, GISS_AOM, GISS_E_H,
GISS_E_R, NACR_PCM1, MROC3, MROC3_H,
MRI_CGCM2, MROC3_H, MRI_CGCM2, UKMO_-
HADCM3, UKMO_HADGEM, CNRMCM3, IPSL_CM4,
CCCMA_3-T47, CCCMA_3-T63, BCC-CM1, AP_F-
GOALS1.0, MPI_ECHAM5, MIUB_ECHO_G, CSIR-
O_MK3, BCCR_CM2_0, and INMCM3. One source of
integrated data is called CMIP3_SAM data, which was
obtained by averaging data such as MAT, MAP, and so on
from these 25 GCMs by simple arithmetic mean method and
interpolated into grids in the land of China with spatial
resolution 1°×1°. 20C3M data means the simulation exper-
iment data of the 20th century. The gridded MAT and MAP
from 20C3M data were interpolated onto the four meteoro-
logical stations of the Kaidu River Basin by bilinear inter-
polation. These TS were used as reference data to reconstruct
past climate.

2.3 Quality control

Quality control has been undertaken for all data. It includes
examination of individual station records looking for out-
liers using double mass curve method. Some abnormal
values were identified and either corrected or removed. No
TS had missing data longer than 3 months and only a small
fraction of the data needed correction. The missing data
were processed in the following ways: (1) for the tempera-
ture, if only 1 month had missing data, the missing data
were replaced by the mean value of the data from the two

preceding and the two following records, while for the
precipitation, the missing data were filled by using the
method in step 2 and (2) if consecutive two or more months
had missing data, the missing data were estimated by
simple linear correlation between its neighboring stations
(R2>0.95).

3 Methodology

Each TS dataset was divided into three parts in accordance
with the three stages in the model-building process: calibra-
tion, verification, and reconstruction. The MAT, MAP, and
MAR datasets during 1971–2000 were used for calibration,
during 1961–1970 for verification and during 1901–1960
for reconstruction.

3.1 The reconstruction method of meteorological time
series: the Delta method

Statistical downscaling methods aim to draw empirical rela-
tionships that transform large-scale features of GCMs to
regional-scale variables, such as precipitation and tempera-
ture (Tripathi et al. 2006). Sophisticated statistical down-
scaling methods are generally classified into three groups:
weather pattern schemes (Conway et al. 1996; Fowler et al.
2000), weather generators (WGs) (Mason 2004; Dubrovsky
et al. 2004), and regression models (Wilby et al. 1999).
Among the statistical downscaling methods, regression
models are possibly most popular, including the Delta meth-
od (Hay et al. 2000; Zhao and Xu 2007; Hao et al. 2009),
multiple regression models (MRMs) (Wilby et al. 1999),
canonical correlation analysis (CCA) (Karl et al. 1990;
Busuioc et al. 2001), singular value decomposition (SVD)
(Huth 1999), artificial neural networks (ANNs) (Zorita and
Storch 1999; Olsson et al. 2004), and support vector ma-
chine (SVM) (Tripathi et al. 2006). In comparison with

Table 1 Descriptive informa-
tion of the meteorological and
hydrological stations used in this
study

Lat latitude, Lon longitude, Alt
altitude
aMeteorological station
bHydrological station

Within Name Coordinate Alt (m) Period

Lat Lon

Kaidu River Basin Bayinbulukea 43°01′ 84°08′ 2,450 1958–2007

Baluntaia 42°46′ 86°19′ 1,790 1958–2007

Hejinga 42°19′ 86°23′ 1,116 1958–2007

Yanqia 42°03′ 86°34′ 1,060 1958–2007

Dashankoub 42°13′ 85°44′ 1,340 1958–2007

Central Asia Przhevalska 42°24′ 78°18′ 1,716 1879–1996

Dzhizaka 40°07′ 67°50′ 344 1887–2001

Tashkenta 41°20′ 69°18′ 477 1877–2003
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other statistical downscaling methods, the Delta method can
deal with larger data samples easier, train faster, and imple-
ment more efficiently. The Delta method is generally intro-
duced by text description in the prior literatures. Here, this
method is extended to the climate reconstruction and for-
mulated as follows:

T x; tð Þ ¼ Tb x; tð Þ þ Tr y; tð Þ � Tbr y; tð Þ
� �

ð1Þ

P x; tð Þ ¼ Pr y; tð Þ � Pb x; tð Þ Pbr y; tð Þ
.� �

ð2Þ

where t denotes the month, t01, 2, 3,…, 12. T(x, t) and P(x, t)
are the reconstructed temperature and precipitation for the
target location x at the tth month during the reconstruction
period. Tr(y, t) and Pr(y, t) represent temperature and precip-
itation for the referenced location y at the tth month during
reconstruction period.Tb x; tð ÞandTbr y; tð Þare mean values of
temperature during the calibration period for the target loca-
tion x and the referenced location y at the tth month. Pb x; tð Þ
and Pbr y; tð Þ are the means of precipitation during calibration
time for the target location x and the referenced location y at
the tth month.

