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Abstract The El Niño Southern Oscillation (ENSO) is
the Earth’s strongest climate fluctuation on inter-annual
time scales and has global impacts although originating
in the tropical Pacific. Many point indices have been
developed to describe ENSO but the Multivariate ENSO
Index (MEI) is considered as the most representative
since it links six different meteorological parameters
measured over the tropical Pacific. Extreme values of
MEI are correlated to the extreme values of atmospheric
CO2 concentration rate variations and negatively corre-
lated to equivalent scale extreme values of the length of
day rate variation. We evaluate a first-order conversion
function between MEI and the other two indexes using
their annual rate of variation. The quantification of the
strength of the coupling herein evaluated provides a
quantitative measure to test the accuracy of theoretical
model predictions. Our results further confirm the idea

that the major local and global Earth–atmosphere system
mechanisms are significantly coupled and synchronized
to each other at multiple scales.

1 Introduction

El Niño–La Niña is the strongest quasi-oscillatory pattern
observed in the climate system and it is coupled to numer-
ous climatic systems. Numerous empirical and theoretical
studies have attempted to discover its multivariate influen-
ces and to model it in general circulation models (see, for
example, Graf and Zanchettin (2012) and the literature
referred therein).

However, current general circulation models (GCMs)
do not reproduce well the patterns observed in climatic
data such as trends and cycles at multiple time scales
(Douglass et al. 2007; Scafetta 2010, 2012b; Spencer and
Braswell 2011). The models also fail to forecast the
summer from the preceding winter and vice versa and
are unable to accurately simulate and predict some im-
portant circulation phenomena such as the quasi biennial
oscillations and the El Niño/La Niña–Southern Oscilla-
tion (ENSO). These major climate variations are sup-
posed to be generated by a not-well-understood internal
dynamics (Meehl et al. 2011), although a contribution
from astronomical harmonic forcings cannot be excluded
(Wang et al. 2012). In general, numerous uncertainties
affect our understanding of climate dynamics (Curry and
Webster 2011).

The climate system is made of a set of subsystems cou-
pled to each other and behaves as a complex network of
coupled nonlinear oscillators, which synchronize to each
other (Tsonis et al. 2008; Wyatt et al. 2011). For example,
Scafetta (2010, 2012a) has shown that all major global,
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hemispheric, land, and ocean surface temperature records
are characterized by no less than 11 common frequencies
from a period of 5 to 100 years that match equivalent
astronomical cycles of the heliosphere and terrestrial mag-
netosphere. Mazzarella and Scafetta (2012) have shown
that the North Atlantic Oscillation Index, the global ocean
temperature, length of day, and a record of historically
observed mid-latitude auroras present common quasi
60-year oscillations since 1700, which also suggests an
astronomical origin of major climatic oscillations. Many
other examples stress the importance of studying and
directly quantify the strength of coupling among alterna-
tive physical observables. Indeed empirical modeling of
climate change might have higher predicting power than
traditional analytical models. Once that the strength of the
couplings among the climate subsystems is properly qua-
tified, it may be possible to evaluate how well-proposed
physical models can reproduce them. This testing process
would eventually yield better and more accurate theoretical
models.

Bacastow (1976) found that atmospheric carbon diox-
ide record is correlated to the Southern Oscillation Index
(SOI), which indicates that a component of the change in
the rate of CO2 removal is regulated by the southern
tropical wind and ocean oscillations. More recently,
Zheng et al. (2003) concluded that ENSO events, the
changes in the length of day (LOD), and the global
atmospheric angular momentum are correlated. However,
Bocastow and Zheng et al. simply evaluated the correla-
tion coefficients between two records and their reciprocal
time lag. However, a more quantitative relation would be
more useful because it can be more directly used to test
the accuracy of the models.

In the following, we study the relations among: the
recent monthly data of Multivariate Enso Index (MEI)
that measures the ENSO, which is the Earth’s strongest
natural climate fluctuation on inter-annual time scales;
the atmospheric CO2 concentration measured at Mauna
Loa; and the LOD, which is a global astronomical ob-
servable phenomenon. We notice that MEI is a more
comprehensive index than SOI and ENSO. We use a
similar mathematical methodology to study the mutual
correlation and to quantify it. Finally, we discuss possi-
ble underlying geophysical phenomena that could explain
the findings.

