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Abstract Three statistical downscaling methods (condi-
tional resampling statistical downscaling model: CR-
SDSM, the generalised linear model for daily climate
time series: GLIMCLIM, and the non-homogeneous hid-
den Markov model: NHMM) for multi-site daily rainfall
were evaluated and compared in the North China Plain
(NCP). The comparison focused on a range of statistics
important for hydrological studies including rainfall
amount, extreme rainfall, intra-annual variability, and spatial
coherency. The results showed that no single model
performed well over all statistics/timescales, suggesting
that the user should chose appropriate methods after
assessing their advantages and limitations when apply-
ing downscaling methods for particular purposes. Spe-
cifically, the CR-SDSM provided relatively robust results for
annual/monthly statistics and extreme characteristics, but
exhibited weakness for some daily statistics, such as
daily rainfall amount, dry-spell length, and annual wet/
dry days. GLIMCLIM performed well for annual dry/
wet days, dry/wet spell length, and spatial coherency,
but slightly overestimated the daily rainfall. Additionally,

NHMM performed better for daily rainfall and annual
wet/dry days, but slightly underestimated dry/wet spell
length and overestimated the daily extremes. The results
of this study could be applied when investigating cli-
mate change impact on hydrology and water availability
for the NCP, which suffers from intense water shortages
due to climate change and human activities in recent
years.

1 Introduction

Changing climate and its impacts on water resources
have gained significant attention in hydrological studies
(Fu et al. 2007; Chen et al. 2010). General circulation
models (GCMs) are a common used tool for the assess-
ment of climate change, but they currently remain rela-
tively coarse in resolution and so unable to resolve sub-
grid-scale features such as topography, clouds, and land
use (Grotch and MacCracken 1991; Fowler et al. 2007).
In particular, GCM outputs are inadequate for capturing
rainfall spatial-temporal variability, which is required for
hydrological modeling (Frost et al. 2011). Downscaling
is thus often used to bridge the scale mismatch gap between
the GCM and regional hydrological impacts studies (Maraun
et al. 2010).

Downscaling methods are commonly classified as
statistical and dynamic downscaling, with statistical
downscaling more widely adopted in hydrological stud-
ies due to the higher computation resource requirements
of dynamic downscaling, as well as inadequate spatial
resolution for convective rainfall events and the effects
of terrain (Fowler et al. 2007; Chen et al. 2010). In the
past two decades, various statistical downscaling models/
software for rainfall (or multivariable downscaling) have
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been developed (Xu 1999; Wilby and Wigley 2000;
Chandler 2002; Charles et al. 2004; Fowler et al.
2005; Wetterhall et al. 2006; Mehrotra and Sharma
2007; Chen et al. 2010; Chiew et al. 2010), but no
single model has been found to perform well over all
statistics/timescales/applications. Consequently, compari-
sons of different methods are very important to under-
stand under which conditions these methods can be
applied. Comparisons of different statistical downscaling
methods for precipitation have been conducted in many
countries and regions (Dibike and Coulibaly 2005; Khan
et al. 2006; Timbal et al. 2008a; Tryhorn and DeGaetano
2010; Liu et al. 2011; Raje and Mujumdar 2011; Frost et al.
2011). However, few studies have considered the intermitten-
cy structure and daily to monthly spatial correlation of
rainfall. Moreover, it is also unclear whether the total
monthly, seasonal, and site-to-site variations, as required
for hydrologic modeling, can be adequately reproduced
by these models (Frost et al. 2011).

In China, there have been several statistical down-
scaling exercises for precipitation (Liao et al. 2004;
Wetterhall et al. 2006; Chu et al. 2010; Chen et al.
2010; Liu et al. 2011), but there has not been a com-
parison of the relative performance of multi-site
approaches of relevance to hydrological performance.
Wetterhall et al. (2006) compared four statistical down-
scaling methods (two analogue methods, SDSM and a
fuzzy-rule-base weather-pattern classification method:
MOFRBC) on three catchments located in southern,
eastern, and central China, and demonstrated that all
methods capture the annual precipitation cycle, with
SDSM and MOFRBC performing overall better than
the analogue methods. Liu et al. (2011) compared the
performance of SDSM and NHMM over an arid basin
in northwest China, and determined both models
showed stability with little model performance differ-
ence. However, these comparisons only used the
single-site SDSM, and so did not comprehensively con-
sider site to site correlation. Additionally, there has not
been a comparison of different statistical downscaling
methods for the North China Plain, where the precipi-
tation is strongly governed by the East Asian Monsoon
and that now suffers from intense water shortage (Fu et
al. 2009).