3.2 The reconstruction method of hydrological time series:
the TLBP-FFNN model

ANN has gained significant attention during past decades
and has been widely used in the estimation of hydrologic,
climatic, and other variables. Three-layered feed forward
neural network (FFNN) includes three layers: an input layer,
a hidden layer, and an output layer (Fig. 2). It provides a
general framework for representing nonlinear functional
mapping between a set of input and output variables (Nourani
et al. 2009). In a FFNN, the weighted connections feed acti-

vations only in the forward direction from an input layer to an
output layer. On the other hand, in a recurrent network,
additional weighted connections are used to feed previous
activations back to the network (Srinivasulu and Jain 2006).
Backpropagation (BP) network model is a feed-forward ANN
structure with a BP algorithm and has proved that its three-
layer structure is satisfactory for forecasting and simulating
hydrology and water resources (ASCE 2000). TLBP-FFNN is
often trained using the Levenberg–Marquardt (LM) algorithm
as follows:

Supposing (xi, yi) is a set of n empirical pairs of indepen-
dent and dependent variables. Parameters β of the model
curve f(x, β) is optimized so that the sum of the squares of
the deviations:

S bð Þ ¼
Xn
i¼1

yi � f xi; bð Þ½ �2 ð3Þ

reaches the minimal value (Levenberg 1944; Marquardt
1963).

The input dimension and the number of hidden nodes are
determined using a heuristic procedure, i.e., different inputs
with increasing numbers of hidden nodes are tried (Cannas
et al. 2006). The output value of TLBP-FFNN could be
specifically expressed as follows:

byk ¼ f0
Xn
j¼1

wkj � fh
Xm
i¼1

wjixi þ wjo

 !
þ wko

" #
ð4Þ

wherem and n are the number of neurons in the input layer and
hidden layer, respectively (i01, 2, 3,…,m and j01, 2, 3,…, n).
wji and wkj donate weights linking the ith neuron in the input
layer with the jth neuron in the hidden layer and the jth neuron
in the hidden layer with the kth neuron in the output layer,
respectively. wjo and wko stand for biases for the jth hidden
neuron and kth neuron in the output layer, respectively. xi
represents the ith input variable for input layer and byk is kth
computed output variable. fh and fo are activation functions for
the hidden neuron and output neuron, respectively. Linear and
Tan-sigmoid functions are popular activation functions in ANN
and their general equation forms would appear as:

AðxÞ ¼ x ð5Þ

AðxÞ ¼ tanh
ecx � e�cx

ecx þ e�cx

� �
ð6Þ

where c>0 is a positive scaling constant and x is from −∞ to +∞
(Vogl et al. 1988).

The TLBP-FFNN model with Tan-sigmoid activation
function in the hidden neuron and linear activation

Fig. 2 The schematic diagram of a three-layered FFNN with structure
(8,1,1)
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function in output neuron trained using the LM algorithm
is used to model monthly runoff in this paper. The
structure of (m, n, 1) examines the conjunct impact of
temperature and precipitation on runoff with m input
variables. In the case of ANN, a data-driven statistical
model, the input variables are selected from the available
data, and the model is developed subsequently. For this
study, the MATs and MAPs during 1961–2007 from the
Bayinbuluke, Baluntai, Hejing, and Yanqi stations are
available. However, the number of available variables,
the correlations between potential input variables, and
some variables with little or no predictive power will
cause difficulty in selecting input variables (May et al.
2009).

The Akaike Information Criterion (AIC) (Akaike 1974)
can determine the optimal number of input variables by
defining the optimal trade-off between model size and ac-
curacy by penalizing models with an increasing number of
parameters. The definition of AIC is as follows:

AIC¼ �N log

PN
i¼1

yi �byið Þ2

N

0
BB@

1
CCAþ2 pþ1ð Þ ð7Þ

where yi, byi, N, and p are, respectively, the observed value,
the predicted value, number of observations, and the number
of model parameters. Here, the model accuracy and model

Table 2 Values of the
performance measures
rating, adopted from
Moriasi et al. (2007)

Performance rating Grades NSE RSR PBIAS (%)
MAT,MAP MAR

Very good A 0.75<NSE≤1 0≤RSR≤0.5 PBIAS<±15 PBIAS<±10

Good B 0.65<NSE≤0.75 0.5<RSR≤0.6 ±15≤PBIAS<±20 ±10≤PBIAS<±15

Satisfactory C 0.50<NSE≤0.65 0.6<RSR≤0.7 ±20≤PBIAS<±30 ±15≤PBIAS<±25

Unsatisfactory D NSE≤0.50 RSR>0.7 PBIAS≥±30 PBIAS≥±25

Table 3 Performance for
calibration/verification of MAT
in Kaidu River Basin based on
three types of referred data using
Delta method

