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Abstract In this paper, a copula-based methodology is
presented for probabilistic assessment of flood risks and
investigated the performance of trivariate copulas in model-
ing dependence structure of flood properties. The flood is a
multi-attribute natural hazard and is characterized by mutu-
ally correlated flood properties peak flow, volume, and
duration of flood hydrograph. For assessing flood risk,
many studies have used bivariate analysis, but a more ef-
fective assessment can be possible considering all three
mutually correlated flood properties simultaneously. This
study adopts trivariate copulas for multivariate analysis of
flood risks, and applied to a case study of flood flows of
Delaware River basin at Port Jervis, NY, USA. On evalua-
tion of various probability distributions for representation of
flood variables, it is found that the flood peak flow and
volumes can be best represented by Fréchet distribution,
whereas flood duration by log-normal distribution. The joint
distribution is modeled using four trivariate copulas, name-
ly, three fully nested form of Archimedean copulas: Clayton,
Gumbel–Hougaard, Frank copulas; and one elliptical copu-
la: Student’s t copula. Based on distance-based performance
measures, graphical tests, and tail-dependence measures, it
is found that the Student’s t copula best representing the
trivariate dependence structure of flood properties as com-
pared to the other copulas. Similar results are found for
bivariate copula modeling of flood variables pairs, where
Student’s t copula performed better than the other copulas.
The obtained copula-based joint distributions are used for
multivariate analysis of flood risks, in terms of primary and

secondary return periods. The resultant trivariate return
periods are compared with univariate and bivariate return
periods, and addressed the necessity of multivariate flood
risk analysis. The study concludes that the trivariate copula-
based methodology is a viable choice for effective risk
assessment of floods.

1 Introduction

Floods have become most common natural hazards, increas-
ingly posing a significant risk to human life and environ-
ment. At the drainage basin scale, consideration of flood risk
plays an important role in planning of water infrastructure
projects. In design of hydraulic structures (e.g., dam spill-
ways, diversion canals, dikes, and river channels), urban
drainage systems, cross-drainage structures (e.g., culverts
and bridges), reservoir management, and flood hazard map-
ping, it requires risk analysis of floods as a design criteria.
However, because of limited hydrological data and higher
uncertainty associated with hydrological variables, it is also
very important to use more effective method for assessment
of flood risks. Traditionally for probabilistic assessment of
flood risks (also referred as flood frequency analysis), var-
ious methods were developed. Basically, flood frequency
analysis consists of obtaining relationship between flood
quantiles and their non-exceedance probability (also re-
ferred as return periods). Conventional method of frequency
analysis involves use of observed annual peak discharges as
a function of recurrence interval or exceedance probability
(Stedinger et al. 1993). In general, such applications are
incapable of giving adequate information of floods since
flood is a multivariate phenomenon characterizing flood
peak, volume, and duration of the flood hydrograph.
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In most of the hydrologic literature, the application of
multivariate modeling is mainly contained to bivariate
cases. Krstanovic and Singh (1987) used bivariate normal
and exponential distributions for modeling joint distribution
of flood peak and volumes as well as for obtaining condi-
tional distribution of flood volume given peak discharge.
Similarly, there are several studies that have used different
conventional bivariate distributions for flood frequency
analysis, bivariate generalized extreme value distribution
(Adamson et al. 1999; Raynal and Salas 1987; Yue et al.
1999; Yue 2001a; Nadarajah and Shiau 2005; Escalante
2007), bivariate gamma distribution (Yue 2001b; Yue et al.
2001), bivariate normal distribution (Goel et al. 1998; Yue
1999), bivariate lognormal distribution (Yue 2000), bivari-
ate exponential distribution (Choulakian et al. 1998) etc.
Very few studies dealt with trivariate distributions for flood
frequency analysis. For example, trivariate gumbel distribu-
tion (Escalante and Raynal 1998), trivariate generalized
extreme value distribution (Escalante and Raynal 2008)
are used for trivariate flood frequency analysis.

Many of the conventional models have major limitation
in terms of assuming fixed probability distribution for all
flood properties (i.e., assuming all flood properties are well
represented by a single probability distribution). However,
in practice, this may not be the case, as the flood variables
may follow different distributions. Moreover, conventional
estimates of flood exceedance are heavily dependent on
right tail of the underlying frequency distribution, which
is most difficult to estimate from observed flood data.
Hence, it is desired to have evaluation of marginal distri-
bution of flood variables separately and at the same time a
function is needed that can join these marginal distributions
by preserving the dependence structure of flood variables.
In this context, the theory of copulas provides some advan-
tages. Copulas are multivariate distribution functions, used
for capturing the association or dependence between two or
more random variables (Joe 1997). Also, the other advan-
tage of copulas for multivariate analysis is that, it is invari-
ant to monotonic transformations of marginal variables
(i.e., data transformations, such as taking natural loga-
rithms or applying Box–Cox transformations do not influ-
ence copula).