The intention of this paper is to focus on an evaluation of
three multi-site statistical downscaling methods (CR-
SDSM, NHMM, and GLIMCLIM) in the NCP. The paper
is organized as follows. The rainfall, reanalysis data, and
three statistical downscaling methods used in this study are
first described in Section 2. Section 3 presents the model
results, followed by a discussion of each model's perfor-
mance. The conclusion and proposed future research are
presented in Section 4.

2 Datasets and methodology

2.1 Datasets and predictor selection

2.1.1 Observed rainfall

The study area is the North China Plain (Fig. 1), which is
also known as the Huang-Huai-Hai Plain after the three
major rivers that traverse it. As China's most important
social, economic, and agricultural region, the NCP produces
about one fourth of the country's total grain yield, and
currently experiences intense water shortages and related
environmental problems (Fu et al. 2009).

Observed daily rainfall from 40 weather stations (Fig. 1
and Table 1) chosen for this study was acquired from the
China Meteorological Data Sharing Service System (http://
cdc.cma.gov.cn). All station records used have complete
series for the entire period (1961–2010) and have passed
NMO data quality control. Observed daily precipitation less
than 1.0 mm was set to zero to eliminate the impact of
inconsistencies in the observation due to trace rainfall
amounts (Frost et al. 2011). This threshold was also used
to determine whether a day is classified as dry or wet in
calculating indices.

2.1.2 Reanalysis data for atmospheric predictors

The predictor variables used in this study were from the large-
scale reanalysis datasets obtained from the National Centers
for Environmental Prediction/National Center for Atmospher-
ic Research (NCEP/NCAR, http://www.cdc.noaa.gov/cdc/
reanalysis/ ). Thirty daily predictors (1961–2010) such as
sea level pressure, temperature, geopotential height, wind
speed and direction, and specific humidity at pressure
(500, 700, and 850 hPa) and surface levels were selected
as candidate predictors. Relevant predictors were then
extracted for a seven by six array of grid cells (2.5°×
2.5°) covering the chosen rainfall sites (Fig. 1). Further-
more, all candidate predictors were standardized before
statistical downscaling by subtracting the long-term mean
and dividing by the long-term standard deviation as:

ût ¼ ut � u

du
ð1Þ

Where ût is the normalized predictor at time t, ū is the
multiyear average during study period, and δu is the standard
deviation of u for the study period.

2.1.3 Predictor selection

The choice of predictor variable(s) is one of the most critical
steps in the development of a statistical downscaling scheme
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because the decision largely determines the characteristics of
the downscaled scenario. The selection process is complicated
by the fact that the explanatory power of individual predictor
variable may be low, or the power varies both spatially and
temporally (Wilby et al. 2004). The basic requirements are
that the selected predictors must be strongly correlated with
the predictand, physically sensible, realistically represented by
GCM, and multiyear variability captured (Wilby and Wigley
2000; Wilby et al. 2004; Gachon and Dibike 2007; Liu et al.
2011). Additionally, the impacts of different regions and sea-
sons on predictor selection should also be considered (Timbal
et al. 2008b). Simple procedure such as partial correlation
analysis, step-wise regression, or information criteria may be
used to screen most promising predictor variables from a
candidate suite (Wilby et al. 2004), and the commonly used
predictors in daily precipitation statistical downscaling are
circulation variables, temperature and relative humidity (e.g.,
dew point temperature depression).

The procedure adopted for selecting suitable predictors in
this study is as follows: (1) The potential variables are extended
to more than 4,000 predictors by calculating the gradients
between two grid cells (including north–south, west–east,
northwest–southeast, and northeast–southwest), basing on the
30 candidate predictors mentioned in Section 2.1.2; (2) The

Pearson partial correlation is used to screen the most promising
variables. This leads to twelve predictors (Table 2) being se-
lected for wet season (April to September) and dry season
(October to next March). This is because the atmosphere cir-
culation features in NCP, which are strongly controlled by the
East Asian monsoon, are quite different between wet season
and dry season (Chu et al. 2010). The selected predictors were
directly used in SDSM and NHMM. For GLIMCLIM, the
predictors are further validated through the likelihood ratio
statistics and residual analysis while the occurrence and amount
models are being fitted. Besides these predictors, other predic-
tors reflecting seasonality, autocorrelation, inter-site depen-
dence, etc. are also used for GLIMCLIM (Table 3).