C calibration, V verification

Targeted stations Referred stations
or grids

RSR(C/V) NSC(C/V) PBIAS(C/V) Performance rating

Bayinbuluke Przhevalsk 0.16/0.14 0.97/0.98 −3.54/3.27 A/A

Dzhizak 0.23/0.21 0.95/0.96 0.00/−4.48 A/A

Tashkent 0.21/0.20 0.96/0.96 0.00/4.20 A/A

Average 0.20/0.18 0.96/0.97 0.00/9.42 A/A

CRU 0.22/0.25 0.95/0.94 −0.01/9.10 A/A

CMIP3_20C3M 0.18/0.18 0.97/0.97 0.00/5.15 A/A

Baluntai Przhevalsk 0.10/0.10 0.99/0.99 2.89/−0.46 A/A

Dzhizak 0.21/0.20 0.96/0.96 −0.38/5.18 A/A

Tashkent 0.17/0.19 0.97/0.96 −0.30/−1.38 A/A

Average 0.16/0.15 0.98/0.98 −0.07/−5.13 A/A

CRU 0.22/0.24 0.95/0.94 −0.07/−7.09 A/A

CMIP3_20C3M 0.14/0.13 0.98/0.98 −0.19/−1.04 A/A

Hejing Przhevalsk 0.11/0.11 0.99/0.99 2.00/−3.42 A/A

Dzhizak 0.19/0.19 0.96/0.96 0.00/0.71 A/A

Tashkent 0.17/0.19 0.97/0.96 0.00/−3.91 A/A

Average 0.15/0.16 0.98/0.97 0.00/−6.70 A/A

CRU 0.19/0.20 0.97/0.96 0.00/−7.41 A/A

CMIP3_20C3M 0.13/0.13 0.98/0.98 0.00/−4.11 A/A

Yanqi Przhevalsk 0.11/0.10 0.99/0.99 1.44/3.88 A/A

Dzhizak 0.19/0.20 0.96/0.96 0.00/8.45 A/A

Tashkent 0.17/0.19 0.97/0.97 0.00/3.33 A/A

Average 0.16/0.15 0.98/0.98 0.00/0.25 A/A

CRU 0.18/0.19 0.97/0.97 0.00/−0.29 A/A

CMIP3_20C3M 0.12/0.12 0.98/0.99 0.00/2.90 A/A
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complexity are determined by the log-likelihood and the
term p+1, respectively. Typically, the regression error
decreases with increasing p, but since the model is more
likely to be overfit for a fixed sample size, the increasing
complexity is penalized. At some point, an optimal AIC is
determined, which represents the optimal trade-off between
model accuracy and model complexity. The optimum model
is determined by minimizing the AIC with respect to the
number of model parameters, p. The AIC is used to deter-
mine the optimal number of input variables in this study.

For this study, the available inputs are theMATat times t, t−
1, and t−2 (i.e., MAT (t), MAT (t−1), and MAT (t−2)) and the
MAP at times t, t−1, and t−2 (i.e., MAP (t), MAP (t−1), and
MAP (t−2)) from four target stations in the Kaidu River Basin.
The only neuron in the output layer representing the runoff at
time t, MAR (t), is modeled. Also, n is the number of neurons
in the hidden layer in the development of the TLBP-FFNN
model. Scheme of the LM BP was used as the training algo-
rithm in Matlab Neural Network Toolbox in this study. The
MAT and MAP values from calibration dataset are inputted
layer neurons to calibrate the runoff 2 months forward (as
output layer neuron) via the TLBP-FFNNs model. Then, the
trained model was validated by the verification dataset. In
TLBP-FFNNs modeling, the TLBP-FFNNs architecture and
training iteration number (epoch) are important. Appropriate
selection of these can progress the model efficiency in both the
steps of calibration (training) and verification, and prevent the
TLBP-FFNN model to be overtrained. In this study, it was
realized that 10,000 epochs satisfy the training network with
10−4 as goal performance and no great improvements in the
model performance were found when the number of hidden
neurons was increased from a threshold.

3.3 The assessment indices

Nash–Sutcliffe coefficient (NSC) (Nash and Sutcliffe 1970),
ratio of root mean square error, and observations standard
deviation (RSR), and percentage bias (PBIAS) were employed
as statistical indicators to evaluate the performance of calibra-
tion and verification. They are defined as follows:

NSC ¼ 1�
PN
i¼1

yi � byið Þ2

PN
i¼1

yi � yð Þ2
ð8Þ

RSR¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi�ŷið Þ2

N

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi�yð Þ2

N

s ð9Þ
PBIAS¼

PN
i¼1

yi � byið Þ � 100

PN
i¼1

yi

ð10Þ

Fig. 3 The time series of observed and verified MAT using Delta method
during verification period (1961–1970) inKaiduRiver Basin. aBayinbuluke
station, b Baluntai station, c Hejing station, and d Yanqi station
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where yi, byi, y, and N are, respectively, the observed value,
the predicted value, the mean value of the observed data,
and number of observations.

The theoretical range of NSC is from −∞ to 1. NSC
with a value greater than zero is used as an indicator to
assess the agreement between observed and estimated
values. When the value of NSC is close to 1, the esti-
mated data series is close to the observation. RSR varies
from the optimal value of 0, indicating perfect model
simulation, to a large positive value. The lower the RSR
and the root mean square error, the better the model
simulation performance (Moriasi et al. 2007). PBIAS
measures whether the model output is smaller or larger
than the corresponding observed values and can clearly
indicate the performance of a model (Gupta et al. 1999).
The positive PBIAS indicates that the model is under-
estimated, and a negative one indicates that the model is
overestimated (Gupta et al. 1999). The values of NSE
greater than 0.5, value of RSR less than 0.7, and the
absolute values of PBIAS less than 25 % indicate the
satisfactory model performance (Table 2) (Moriasi et al.
2007).