2 Data collection

We have analyzed the monthly values of:

1. MEI (interval, 1950–2011) as computed by Wolter and
Timlin (1993, 1998) (http://www.cdc.noaa.gov/people/

klaus.wolter/MEI/table.html). The record is depicted in
Fig. 1a. Each monthly value is based on bimonthly
means; for example, the February 2000 value is calcu-
lated from January-February 2000 data (Wolter and
Timlin 1993). MEI is a multivariate measure of the
ENSO signal. It is the first principal component of
six main observed variables over the tropical Pacific:
sea level pressure, zonal and meridional components
of the surface wind, sea surface temperature, surface
air temperature, and cloudiness of the sky. The MEI
monthly values are standardized with respect to a
1950–1993 reference period and are expressed as
fractions of standard deviation for which it has a
total mean equal to 0 and a standard deviation equal
to 1.

2. CO2 (ppm) monthly concentration data measured at
Mauna Loa (lat. 19°32′10″ N; long. 155°34′34″ W;
height, 3,397 m; interval, 1958–2011) (ftp://
ftp.cmdl.noaa.gov/ccg/CO2/trends/CO2_mm_mlo.txt).
The record is depicted in Fig. 1b.

3. LOD (ms), i.e., the difference between the astro-
nomical length of day and the standard length (in-
terval, 1962–2010) (Stephenson and Morrison 1995)
(ftp://hpiers.obspm.fr/eop-pc/eop/eopc05/eopc05_daily).
The record is depicted in Fig. 1c.

3 Methodology and results

3.1 Long-term analysis

The three curves depicted in Fig. 1 appear quite different
from each other. The MEI index fluctuates in an irregular
way around a zero average. The CO2 concentration re-
cord presents a clear upward trend due to the addition of
anthropogenic gases plus a smaller annual oscillation due
to the physical asymmetry between the Northern and
Southern hemispheres. The LOD decreases and presents
a clear annual cycle plus an apparently cyclical modula-
tion with period of about 18–20 years, which, perhaps,
may be astronomically induced by the 18.6-year solar–
lunar nodal cycle or other astronomical cycles (Douglass
et al. 2007) (we do not discuss this issue further in this
paper). The dynamical patterns observed in the original
records depicted in the figure would suggest that the
three records are strongly uncorrelated: the cross-
correlation between MEI and CO2 gives r00.08; MEI–
LOD gives r00.01; CO2–LOD gives r0−0.69, which is
negative and large only because one record (CO2) has an
upward trend and the other (LOD) has a downward trend
during the given period. The parameters of the mean
square regression line for the three records on time are
summarized in Table 1.
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The above results would suggest that no simple relation
exists among the three records.

3.2 Seasonal annual cycle analysis

MEI does not present any evident regular annual cyclical
variability. Each of the six time series is “normalized by
computing the bimonthly anomalies from the respective
long term averages” (Wolter and Timlin 2011). On the
contrary, both CO2 and LOD present a clear annual cyclic-
ity. LOD follows quite closely the annual cycle with maxi-
mum values during the winter and minimum values during
the summer, while CO2 annual cycle presents maximum
values in the spring (April–June) and minimum values

during September and October (see Fig. 2 where, for visual
convenience, we compare the two records from 1978 to
1985).
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Fig. 1 a Time plot of monthly
MEI values (interval, 1950–
2011). b Time plot of monthly
values of CO2 measured at
Mauna Loa (lat. 19°32′10″ N;
long. 155°34′34″ W; height,
3,397 m; interval, 1958–2011).
c Time plot of monthly LOD
values (interval 1962–2010)