2.2 Model descriptions

2.2.1 CR-SDSM

The statistical downscaling model (SDSM) is a hybrid be-
tween a regression-based method and a stochastic weather
generator, in which the local-scale weather generator param-
eters are linearly conditioned by large-scale predictors at
individual sites (Wilby et al. 2003). It can be described as
(Wilby et al. 2003; Chu et al. 2010):

Fig. 1 Map of the NCP showing the location of the climate stations and NCEP grids used in this study (created by ArcGIS software)
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wt ¼ a0þ
Xn

j¼1

ajût
ðjÞ ð2Þ

Where ωt is the conditional probability of rainfall occur-

rence on day t, ût
ðjÞ
is the normalized atmospheric predictor,

and αj is regression coefficients calculated using least

squares regression. The rainfall occurrence was determined
by a uniformly distributed random number rt (0≤rt≤1), if
the rainfall occurs (ωt≤rt), the rainfall amount can be
expressed by a z score as:

Zt ¼ b0 þ
Xn

j¼1

bjût
ðjÞ þ bt�1 þ " ð3Þ

in which Zt is the z score, βj is the regression parameter
estimated using least squares regression, and ε is a error

term represented by the normal distribution " � Nð0; d2Þ ,
and:

Zt ¼ f�1½FðytÞ� ð4Þ
Where ϕ is the normal cumulative distribution function

and F(yt) is the empirical distribution function of yt. More
detailed information on SDSM can refer to these studies
(Hay et al. 2000; Wilby et al. 2002; Dibike and Coulibaly
2005; Khan et al. 2006; Chu et al. 2010; Liu et al. 2011).
Detailed technical information on SDSM can be found in
Wilby et al. (2002) and the corresponding software toolkit
can be downloaded from http://co-public.lboro.ac.uk/
cocwd/SDSM/main.html.

SDSM is best described as a single-site model, but it can
be extended to multi-site applications via conditional resam-
pling (CR-SDSM, Wilby et al. 2003; Harpham and Wilby
2005). Applying SDSM to multi-site daily rainfall down-
scaling includes two steps: (1) the daily rainfall at a “mark-
er” site (in this study, the area average amounts) is first
downscaled by the single-site SDSM; (2) Daily rainfall
amounts are then “resampled from the empirical distribution
of area averages, conditional on the large-scale atmospheric
forcing and the stochastic error term. The actual daily rain-
fall is determined by mapping the modeled normal cumula-
tive distribution value onto the observed cumulative
distribution of amounts at the marker site” (Wilby et al.
2003). Ultimately, the marker site rainfall is resampled to
the constituent amount falling on the same day from each
station in the multi-sites array (Harpham and Wilby 2005).

Thus, if the marker series is based on an unweighted
average of all sites, the conditional resampling will preserve
both the areal average of the marker series and the spatial
covariance of the multi-site rainfall (Wilby et al. 2003).
Additionally, using area average, instead of individual sites
as the marker series, reduces the risk of employing a non-
homogeneous/non-representative record and increases the
signal to noise ratio of the predictand (Wilby et al. 2003).

2.2.2 NHMM

The non-homogeneous hidden Markov model (NHMM)
relates the atmospheric predictors to point rainfall at multi-
sites using a hidden weather state process (Bates et al. 1998;

Table 1 Rainfall stations in NCP selected in this study

Label Station ID Name Latitude Longitude Altitude (m)