4 Results and discussion

4.1 The performance assessment of calibrated and verified
temperature

Table 3 shows the performances from calibration and veri-
fication by Delta method for MAT in the Kaidu River Basin.
The results indicate that calibration and verification based
on three sources of referred data generated similar perform-
ances for calibrated and verified MAT in the Kaidu River
Basin. Values of NSC, RSR, and PBIAS indicate that all the
three sources of referred data perform very well during
calibration and verification of MAT. There was no large
difference between calibrated and verified MAT and ob-
served ones, but different source data performed differently.
Calibrated and verified results based on grid data from
CMIP3 and station data from Central Asia are better than
that from CRU.

The same data sources also generate different MAT at
four target stations during the calibration and verification
periods. A better calibration and verification performance
based on station data from Central Asia was achieved at

Table 4 Performance for
calibration/verification of MAP
in Kaidu River Basin based on
three types of referred data
using Delta method

Targeted stations Referred
stations or grids

RSR(C/V) NSC(C/V) PBIAS(C/V) Performance rating

Bayinbuluke Przhevalsk 0.63/0.74 0.60/0.45 2.87/6.98 C/D

Dzhizak 2.47/2.74 −5.08/−6.53 0.00/22.75 D/D

Tashkent 2.07/2.41 −3.29/−4.79 3.84/2.08 D/D

Average 0.78/0.80 0.39/0.35 1.46/17.71 D/D

CRU 0.61/0.58 0.63/0.67 0.00/−1.61 C/C

CMIP3_20C3M 0.52/0.53 0.73/0.72 0.00/−1.07 B/B

Baluntai Przhevalsk 0.71/0.83 0.50/0.28 6.16/17.99 D/D

Dzhizak 2.06/2.30 −3.22/−4.30 0.00/34.27 D/D

Tashkent 1.59/2.28 −1.54/−4.21 0.40/8.86 D/D

Average 0.78/0.85 0.39/0.28 0.17/28.57 D/D

CRU 0.72/0.71 0.48/0.49 0.00/3.89 D/D

CMIP3_20C3M 0.71/0.73 0.49/0.47 0.00/5.91 D/D

Hejing Przhevalsk 0.81/0.83 0.35/0.30 −1.26/39.27 D/D

Dzhizak 1.62/2.07 −1.65/−3.09 0.00/58.49 D/D

Tashkent 1.33/2.55 −0.75/−5.82 3.04/38.83 D/D

Average 0.81/0.91 0.34/0.17 1.30/53.47 D/D

CRU 0.87/0.87 0.26/0.21 0.00/24.10 D/D

CMIP3_20C3M 0.88/0.86 0.22/0.23 0.00/26.33 D/D

Yanqi Przhevalsk 0.80/0.84 0.35/0.31 3.70/20.12 D/D

Dzhizak 1.64/1.84 −1.65/−3.09 0.00/38.58 D/D

Tashkent 1.37/2.01 −0.75/−5.81 4.62/19.94 D/D

Average 0.82/0.90 0.34/0.17 1.98/33.37 D/D

CRU 0.89/0.89 0.26/0.21 0.00/7.36 D/D

CMIP3_20C3M 0.87/0.88 0.22/0.23 0.00/10.38 D/D
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Baluntai, Hejing, and Yanqi stations than at Bayinbuluke
station. When calibrating and verifying the data for a given
target station, the data from Przhevalsk station performed
much better than that from Dzhizak and Tashkent stations,
as well as the mean value of temperature from Przhevalsk,
Dzhizak, and Tashkent stations. The source data from CRU
and CMIP3 also carried out a better performance during
calibration and verification at Hejing and Yanqi stations
than that at Bayinbuluke and Baluntai stations. Figure 3
shows the comparison between observed and verified
MAT at four target stations during the validation period
1961–1970. It can be seen that the Delta method performs
well for the four target stations based on three data sources.
According to values of PBIAS in Table 3 and Fig. 3a and d,
the MAT at Bayinbuluke and Yanqi stations are underesti-
mated by the Delta method based on all the three sources of
referred data during verification. Meanwhile, the MAT at
Hejing and Yanqi stations are overestimated during verifica-
tion (Table 3, Fig. 3b and c).

4.2 The performance assessment of calibrated and verified
precipitation

Performances from calibration and verification of MAP by
the Delta method in the Kaidu River Basin are shown in
Table 4. Comparing with the calibrated and verified results
of MAT, performances are poor for MAP. Values of NSC,
RSR, and PBIAS indicate that three sources of referred data
perform unsatisfactorily during calibration and verification
of MAP at the Baluntai, Hejing, and Yanqi stations in the
Kaidu River Basin, but Bayinbuluke station is an exception
with a satisfactory result.

Similar to calibration and verification of MAT, different
precipitation data sources generate different precipitation
values for a given station and the same data source performs
differently at different meteorological stations during the
calibration and verification periods. The values of NSC are
positive for precipitation calibration and verification based
on the CRU, CMIP3 data, and station data from the Przhe-
valsk station and the average values from three stations of
Central Asia, but negative NSC values exist based on station
data from the Dzhizak and Tashkent stations. CMIP3 and
CRU data have similar performances for calibrating and
verifying MAP in the Kaidu River Basin. It can be seen
clearly from the comparison between observed and verified
MAP at four target stations during validation period 1961–
1970 (Fig. 4).