Table 1 Parameters of mean square regression line of annual values of
MEI, CO2 and LOD on time, from 1962 to 2010, according to the
function Y(t)=m (t−1962)+n

m n

MEI 0.012±0.003 −0.18±0.09

CO2 (ppm) 1.48±0.01 309.7±0.3

LOD (ms) −0.042±0.002 2.93±0.06
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The CO2 annual cyclicity can be easily explained by
the observation that from October to April the Northern
Hemisphere (NH) cools while the Southern Hemisphere
(SH) warms. Because most land is located in the NH
while most ocean is located in the SH, the CO2 atmo-
spheric concentration is expected to increase from Octo-
ber to April because both the plants in the NH and the
warmer ocean in the SH would uptake less CO2 from the
atmosphere. The opposite situation occurs from May to
September.

The annual seasonal variation in LOD has been first
extensively discussed by Lambeck (1980), who identified
the variable zonal wind circulation as the cause of LOD
seasonal cycle. The annual LOD cyclicity is related to
the annual temperature cycle. In fact, during the Northern
Hemisphere winter, the Earth is at its closest distance
from the sun and the incoming total solar irradiance is
on average about 40 W/m2 larger than during the sum-
mer. So, perhaps, during winter the overall temperature
of the entire planet (ocean plus atmosphere) increases,
causing a change in wind velocities that may result in
exchanges of angular momentum between the atmosphere
and the Earth (Rosen and Salstein 1985). LOD also
presents a clear 6-month cycle that is a sub-harmonic
of the annual cycle that may be related to the solar
semiannual tidal harmonics whose detailed analysis is left
to another study.

3.3 Annual rate variation analysis

The lack of a linear correlation among the three variables
should not be taken to mean that these variables are not
coupled. Indeed a strong coupling may exist, but it is simply
nonlinear. Herein, we investigate whether a better correlation

exists among MEI, LOD, and CO2 using their annual rate
variation function.

We proceed in the following way: First, we process
the signals by eliminating the large seasonal variations
identified in CO2 and in LOD by annually differentiating
the signals. That is, we compute the difference between
the value of January 1963 and that of January 1962,
between the value of February 1963 and that of February
1962, and so on for each month and for each year. The
value is centered in the average of the chosen interval:
for example, the difference between Jan/1963 and Jan/
1962 will be centered in 0.5*(1963.04+1962.04)0
1962.54. At the end, we obtain a monthly series of
CO2 and LOD annual rate variation. Figure 3a depicts
the time plot of MEI and CO2 annual rate variation
record. Figure 3b depicts the time plot of MEI and
LOD annual rate variation record. The processed MEI
index is rescaled by using the linear conversion relation
depicted in Fig. 4.

We observe a very good correlation among the extreme
values, such as during the strong El Niño event of 1998.
Note the good synchrony occurring during the El Niño
events such as in 1965, 1972, 1983, 1987, and 1998 and
with corresponding La Niña events.

In the figure, CO2 lags MEI by 3 months (best correlation
coefficient, r00.49), while LOD lags MEI by 4 months (best
correlation coefficient, r0−0.34). Both correlation coeffi-
cients are highly significant (P(|r|>|r0|)<0.01). This result
would suggest that LOD and CO2 rate changes are driven by
MEI oscillations.

It appears that, 3 months after all El Niño events, the CO2

rate reaches a peak with the exception of the interval around
1991, and all La Niña events are followed by lowest values
of CO2. A similar argument can be repeated for the LOD
annual rate index.

To explain the absence of synchrony around 1991, it
is worth noting that a violent eruption of Mount Pina-
tubo (15°08′30″ N; 120°21′00″ E; 1,745 m asl), located
in the same tropical latitude and upwind of Mauna Loa,
began in June 1991. It was the second largest eruption
of the twentieth century and has been classified with a
Volcanic Explosivity Index of 6. For a few years after a
major volcanic eruption (i.e., when there is an abun-
dance of sulphate aerosols in the atmosphere), hetero-
trophic respiration decreases due to a lowering of the
Earth’s surface temperature and the productivity of for-
est ecosystems increases under enhanced diffuse radia-
tion. Both processes lead to a negative anomaly in CO2

growth rate that may explain the absence of synchrony
between MEI and CO2 in the 1991–1993 interval (Patra
et al. 2005).