01 58015 Dangshan 34°26′ 116°20′ 44.2

02 58102 Haozhou 33°52′ 115°46′ 37.7

03 58122 Suxian 33°38′ 116°59′ 25.9

04 58203 Fuyang 32°52′ 115°44′ 32.7

05 58215 Shouxian 32°33′ 116°47′ 22.7

06 58221 Bengbu 32°55′ 117°23′ 21.9

07 54511 Beijing 39°48′ 116°28′ 31.3

08 53698 Shijiazhuang 38°02′ 114°25′ 81

09 53798 Xingtai 37°04′ 114°30′ 77.3

10 54518 Langfang 39°07′ 116°23′ 9

11 54534 Tangshan 39°40′ 118°09′ 27.8

12 54539 Leting 39°26′ 118°53′ 10.5

13 54602 Baoding 38°51′ 115°31′ 17.2

14 54606 Raoyang 38°14′ 115°44′ 19

15 54624 Huanghua 38°22′ 117°21′ 6.6

16 54705 Nangong 37°22′ 115°23′ 27.4

17 53898 Anyang 36°03′ 114°24′ 62.9

18 53986 Xinxiang 35°19′ 113°53′ 73.2

19 57083 Zhengzhou 34°43′ 113°39′ 110.4

20 57089 Xuchang 34°02′ 113°52′ 66.8

21 57091 Kaifeng 34°47′ 114°18′ 73.7

22 57193 Xihua 33°47′ 114°31′ 52.6

23 57290 Zhumadian 33°00′ 114°01′ 82.7

24 58005 Shangqiu 34°27′ 115°40′ 50.1

25 58027 Xuzhou 34°17′ 117°09′ 41.2

26 58040 Ganyu 34°50′ 119°07′ 3.3

27 54725 Huiminxian 37°29′ 117°32′ 11.7

28 54753 Longkou 37°37′ 120°19′ 4.8

29 54776 Chengshantou 37°24′ 122°41′ 47.7

30 54808 Chaoyang 36°14′ 115°40′ 37.8

31 54823 Jinan 36°36′ 117°03′ 170.3

32 54826 Taishai 36°15′ 117°06′ 1,533.7

33 54836 Yiyuan 36°11′ 118°09′ 305.1

34 54843 Weifang 36°45′ 119°11′ 22.2

35 54863 Haiyang 36°46′ 121°11′ 40.9

36 54916 Yanzhou 35°34′ 116°51′ 51.7

37 54936 Lvxian 35°35′ 118°50′ 107.4

38 54945 Rizhao 35°26′ 119°32′ 36.9

39 54527 Tianjin 39°05′ 117°04′ 2.5

40 54623 Tanggu 39°03′ 117°43′ 4.8
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Hughes et al. 1999; Charles et al. 1999, 2003, 2004, 2007;
Chiew et al. 2010; Frost et al. 2011; Fu and Charles 2011).

The NHMM models multi-site patterns of daily rainfall
as a finite number of “hidden” (i.e., unobserved) weather
states, and the temporal evolution of these daily states is
modeled as a first-order Markov process with state-to-state
transition probabilities conditioned on a small number of
synoptic-scale atmospheric predictors (Fu and Charles
2011). Generally, the NHMM can be expressed by the
following assumptions (Charles et al. 2004):

PðRtjST1 ;Rt�1
1 ;X t

1Þ ¼ PðRtjStÞ ð5Þ

PðStjSt�1
1 ;XT

1 Þ ¼ PðStjSt�1;XtÞ ð6Þ

in which Rt denotes a multivariate vector giving rainfall
occurrences at an n stations' network at time t, Xt is the
vector of atmospheric measures at time t (1≤ t≤T), and St
presents the weather state at time t. The notation X t

1 is used
to present the sequence of atmospheric data (from time 1 to
T) and similar for ST1 and Rt

1 , and specific NHMMs are
defined by the parameterizations chosen for PðRtjStÞ and P
ðStjSt�1;XtÞ (Hughes et al. 1999; Charles et al. 2004). The
first assumption states that the rainfall process is condition-
ally independent given the current weather state and the
second assumption states that the rainfall process depends
only on the previous weather state and the current atmo-
spheric data (Charles et al. 2004).

The most appropriate number of hidden states is estimat-
ed via the Bayes Information Criterion (BIC, Robertson et
al. 2004). Conditioned on the state process, rainfall at a
network of stations is modeled using tree averaged multi-
variate copulas as described in Kirshner (2007).

A detailed description of the current-generation NHMM,
including its assumptions, mathematical parameterizations,
and estimation algorithms can be found in Kirshner (2005),
with a corresponding software toolkit available at: http://
www.stat.purdue.edu/~skirshne/MVNHMM/.

2.2.3 GLIMCLIM

Generalized linear models (GLMs) are an extension of clas-
sical regression and are well established in the statistical
literature (Chandler 2002; Yang et al. 2005; Yan et al. 2006).
The GLIMCLIM model (generalised linear model for daily
climate time series) provides an alternative conceptualization
of the rainfall process (Chandler 2002; Frost et al. 2011),
modeling rainfall occurrence using logistic regression and
rainfall amounts using a gamma distribution with a common
dispersion parameter.

The logistic regression can be described as follows
(Chandler 2002, Yang et al. 2005):

ln
pi

1� pi
¼ x

0
ib ð7Þ

Where pi is the rainfall probability for the ith case in the
dataset conditional on a covariate vector Xi with coefficient

Table 2 Candidate predictors
selected from the NCEP datasets Predictors Description Grid

Wet season

Temp NW–SE Surface temperature northwest to
southeast gradient

B4−C3

DPT500 Dew point temperature depression
at 500 hPa

(D1+D2+E2)/3

SHUM 500 Specific humidity at 500 hPa (F3+G3+G4)/3

MSLP Mean sea level pressure (A2+A3+B2+B3)/4

UWD 850 N–S Zonal velocity component at 850
hPa north to south gradient

((F5−F4)+(G5−G4))/2

VWD 700 Meridional velocity component at
700 hPa

(E2+F2)/2

Dry-season

Temp 850 W–E Temperature at 850 hPa west to
east gradient

((D3−E3)+(D4−E4)+(E3−F3)+
(E4−F4))/4

DPT 500 Dew point temperature depression
at 500 hPa

(D1+D2+E1+E2)/4

SHUM 700 Specific humidity at 700 hPa (D1+E1+E2+F2+F3+G3)/6

MSLP N–S Mean sea level pressure north to
south gradient

((A3−A2)+(B3−B2))/2

UWD850 Zonal velocity component at 850 hPa (F3+F4+G4)/3

VWD NW–SE Surface meridional velocity component
northwest to southeast gradient

A2−B1
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vector β. The rainfall amount for ith wet month has, condi-
tional on a covariate vctor ξi and coefficient vector γ , a
gamma distribution with mean μi , where

lnðμiÞ ¼ x
0
ig ð8Þ

The shape parameter of the gamma distribution (v) is
assumed constant for all observations.