MAP was calibrated and verified by the Delta method
based on CMIP3 data, and CRU data performs satisfactory
at the Bayinbuluke station. The good and satisfactory per-
formance of calibrated and verified MAP at the Bayinbuluke
station located in the mountain area indicate that CMIP3

data and CRU data can be used to reconstruct the precipita-
tion in the mountains where the runoff generates.

Fig. 4 The time series of observed and verified MAP using Delta
method during verification period (1961–1970) in Kaidu River
Basin. a Bayinbuluke station, b Baluntai station, c Hejing station,
and d Yanqi station
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The above results indicate that the Delta method per-
forms very well and makes low uncertainty in calibration
and verification of MAT based on the selected three referred
data sources in four target stations from the Kaidu River
Basin. It also generates good MAP based on CMIP3 data
and satisfactory MAP based on CRU data at the Bayinbu-
luke station in the Kaidu River Basin. A possible reason is
that the temperature is impacted mainly by radiation balance
and easily grasped and reconstructed. However, precipita-
tion is impacted by many factors such as local climate,
topography, and vapor sources, etc. and difficult to be mod-
eled. So it will produce less uncertainty if the selected three
data sources are used to reconstruct the MAT during 1901–
1960 in four target stations from the Kaidu River Basin and
CMIP3 data and CRU data to reconstruct MAP at the
Bayinbuluke station. In addition, the good quality of grid
data from CMIP3 and CRU used in this study covering the
study area can explain the better performance than station
data from Central Asia in calibration and verification for
precipitation of the Kaidu River Basin. Because of the long
distance between three stations from Central Asia and the
four target stations of the Kaidu River Basin, the station data

Table 6 Performance for calibration/verification of MAR using different structures of TLBP-FFNN model based on MAT and MAP of four
meteorological stations from observation, CRU, and CMIP3 data in Kaidu River Basin

Structures Data sources NSC(C/V) RSR(C/V) PBIAS(C/V) AIC(C/V) Performance rating

(2,1,1) Observation 0.79/0.81 0.46/0.49 0.00/3.22 152/238 A/A

CRU 0.73/0.79 0.52/0.56 0.00/0.08 62/202 B/B

CMIP3 0.72/0.81 0.53/0.57 0.00/1.26 51/231 B/B

(4,1,1) Observation 0.84/0.83 0.41/0.43 0.00/4.58 245/291 A/A

CRU 0.74/0.79 0.51/0.55 0.00/−0.35 73/213 B/B

CMIP3 0.73/0.79 0.52/0.56 0.00/1.46 66/212 B/B

(6,1,1) Observation 0.83/0.83 0.41/0.44 0.00/4.82 243/290 A/A

CRU 0.75/0.76 0.50/0.54 0.00/−1.67 98/168 B/B

CMIP3 0.73/0.77 0.52/0.56 0.00/−0.34 68/172 B/B

(8,1,1) Observation 0.85/0.86 0.39/0.42 0.00/2.44 286/286 A/A

CRU 0.74/0.74 0.51/0.54 0.00/−0.90 91/91 B/B

CMIP3 0.73/0.74 0.52/0.56 0.00/−0.52 74/74 B/B

(16,1,1) Observation 0.84/0.85 0.40/0.43 0.00/8.19 280/280 A/A

CRU 0.76/0.74 0.49/0.53 0.00/−5.44 132/132 A/B

CMIP3 0.73/0.76 0.52/0.56 0.00/2.35 94/94 B/B

(24,1,1) Observation 0.90/0.87 0.32/0.34 0.00/3.94 462/462 A/A

CRU 0.75/0.77 0.50/0.54 0.00/−1.20 134/134 B/B

CMIP3 0.79/0.71 0.46/0.49 0.00/3.50 196/196 A/B

Structure (2,1,1) refers to input variables: T_BYBLK(t), P_BYBLK(t); Structure (4,1,1), T_BYBLK(t−1), T_BYBLK(t), P_BYBLK(t−1), P_BYBLK
(t); Structure (6,1,1), T_BYBLK(t−2), T_BYBLK(t−1), T_BYBLK(t), P_BYBLK(t−2), P_BYBLK(t−1), P_BYBLK(t); Structure (8,1,1), T_BYBLK
(t), P_BYBLK(t), T_BLT(t), P_BLT(t), T_HJ(t), P_HJ(t), T_YQ(t), P_YQ(t); Structure (16,1,1), T_BYBLK(t−1), T_BYBLK(t), P_BYBLK(t−1),
P_BYBLK(t), T_BLT(t−1), T_BLT(t), P_BLT(t−1), P_BLT(t), T_HJ(t−1), T_HJ(t), P_HJ(t−1), P_HJ(t), T_YQ(t), T_YQ(t−1), P_YQ(t−1), P_YQ(t);
Structure (24,1,1), T_BYBLK(t−2), T_BYBLK(t−1), T_BYBLK(t), P_BYBLK(t−2), P_BYBLK(t−1), P_BYBLK(t), T_BLT(t−2), T_BLT(t−1),
T_BLT(t), P_BLT(t−2), P_BLT(t−1), P_BLT(t), T_HJ(t−2), T_HJ(t−1), T_HJ(t), P_HJ(t−2), P_HJ(t−1), P_HJ(t), T_YQ(t−2), T_YQ(t−1), T_YQ(t),
P_YQ(t−2), P_YQ(t−1), P_YQ(t)
C calibration, V verification