Figure 4a, b shows scatter graphs of the MEI index against
the CO2 and LOD annual rate variations, respectively.
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Fig. 2 Illustration of the annual cycle of LOD and CO2 from 1978 to
1985; other time intervals are qualitatively equivalent. The CO2 cycle
lags the LOD annual cycle by about a season
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Figure 4a suggests that, in first-order approximation, the
CO2 annual rate variation can be obtained from MEI by
approximately multiplying the latter by K00.55 ppm/year.
Figure 4b suggests that, in first approximation, the LOD
rate variation can be obtained from MEI by approximately
multiplying the latter by K0−0.27 ms/year. The two first-
order conversion functions are depicted in Fig. 4a, b and
are used to prepare the graphical comparisons depicted in
Fig. 3a, b.

4 Discussion and conclusions

ENSO is the Earth’s strongest natural climate fluctuation on
inter-annual time scales. It is a complex atmospheric and

oceanographic phenomenon that has profound economic
and social consequences (Wang and Fiedler 2006). Howev-
er, ENSO is best described by MEI that combines six
representative meteorological variables measured in the
tropical Pacific.

Current GCMs are not able to reproduce or forecast
ocean oscillations such as ENSO events. This failure may
be due to a poor understanding of the ocean oscillations,
their physical mechanisms, and true forcings (Scafetta 2010,
2012c; McLean 2009). It has been proposed that ENSO is,
at least to some degree, a stable mode or oscillation trig-
gered by random disturbances (Philander and Fedorov
2003). ENSO oscillations may also be interpreted in terms
of a self-organized critical state (Mazzarella and Giuliacci
2009). However, complex astronomical and tidal cyclical
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Fig. 3 a Time plot of rescaled
MEI index (red line) and of
CO2 annual rate variation. The
CO2 curve is shifted 3 months
back for best correlation. b
Time plot of MEI (red line) and
of LOD annual rate, which is
shifted 3 months back for best
correlation. Note that in b the
MEI record is not only rescaled
but also flipped upside-down to
visually help a reader to notice
its good correlation with LOD
annual rate. The CO2 and LOD
curves are plotted against a
rescaled MEI index according
to the scatter graph results
depicted in Fig. 4. Note the
good correlation between the
depicted curves where the larg-
er minimum and maximum
extremes usually correspond
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forcings, today ignored in the climate models, may be signif-
icantly involved in the process (Scafetta 2010, 2012a, 2012b;
Wang et al. 2012). Thus, it is important to analyze the data in
detail to identify all physical mechanisms that may be in-
volved in the process.

Herein, we have studied three geophysical indexes:
MEI, LOD, and CO2 records. We have shown that the
LOD and CO2 annual rates are well correlated to MEI.
In Fig. 4, we have quantified the conversion factors and
showed the good agreement in Fig. 3.

The highest values of MEI show a direct and an
inverse relationship with the highest values of CO2 and
LOD annual rate occurring after just a few months, re-
spectively (Fig. 3). Since the highest values of MEI rep-
resent El Niño events, the results obtained here show the

influence of El Niño on CO2 and on LOD. It is worth
noting that El Niño events occur in correspondence with
an increase of sea surface temperature and a weakening of
easterly trade winds (Wang and Fiedler 2006; Deser and
Wallace 1990; Wallace 1998). But, a weakening of east-
erly winds causes an increase of zonal wind (Mazzarella
2008, 2009) that, like a torque, causes an acceleration of
the Earth’s rotation, i.e., a decrease of LOD. Equally, an
increase of sea surface temperature causes a smaller solu-
bility of CO2 in the ocean and so a higher concentration
in the atmosphere.

We propose that the nature and the magnitude of these
correlations herein evaluated should be used to validate any
analytical model attempting to reproduce the climate system
in its effects and components.
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Fig. 4 a Scatter graphs of the
MEI index against the annual
rate of CO2 (the CO2 rate index
is shifted back by 3 months). b
Scatter graphs of the MEI index
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