To describe the climatology of the region, other covari-
ates representing spatial dependence, seasonal variation,
interactions terms and persistence should also be included
in the occurrence and amount models in GLIMCLIM. More-
over, the GLIMCLIM can output rich information to check
for unexplained structure, mean Pearson residuals. For an
observation Yi, the Pearson residual is described as follows
(Chandler 2005):

ri ¼ ðY i � μiÞ
di

ð9Þ

in which Yi denotes the observed response for the ith
case, μi is the modeled mean and δi is the standard
deviation. If the model is correctly fitted, the Pearson
residuals should all come from distribution with mean 0
and variance 1 (Ambrosino et al. 2010).

Refer to Chandler and Wheater (2002) and Yang et al.
(2005) for further details, and it can be freely download
fromhttp://www.homepages.ucl.ac.uk/~ucakarc/work/
rain_glm.html.

2.3 Model calibration and verification

All three models were calibrated on a half year basis
(wet season and dry season). The period 1981–2010 was
chosen for calibration due to the availability of high-
quality rainfall data, while the period 1961–1980 was
chosen for validation. The SDSM was only built at the
“marker” site, and then the single-site results were ex-
tended to multi-site synthesis of daily rainfall via condi-
tional resampling. We used the fourth root transformation
to convert the original rainfall to a normal distribution,
and the ordinary least square method for optimization
(Wilby et al. 2002). The percentages of explained vari-
ance in the “maker” site were 40.8 % for dry season and
36.1 % for wet season. Moreover, the determination
coefficients in the calibration period were 0.729 for dry
season and 0.674 for wet season. For the NHMM model,
the main step is to choose the appropriate number of
hidden states from a fitted NHMM by using the BIC.
When the BIC reaches its minimum value, the
corresponding hidden states are chosen. In this study,
the numbers of hidden state are five for wet season
(log-likelihood of data set, −2.099055e+05; log-posterior
of the data set, −2.103359e+05) and four for dry season
(log-likelihood of data set, −6.914106e+04, log-posterior
of data set: −6.958825e+04), respectively.

For either logistic or gamma model in GLIMCLIM, a
baseline model was firstly developed using some basic

Table 3 GLIMCLIM model (occurrence and amount) specification

GLIMCLIM model
fitted parameter

Parameter name

Occurrence model Constant

1. Legendre polynomial 1 for eastings

2. Legendre polynomial 1 for northings

3. Legendre polynomial 2 for eastings

4. Legendre polynomial 2 for northings

5. Legendre polynomial 3 for eastings

6. Legendre polynomial 3 for northings

7. Daily seasonal effect, cosine component

8. Daily seasonal effect, sine component)

9. Ln(1+Y[t−1])

10. TEMP NW–SE (wet)/TEMP 850 W–E
(dry)

11. DPT 500

12. SHUM 500 (wet)/SHUM700 (dry)

13. MSLP

14. UWND 850 (wet)/UWND 850 N–S (dry)

15. VWND NW–SE (wet)/VWND700 (dry)

Occurrence
interactions

1–2, 1–14, 2–8, 2–9, 2–10, 2–11, 2–13, 2–14,
3–10, 3–13, 4–11, 4–12, 4–14, 5–14, 7–8,
7–9, 7–11, 7–12, 7–13, 8–10, 8–11, 8–12,
9–14, 11–12, 11–13, 12–15

Occurrence spatial
dependence

Spatial dependence parameter (powered
exponential correlation function)

Amount model Constant

16. Legendre polynomial 1 for eastings

17. Legendre polynomial 1 for northings

18. Legendre polynomial 2 for eastings

19. Legendre polynomial 2 for northings

20. Legendre polynomial 3 for eastings

21. Legendre polynomial 3 for northings

22. Daily seasonal effect, cosine component

23. Daily seasonal effect, sine component

24. Ln(1+Y[t−1])

25. TEMP NW–SE (wet)/TEMP 850 W–E
(dry)

26. DPT 500

27. SHUM 500 (wet)/SHUM700 (dry)

28. MSLP

29. UWND 850 (wet)/UWND 850 N–S (dry)

30. VWND NW–SE (wet)/VWND700 (dry)

Amount interactions 2–10, 2–11, 2–14, 7–13, 7–11, 8–11, 10–11,
12–13

Amount spatial
dependence

Spatial dependence parameter (powered
exponential correlation function)