Table 5 Pearson correlation coefficient between MAT from observa-
tion, CRU, and CMIP3 data and observed MAR at Dashankou station
as well as that between MAP from observation, CRU, and CMIP3 data
and observed MAR at Dashankou station in Kaidu River Basin

Observed
DSK_MAR

Observed
DSK_MAR

Observed
DSK_MAR

BYBLK_MAT 0.78** (Obs) 0.79** (CRU) 0.83** (CMIP3)

BYBLK_MAP 0.83** (Obs) 0.60** (CRU) 0.56** (CMIP3)

BLT_MAT 0.80** (Obs) 0.81** (CRU) 0.83** (CMIP3)

BLT_MAP 0.78** (Obs) 0.50** (CRU) 0.47** (CMIP3)

YQ_MAT 0.79** (Obs) 0.80** (CRU) 0.83** (CMIP3)

YQ_MAP 0.51** (Obs) 0.43** (CRU) 0.41** (CMIP3)

HJ_MAT 0.80** (Obs) 0.80** (CRU) 0.83** (CMIP3)

HJ_MAP 0.51** (Obs) 0.43** (CRU) 0.45** (CMIP3)

(Obs) Pearson correlation coefficient between MAT, MAP from obser-
vation data and observed DSK_MAR, (CRU) Pearson correlation
coefficient between MAT, MAP from CRU data and observed
DSK_MAR, (CMIP3) Pearson correlation coefficient between MAT,
MAP from CMIP3 data and observed DSK_MAR
** Correlation is significant at the 0.01 confidence level (two-tailed)
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from Central Asia did not perform well and cannot be used
to reconstruct the precipitation in the Kaidu River Basin.

4.3 The performance assessment of calibrated and verified
runoff

The TLBP-FFNN model is used to model monthly runoff in
dependency on temperature and precipitation in the target
river. Before training the TLBP-FFNN model, the Pearson
correlation coefficients were computed for MAT and MAR
as well as for MAP and MAR from the above-mentioned
sources for the Kaidu River Basin (Table 5). It shows that all
correlation coefficients are significant at the 0.01 confidence
level, indicating that MAT and MAP from observation,
CRU, and CMIP3 data have significant correlation with
MAR at Dashankou station and can be used to be input
variables of TLBP-FFNN model for simulation of MAR
there. Then, MAR was calibrated and verified at Dashankou
station using MAT and MAP of all four meteorological
stations from observation, CRU, and CMIP3 data as inputs
by TLBP-FFNN model. The structures of (2, 1, 1), (4, 1, 1),
(6, 1, 1), (8, 1, 1), (16, 1, 1), and (24, 1, 1) are employed to
calibrate and verify MAR. Different structures refer to dif-
ferent input variables (see Table 6). Here, the number of
hidden neurons is set to 1 for easy comparison among
different structures. In fact, the results are similar for
TLBP-FFNN model with the same structure using different
numbers of hidden neurons in this study. It can be seen that
the TLBP-FFNN model with any one structure performs
very well when using observed MAT and MAP as input
variables. The performance is also fairly good for TLBP-
FFNN model with any one structure when using MAT and
MAP from grid data of CRU and CMIP3 as input variables.

The greater the number of input variables, the better the
performance of the TLBP-FFNN model, generally. Howev-
er, the value of AIC improves with increase of the number of
input variables. Considering model accuracy, complexity,
and performance, TLBP-FFNN models with structure

(8,1,1) are the optimal model for calibration and verification
of MAR in the Kaidu River Basin. Figure 5 shows the TS of
observed and verified MAR using TLBP-FFNN model with
structure (8,1,1) based on MAT and MAP of four meteoro-
logical stations from observation, CRU, and CMIP3 data
during validation period. It demonstrates that the TLBP-

Fig. 6 The time series of MAT reconstructed using Delta method
during 1901–1960 in Kaidu River Basin. a Bayinbuluke station, b
Baluntai station, c Hejing station, and d Yanqi station. The blue shaded
band denotes the 5 to 95 % uncertainty range estimated (URE) and the
black line means the average estimated (AE) values

Fig. 5 The time series of observed and verified MAR using TLBP-
FFNN model with structure (8,1,1) based on MAT and MAP of four
meteorological stations from observation, CRU, and CMIP3 data during
verification period (1961–1970) in Kaidu River Basin
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Fig. 7 The time series of MAP
reconstructed using Delta
method during 1901–1960 in
Kaidu River Basin. a
Bayinbuluke station, b Baluntai
station, c Hejing station, and d
Yanqi station. The blue shaded
band denotes the 5 to 95 %
uncertainty range estimated
(URE) and the black line means
the average estimated
(AE) values
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FFNNmodel with (8, 1, 1) structure trained or tested can catch
the runoff variation within a year and numerically reproduce
the historical series of runoff but is unable to capture the
highest peak of runoff.