Recently, copulas have been applied in the field of hy-
drology (Favre et al. 2004; Salvadori and De Michele 2004;
Grimaldi and Serinaldi 2006; Zhang and Singh 2007;
Chowdhary et al. 2011; Salvadori et al. 2011). Although
many studies in the past have focused on bivariate analysis
of peak flow and volume for analyzing flood risks, a more
complete analysis can be possible by considering mutually
correlated flood properties—peak flow, volume and dura-
tion of flood events, and modeling by copulas. Very few
studies used copulas for trivariate analysis of flood flows.
Grimaldi and Serinaldi (2006) compared trivariate

symmetric Frank copula, asymmetric or fully nested form
of Frank copula and Gumbel logistic distribution for Kana-
wha watershed, West Virginia and found better results
using asymmetric scheme of copula. Zhang and Singh
(2007) used symmetric Gumbel–Hougaard copula for tri-
variate modeling of peak flow, volume and duration; and
noted that copula fits empirical joint distribution better than
trivariate normal distributions. Serinaldi and Grimaldi
(2007) applied fully nested Archimedean copulas to two
different hydrologic data set, viz., trivariate flood frequen-
cy analysis and multivariate sea wave frequency analysis.
Genest et al. (2007) applied meta-elliptical copulas for
multivariate frequency analysis of annual spring flood at
Romaine River in Québec, Canada and concluded that
meta-elliptical copulas can help in better modeling the
dependence structure of random variables when observed
differences between the bivariate margins restricts the use
of exchangeable copula families (i.e., the Archimedean
copulas). Salvadori et al. (2011) illustrated application of
copula in multivariate flood quantiles estimation by
employing joint distribution of annual maximum flood
peak, volume, and the corresponding initial water levels
of the dam.

In most of the studies, the researchers applied either
bivariate copulas or symmetric trivariate copulas for flood
analysis. They consider simplifications in terms of deriving
return periods, like assuming the dependence between only
two flood properties and/or independence of the third vari-
able. Then, copulas used to model pair-wise dependency in
bivariate way. But in this study, asymmetric copulas are
applied for modeling trivariate flood properties peak flow,
volume and duration simultaneously (instead of considering
pair-wise variable separately). The main aims of present
study are: (1) to develop trivariate models based on Archi-
medean and elliptical class of copulas for modeling flood
characteristics, (2) to evaluate efficacy of copulas in model-
ing hydrological extremes and demonstrate potential of cop-
ula models for flood risk analysis through a case study, and
(3) to evaluate the importance of multivariate return periods
for estimation of flood risks through comparative analysis of
the trivariate return periods with univariate and bivariate
return periods.

In the following, first the definition of copula function
and its properties are presented. Then, the details of copulas
adopted in the study (i.e., three fully nested Archimedean
families of copulas and one elliptical Student’s t copula) are
presented. The subsequent section describes various perfor-
mance measures including distance based statistics, graphi-
cal tests as well as tail dependence measures to select
suitable copula model for analyzing multivariate depen-
dence of flood properties. Then details of flood properties
and procedures for estimation of joint return periods using
copulas are explained. Later, application of the methodology
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to a case study is presented and the results are discussed.
Finally, brief summary and conclusions of the study are
presented.

2 Multivariate modeling using copulas

2.1 Copula function

In general, copula function is a multivariate distribution
function, used for capturing the dependence between two
or more random variables. Let X0(X1,⋯, Xd) be a random
vector with continuous marginal cumulative distribution
functions (CDF) F1,⋯,Fd. By following Sklar theorem
(Sklar 1959), the relation between the joint CDF H(X) and
copula C can be represented as,

HðX Þ ¼ C F1 x1ð Þ; . . . ;Fd xdð Þ; θθf gX 2 Rd ð1Þ
where the function C: [0,1]d →[0,1] is called a d-dimen-
sional copula, with association parameter θ. More details on
theoretical background and properties of various copula
families can be found in Nelsen (2006). In the following
brief details of copulas used in the present study are
presented.

2.2 Multivariate Archimedean copula

The Archimedean copulas are widely applied in hydrology,
because they can be easily generated and are capable of
capturing wide range of dependence structure with several
desirable properties, such as, symmetry and associativity.
The d-dimensional Archimedean copula (Nelsen 2006) is
expressed as,

C u1; . . . ; udð Þ ¼ f�1 f u1ð Þ þ f u2ð Þ þ . . .þ f udð Þð Þ ð2Þ
where ui0Fi(Xi) is marginal CDF of variableXi(i01,…,d);ϕ(•)
is known as generator of the copula and f[−1](•) is the
pseudo inverse of f(•). If f(0)0∞ the pseudo-inverse
describes an ordinary inverse function (i.e., f[−1]0f−1)
and in this case f is known as strict generator. Equa-
tion 2 represents a d-dimensional Archimedean copula if
and only if the generator f(•) is a completely monotonic func-
tion. This symmetric form of copula is developed under the
assumption of homogeneous dependence across the variables
and has the limitation that in this case all dependencies are
averaged to a same value. But for hydrologic variables such
assumption is not feasible in practice. In order to increase
flexibility and to allow for heterogeneous dependence—fully
nested Archimedean (FNA) copulas were suggested in recent
past (Whelan 2004; Savu and Trede 2010). The structure of
FNA copula joins two or more ordinary bivariate or higher-
dimensional Archimedean copulas by another Archimedean

copula. The dependence structure of FNA in trivariate case
(Savu and Trede 2010) is expressed as,