The explanations of terms please see Chandler (2002)
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factors influencing precipitation variability (i.e., seasonal and
geographical factors). Different terms were progressively
added following a perceived order of importance and the most
significant candidates were added to the new model
(Ambrosino et al. 2010). The likelihood ratio test and Pearson
residual means were used to check the statistical significance
and the model structure. A complex model composed of basic
factors, circulation predictors, interaction terms, and spatial
dependence structure (powered exponential correlation func-
tion: phi00.6587; kappa00.7002) is finally fitted. As men-
tioned in Section 2.2.3, the fit of either model can be assessed
by the mean Pearson residuals. The mean and standard devi-
ation of Pearson residuals in the logistic (occurance) model are
0.0001 and 1.0038 for dry season and are −0.0004 and 1.022
for wet season, while they are 0.000 and 1.091 for dry season
and 0.000 and 1.129 for wet season, respectively, for the
amount model. In addition, the monthly and annual residual
plots for the amounts model are shown in Fig. 2, which
suggests that the seasonal structure and trends in the rainfall
sequences are overall well presented by the amount model.

The verification statistics chosen focus on the measures
considered important in the runoff generation process (Frost

et al. 2011). Assessment of whether a method should be
used depends on the application and performance over a
range of timescales (e.g., daily, monthly and annual statis-
tics). Additionally, several evaluation metrics, such as rela-
tive error, correlation coefficient, and quantile–quantile plot
were used for comparing statistical characteristics and proba-
bility distributions of observed and simulated rainfall.

3 Results and discussion

In this section, downscaling results (100 stochastic realiza-
tions) of each model in the calibration and validation periods
are presented. A range of annual, monthly, and daily statis-
tics was calculated, chosen on the basis of providing a
robust test of the model for hydrological applications.

3.1 Annual statistics

The annual mean, standard deviation (SD), and the coeffi-
cient of skewness (CS) provide a summary of whether a
model can reproduce long term (e.g., water availability and
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Fig. 2 The monthly and annual
means and standard deviations
of Pearson residuals from
GLIMCLIM amount model for
the calibration period (1981–
2010). The dashed lines show
the standard deviations
expected under the model

Table 4 Annual statistics for
each model Calibration Validation

Mean (mm/day) SD (mm/day) CS Mean (mm/day) SD (mm/day) CS

Observation 1.82 8.24 9.41 1.93 8.43 9.10

CR-SDSM 1.85 8.23 9.42 1.94 8.39 9.15

NHMM 1.93 8.08 8.08 2.07 8.49 7.79

GLIMCLIM 1.89 8.21 8.92 2.10 9.01 8.84
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drought) characteristics (Frost et al. 2011). The overall
mean, SD and CS are generally reproduced well although
all three models overestimated the annual mean and under-
estimated the SD, except for NHMM and GLIMCLIM in the
validation period (Table 4). The CR-SDSM yielded better
results for both annual mean and SD (Table 4). These results
are also consistent with the relative errors for annual mean
and SD in Figs. 3 and 4. CR-SDSM estimated the CS, which
relates to the occurrence of extreme values, much more accu-
rately than NHMM and GLIMCLIM (Table 4), indicating that
the CS-SDSM outperforms the NHMM and GLIMCLIM in
downscaling annual extremes. Additionally, the performances
of GLIMCLIM and NHMM for annual means are consistent
with the findings of Frost et al. (2011).

Figure 5 shows both GLIMCLIM and NHMM overesti-
mated the annual rainfall in the calibration and validation
periods. Additionally, both GLIMCLIM and NHMM repro-
duced reasonable annual dry days/wet days, but CR-SDSM
grossly overestimated the number of annual wet days, with
corresponding underestimation of annual dry days (Fig. 5).
This could be due to either an insufficient pool of existing
rainfall days for conditional resampling or the metric used to
choose rainfall days for the given climate predictors inade-
quately reproduces observed daily variability (Frost et al.
2011). So although CR-SDSM performed relatively well for
annual rainfall, it appears that the model produces rainfall on
too many days, with overall underestimation of amount on
those days (see Fig. 12).
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3.2 Monthly statistics

The monthly statistics (e.g., seasonality, intra-annual variation)
are also important for water availability and drought studies.
Relative biases of monthly rainfall are exhibited in Fig. 3.
Generally, CR-SDSM performed the best among all three
models in most months, except for January where it markedly
overestimated the mean rainfall. Moreover, compared to

NHMM, GLIMCLIM performed better in most months (e.g.,
February, March, April, May, June, August, September, and
October) in the calibration period but performed relatively
worse in the validation period (e.g., January, March, June, July,
August, September, November, and December).