4.4 Reconstructions of hydrometeorological parameters
and their uncertainty

The reconstructed hydrometeorological TS from 1901 to
1960 are shown in Figs. 6, 7 and 8. Figure 6 shows the
reconstructed MAT at four target stations on the basis of
three monthly source datasets using the Delta method for the
period 1901–1960. The blue shaded band denotes the 5 % to
95 % uncertainty range of six reconstructed TS and the
black line is their average estimated (AE) values. It can be
seen that the reconstructed TS of MAT captures the annual
period well and a small interannual difference during the
period of 60 years over all the four target stations. MAT
fluctuates periodically and smoothly with uncertainty. The
mean of MAT during reconstruction varies from the minimum
of −27.82±2.08 °C in January to the maximum of 10.51±
1.23 °C in July at Bayinbuluke station (Fig. 6a), −10.40±
2.08 °C to 18.66±1.21 °C at Baluntai station (Fig. 6b),
−11.87±2.06 °C to 23.13±1.22 °C at Hejing station
(Fig. 6c), and −12.23±2.04 °C to 22.80±1.22 °C at Yanqi
station (Fig. 6d), respectively. The uncertainty ranges are wider
in both the coldest season and the warmest season than other
seasons, indicating that there is larger uncertainty in the ex-
treme values of reconstructed MAT. However, the overall
uncertainty is quite small from the reconstructed TS of MAT
within the four target stations due to the continuity of temper-
ature over the spatiotemporal field.

The TS of MAP reconstructed fluctuates unevenly during
the period 1901–1960 over the four target stations (Fig. 7).
The annual period and large interannual differences are
captured from the TS of MAP reconstructed during the
study period over all four stations. The MAP fluctuates
periodically and unevenly. The mean of MAP varies from

the minimum of 3.28±1.85 mm in January to the maximum
of 69.99±59.83 mm in June at Bayinbuluke station
(Fig. 7a), from 0.60±0.33 mm in November to 56.46±
58.40 mm in July at Baluntai station (Fig. 7b), from 0.65±
0.35 mm in November to 16.90±17.75 mm in July at Hejing
station (Fig. 7c), and from 0.83±0.45 mm in November to
18.93±15.95mm in June at Yanqi station (Fig. 7d). Compared
to theMAT, the reconstructedMAP shows a larger uncertainty
within a certain year especially in the month of peak value. A
larger uncertainty for reconstruction of precipitation might be
caused by the discreteness of the precipitation field on the
spatial and temporal scales.

Figure 8 shows three reconstructed TS of MAR at
Dashankou station using TLBP-FFNN model with structure
(8,1,1) fed with the MAT and MAP at the four target stations
from reconstruction, CRU, and CMIP3 data during 1901 to
1960. It seizes the annual fluctuation pattern and interannual
difference of MAR in the period of 60 years. The mean of
MAR changes from low flow with 1.23×108m3 in January
to peak flow with 5.46×108m3 in July based on MAT and
MAP from reconstruction, from 0.97×108m3 in February to
5.81×108m3 in July based on MAT and MAP from CRU
data and from 0.85×108m3 in January to 5.49×108m3 in
July based on MAT and MAP from CMIP3 data. The TS of
MAR reconstructed based on MAT and MAP from CRU
data is similar to that based on MAT and MAP from CMIP3
data and fluctuates periodically and smoothly. However, the
TS of MAR reconstructed based on reconstructed MAT and
MAP above fluctuates unevenly and presents some high
peak values.

4.5 The change and variation of hydrometeorological
parameters during the 20th century

TS of reconstructed values from 1901 to 1960 and the
observed values from 1961 to 2000 of annual average tem-
perature (AAT) at the four target stations are shown in
Fig. 9. The fluctuation of AAT exists over the entire 20th

Fig. 8 The time series of MAR
reconstructed based on MAT
and MAP from reconstruction,
CRU, and CMIP3 data using
TLBP-FFNN with structure
(8,1,1) during 1901–1960 in
Kaidu River Basin
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Fig. 9 The time series of AAT
over the 20th century in Kaidu
River Basin. The 5 to 95 %
uncertainty range estimated
(URE), average estimated
(AE) values during 1901–1960,
and the observed (OBS) values
during 1961–2000 are linked
together and drawn on figures.
a Bayinbuluke station, b
Baluntai station, c Hejing sta-
tion, and d Yanqi station. The
black dashed line is the trend
line. ** trend is significant
at the 0.01 confidence level
(two-tailed)
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Fig. 10 The time series of AAP
over the 20th century in Kaidu
River Basin. The 5 to 95 %
uncertainty range estimated
(URE), average estimated
(AE) values during 1901–1960,
and the observed (OBS) values
during 1961–2000 are linked
together and drawn on figures.
a Bayinbuluke station, b
Baluntai station, c Hejing
station, and d Yanqi station
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century and shapes of the fluctuation are similar during
1901–1960 for all four target stations (Fig. 9). Trend anal-
ysis shows that the whole TS of AAT (average estimated
values during 1901–1960 and observed values during 1961–
2000) at the four target stations show significant increasing
trends at the 0.01 confidence level over the 20th century.
The rates of increase are 0.09 °C/10a at Bayinbuluke station
(Fig. 9a), 0.10 °C/10a at Baluntai station (Fig. 9b), 0.10 °C/
10a at Hejing station (Fig. 9c), and 0.09 °C/10a at Yanqi
station (Fig. 9d), respectively. So the temperature of the
Kaidu River Basin increased during the 20th century. This is
consistent with the conclusions from the IPCC report (Le Treut
et al. 2007). However, there are no significant trends during
first half century in the 20th century, and the warming happen
during the last 40 years of 20th century. So the time scale of
climate warming is decadal but not centennial.