GLIMCLIM better reproduced monthly standard devia-
tions in the calibration period compared to the other two
models (Fig. 4), with the median relative errors for all
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stations lower than 15 % in all months. Moreover, CR-
SDSM performed relatively better than NHMM in all
months except June and August. In the validation period,
CR-SDSM performed well relative to the other two models
in most months. The monthly performance of NHMM and
GLIMCLIM are also consistent with the results of Frost et
al. (2011) for Australia condition.

For hydrological applications, it is essential that simula-
tions capture the monthly distribution and intra-annual

variability of rainfall. In Fig. 6, all three models reasonably
reproduce the monthly distribution, with simulations in dry
seasons somewhat better than in wet seasons. Specifically,
GLIMCLIM performed relatively well in the calibration
period, but tended to overestimate the wet season precipita-
tion in the validation period. The CR-SDSM performed well
in both calibration and validation periods (Fig. 6), but as
already noted, this encompasses self-cancelling biases in
wet days (too many) and wet day amounts (too little).
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Furthermore, all models reproduce intra-annual corre-
lations for monthly mean and standard deviation for

both the calibration and validation periods, with corre-
lation coefficients larger than 0.97 (Fig. 7). NHMM
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performed a little worse than GLIMCLIM and CR-
SDSM in the calibration period, whereas it performed
the best in the validation period. Additionally, for the

standard deviation (Fig. 7), CR-SDSM reproduced the
best intra-annual correlations in the calibration period,
whereas it performed worse than GLIMCLIM and
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NHMM in the validation period. These results are in-
consistent with other studies (Harpham and Wilby 2005;
Liu et al. 2011), which have reported SDSM did not
reproduce reasonably monthly rainfall variability. The
modeled intra-annual and inter-annual variations of rainfall
are improved when humidity was included in the predictor set
of SDSM (Wetterhall et al. 2006).

Spatial correlation statistics of monthly rainfall amount
are shown in Fig. 8. Overall, the monthly spatial variability
was relatively well reproduced by CR-SDSM. Wetterhall et
al. (2006) indicated that the SDSM had a disadvantage
modeling the spatial coherency of multi-sites when applied
to the multiple sites individually, but the conditional resam-
pling method used here obviously improves on this weak-
ness. For all models, the monthly spatial correlations at short
distances were slightly underestimated while they were
slightly overestimated at long distances. CR-SDSM and
GLIMCLIM markedly overestimated the long distance cor-
relations while NHMM markedly underestimated the spatial
correlations at short distances. GLIMCLIM uses correlation-

based structures for spatial dependence of rainfall occur-
rence and amounts between sites, with these results indicat-
ing further development is also required to adequately
capture monthly spatial scale dependence at short and long
distances.

3.3 Daily statistics

Daily rainfall characteristics, such as dry/wet spell length,
extremes, daily rainfall distribution and spatial correlations
are critical for hydrological modeling. The mean, SD and
99th quantile value of dry-spell length and wet-spell length
were all well reproduced by GLIMCLIM in both the cali-
bration and validation period (Figs. 9 and 10). Compared to
GLIMCLIM, NHMM performed relatively poorer for the
means of both dry-spell length and wet-spell length. Fur-
thermore, CR-SDSM showed a constant underestimation for
mean, SD and 99th quantile of dry-spell length (recall bias
in number of dry days), but performed better than NHMM
for the mean and 99th quantile of wet-spell length. Both
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GLIMCLIM and NHMM reproduced reasonable dry-spell
length extremes and slightly overestimated the wet-spell
length extremes, while CR-SDSM slightly underestimated
the wet-spell length extreme (with several points overlying
each other in Fig. 10).

In general, all three models were able to capture the daily
rainfall extremes (Fig. 11). CR-SDSM produced almost
perfect results (Fig. 11). This result is consistent with
Harpham and Wilby (2005), but not with Liu et al.
(2011) in an arid basin of China. Both GLIMCLIM
and NHMM overestimated the 90th and 95th quantiles
and produced reasonable 99th quantiles values of daily
rainfall in the validation and calibration period.

A comparison of daily rainfall amount distributions using
quantile–quantile plots and cumulative distribution func-
tions (CDFs) is shown in Fig. 12. GLIMCLIM and NHMM
gave the best fits to the CDF for the validation period,
whereas the CR-SDSM model poorly reproduced it. The
CR-SDSM tended to underestimate daily rainfall quantiles
and hence overestimate the probabilities of rainfall amounts.
Conversely, the GLIMCLIM overestimated the daily rainfall

quantiles (and consequently monthly/annual rainfall) and so
underestimated the rainfall probabilities. In comparison, the
NHMM better reproduced the daily rainfall distributions
(Fig. 12).

Daily spatial correlation statistics (correlations of rainfall
occurrence and amount between sites) is important in deter-
mining whether localised flooding occurs. In Figs. 13 and 14,
almost all models performed well for daily rainfall occurrence
and amount inter-site correlations. CR-SDSM tended to
slightly overestimate, while NHMM tended to slightly under-
estimate the spatial correlations. GLIMCLIM produced better
spatial dependence of daily rainfall than CR-SDSM and
NHMM in both calibration and validation periods. Frost et
al. (2011) found the spatial correlations of rainfall occurrence
model were underestimated at short distances, and for amount
model they were sometimes underestimated with distance
under Australia conditions. The results showed that the im-
proved version of GLIMCLIM (which considered the decay
of correlation with inter-site separation in large region/basin
simulation) could improve the simulation of spatial depen-
dence for daily rainfall in large regions.

0 200 400 600 800 1000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 Observed
Modelled

va
lid

at
io

n
D

ai
ly

 a
m

o
u

n
t 

co
rr

el
at

io
n

D
ai

ly
 a

m
o

u
n

t 
co

rr
el

at
io

n
ca

lib
ra

tio
n

0 200 400 600 800 1000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 Observed
Modelled

0 200 400 600 800 1000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

CR-SDSM
0 200 400 600 800 1000

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

NHMM

0 200 400 600 800 1000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 Observed
Modelled

0 200 400 600 800 1000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

GLIMCLIM

Fig. 14 Correlations between pairs of station daily rainfall amount vs. their separation distance for all possible combinations of station pairs in NCP
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4 Conclusions

A comparison of three multi-site daily rainfall statistical
downscaling methods conditional on reanalysis predictors,
applied to 40 sites in the NCP, were presented in this study.
There were several advantages and drawbacks associated
with each downscaling method, when applied for the first
time across the North China Plain. More specifically, the
following conclusions are made:

CR-SDSM provided relatively robust results for a
range of statistics such as the extreme of daily rainfall
(90th, 95th, and 99th quantiles), monthly rainfall (mean,
SD, and distribution), and annual rainfall (mean, SD,
and CS). However, it also exhibited obvious weak-
nesses: the daily rainfall amount was underestimated
whilst its distribution was overestimated, the annual
wet days were markedly overestimated (and consequent-
ly annual dry days were underestimated), and the dry-
spell length was also underestimated. Consequently, CR-
SDSM should be used with caution for typical yield/
flood risk studies (which rely on the accurate prediction
at annual timescales and also extremes at the daily
timescale) and other hydrological applications on
monthly/annual timescale.

GLIMCLIM performed well for the statistics of dry-
spell/wet-spell length, annual wet/dry days, and spatial
correlations of daily rainfall (and consequently monthly
rainfall), but overestimated daily rainfall (and conse-
quently annual rainfall). It could be recommended for
some extreme events studies (e.g., drought/flooding) due
to daily extreme statistic reproduction and for hydrolog-
ic simulations that rely on methods that capture a fuller
range of rainfall characteristics (Frost et al. 2011). Fur-
thermore, NHMM provided relatively robust results for
daily, monthly and annual rainfall and annual wet/dry
days, but slightly underestimated dry-spell length and
wet-spell length and slightly overestimated the daily
extremes (90th and 95th quantile). Therefore, it could
be used for water availability and planning studies due
to its relatively comprehensive performance across daily
to annual timescales.

NCP climate is strongly controlled by the East Asian
monsoon, with quite a difference between the atmo-
sphere circulation in winter and summer (Chu et al.
2010). Consequently, it is a huge challenge to choose
predictors adequate for this wide tempo-spatial space
(Samel et al. 1999; Chu et al. 2010). In this study, a
common predictor set was chosen a priori (via correla-
tion analysis) before applying them to downscaling
models. The influences of predictor selection (e.g., same
predictors for all model vs different predictors for each
model) should be further investigated. Given that further
applications of statistical downscaling methods are to

predict daily rainfall in the future and use the data to
hydrological studies, additional work should verify the
performances of the different methods with GCM data
as inputs. Furthermore, the effect of uncertainty intro-
duced due to GCM scenarios, GCM choice, and GCM
bias should also be considered in future (Vidal and
Wade 2008; Leith and Chandler 2010; Frost et al.
2011).
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