Similar to the AAT, large fluctuation exists over both the
reconstructed period and the observed period for annual accu-
mulated precipitation (AAP) and shapes of fluctuation are
similar during 1901–1960 for all four target stations
(Fig. 10). The linked TS of AAP (average estimated values
during 1901–1960 and observed values during 1961–2000) at
the four target stations present no significant trends over the
20th century. However, Baluntai station, Hejing station, and
Yanqi station have significant increasing trends during 1961–
2000. It indicates the time scale of climate wetting is also
decadal but not centennial.

For annual accumulated runoff (AAR), the three TS at
Dashankou station are linked by AAR values reconstructed
based on MATand MAP of four meteorological stations from
reconstruction, CRU, and CMIP3 data, respectively, using
TLBP-FFNN with structure (8,1,1) during 1901–1960 and
the observed values during 1961–2000. The result showed a
smoother and steadier curve during the reconstructed period
than during the observed period (Fig. 11). Among these three
TS, only the linked TS of AAR reconstructed based on MAT

and MAP of the four meteorological stations from reconstruc-
tion during 1901–1960 and the observed values during 1961–
2000 presents a significant increasing trend with a rate of
0.33×108m3/10a at the 0.05 confidence level. Similar to
AAT and AAP, it shows no significant trends during first half
century in the 20th century. Therefore, the change of runoff is
also decadal and not centennial.

5 Conclusions

Through collecting available observation data around the
neighboring region and grid data from CRU and CMIP3
datasets, this paper extends the starting year of TS of MAT
and MAP in the Kaidu River Basin to 1901 using the Delta
method. Then, the TLBP-FFNN model is applied to recon-
struct the MAR by taking the reconstructed MAT and MAP
of the four meteorological stations from reconstruction,
CRU, and CMIP3 data as model inputs. The conclusions
are as follows:

The Delta method generates satisfactory and similar per-
formance for calibrated and verified MAT in the Kaidu River
Basin based on the selected three sources data from 1961 to
2000. The performances based on grid data from CMIP3 and
station data from Central Asia are better than grid data from
CRU. The calibration and verification ofMAP do not perform
as well as those of MAT do in four target stations in the Kaidu
River Basin, but satisfactory MAP at Bayinbuluke station is
obtained based on CRU and CMIP3, in which the CMIP3 data
produces better results than those from CRU. So the Delta
method can be applied to reconstruct the MAT in the Kaidu
River Basin based on the selected three data sources andMAP
at Bayinbuluke station based on CRU and CMIP3 data. The
MAR from 1961 to 2000 is well calibrated and verified using
the TLBP-FFNN model with six structures by taking MAT
and MAP at four target stations from observation, CRU, and
CMIP3 data, respectively, during 1901 to 1960 as inputs.
Considering model accuracy, complexity, and performance,
TLBP-FFNN models with structure (8,1,1) are optimal mod-
els with good performance for calibration and verification of
MAR at Dashankou station in the Kaidu River Basin.

The good performance shown by calibration and verifica-
tion of the three hydrometeorological variables during 1961–
2000 makes it credible to reconstruct the TS of the hydrome-
teorological parameters during 1901–1960 using the calibrat-
ed and verified Delta method and TLBP-FFNN model. The
reconstructed TS of MAT, MAP, and MAR capture the char-
acteristic of annual periodicity during the period 1901–1960
well over target stations, but the high frequency signals are
difficult to be obtained. The linked TS of AAT, AAP, and
AAR based on the reconstruction during 1901–1960 and the
observation during 1961–2000 show that the climate in the
Kaidu River Basin had changed during the 20th century.

Fig. 11 Three time series of AAR over the 20th century in Kaidu River
Basin. AAR reconstructed based on MATand MAP from reconstruction,
CRU, and CMIP3 data using TLBP-FFNN with structure (8,1,1) and the
observed (OBS) values during 1961–2000 are linked together and drawn
on figures. The black dashed line is the trend line. * trend is significant at
the 0.05 confidence level (two-tailed)
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However, it mainly embodies on the decadal climate warming
during 1961–2000.

This study showed that the temperature and precipitation
correlated significantly with runoff in the Kaidu River Ba-
sin. Runoff during unrecorded period can, therefore, be
reconstructed based on available temperature and precipita-
tion from selected data sources. Also, the expanded TS can
be used to identify the variation or change of water resour-
ces for longer time scales under a given uncertainty which is
caused by the quality of data sources, reconstruction meth-
ods, and other factors. In order to reduce uncertainty, future
research should concentrate on collecting extensive and
reliable data, selecting better reconstruction methods, and
continue searching for environmental factors that impact
runoff generation.
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