C u1; u2; u3ð Þ ¼ f2 f�1
2 � f1 f�1

1 u1ð Þ þ f�1
1 u2ð Þ� �þ f�1

2 u3ð Þ� �
¼ C2 C1 u1; u2ð Þ; u3½ �

ð3Þ
with condition that the first derivative of f�1

2 � f1 is com-
pletely monotonic. In above expression, f2 and f1 are
Laplace transforms. In Eq. 3, the pair (u1, u2) has bivariate
margin of the form of Eq. 2 with Laplace transform f1,
whereas (u1, u3) and (u2, u3) has the bivariate margins of the
form Eq. 2 with laplace transform f2. Thus, the three vari-
able asymmetric copula is composed of two bivariate cop-
ulas C1 and C2, in which C1 is the copula describing the
dependence between variables u1 and u2; and the outer
copula C2 is a function of the inner copula C1 and u3. It
follows that this asymmetric scheme can be only applied in
cases when the correlation values among two variables (the
most nested) is stronger than the correlation between these
variables and the third variable.

The properties of trivariate FNA structures for Clayton,
Gumbel–Hougaard, and Frank copulas are presented in
Table 1. To apply FNA three-dimensional copula, it has
to satisfy the condition that the rank correlation coefficients
(i.e., Kendall’s τ or Spearman’s ρ) between inner pair (u1,
u2) is higher than that of between the other pairs (u1,u3)
and (u2,u3).

2.3 Student’s t copula

The Student’s t copula belongs to the class of elliptical
copulas. The Student’s t copula is specified by multi-
variate Student’s t distribution. Let Σ∈Rd×d for x∈Rd

denotes a symmetric shape parameter matrix (i.e., Σ is
correlation matrix of multiple variables in d-dimension),
then multivariate Student’s t copula for u0(u1,⋯,ud)
[0,1]d with ϑ degrees of freedom is defined as (Mashal
and Zeevi 2002),

C u1; . . . ; ud ;ϑ; Σð Þ ¼ tϑ
d
;Σ t�1

ϑ u1ð Þ; . . . ; t�1
ϑ udð Þ� � ð4Þ

where,

tdϑ;Σ xð Þ ¼
Z x

�1

Γ ϑþ dð Þ=2ð Þ
Γ ϑ=2ð Þ ϑpð Þd=2 ffiffiffiffiffiffiffiffi

Σj jp 1þ yT Σ�1y=ϑ
� �� ϑþdð Þ=2

dy

Here y0{y1,…,yd} and yi ¼ t�1
ϑ uið Þ.

Equation 4 represents t copula with parameters (ϑ, Σ).
For ϑ>2, the shape parameter matrix Σ is nothing but as
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positive–definite correlation matrix. The density of multi-
variate t copula can be expressed as,

c u;ϑ; Σð Þ ¼ Γ ϑþ dð Þ 2=ð Þ Γ ϑ 2=ð Þ½ �d�1

Γ ϑþ 1ð Þ 2=ð Þ½ �d Σj j1 2=

Yd
i¼1

1þ y2i ϑ=
� � ϑþ1ð Þ 2=

" #
1þ yT Σ�1y ϑ=
� �� ϑþdð Þ 2= ð5Þ

2.4 Copula parameter estimation

The parameter estimation is performed using maximum
pseudo-likelihood (MPL) method. The multivariate copula
model can have d−1 parameters if the dependency is mod-
eled by FNA copula, and d(d−1)/2 parameters for elliptical t
copula. The MPL estimation method does not require any
prior assumptions regarding marginal distributions of the
dependent variables. The procedure consists of transforming
the marginal variables into uniformly distributed vectors
using its empirical distribution function. Then, the copula
parameters are estimated using maximization of pseudo log-
likelihood function.

Le t X1 ¼ ðX1;1; ::;X1;dÞ; . . . :;Xn ¼ ðXn;1; ::;Xn;dÞ be n
sample of observations in d-dimensional case. The empirical
CDF of variable Xk can be computed by,

Fk Xi;k

� � ¼ Ri;k

nþ1 ; i 2 1; :::; nf g;k 2 1; :::; df g ð6Þ

where Ri,k is rank, which is given by

Ri;k ¼
Xn
j¼1

I Xj;k � Xi;k

� �
; ð7Þ

where I(A) is a logical indicator function results in either 1
(if A is true) or 0 (if A is false). The rescaling (n+1) at the
denominator is used instead of n to avoid numerical prob-
lems at the boundaries of [0, 1]2 (a standard convention in
the probabilistic modeling). The empirical distribution func-
tion is used as a surrogate for the unknown marginals.
Substituting empirical CDFs into copula density and

applying logarithm to the likelihood function of the copula
yields the following form,

‘ θð Þ ¼
Xn
i¼1

log cθ F1 Xi;1

� �
; . . . :;Fd Xi;d

� �� �� � ð8Þ

Then, the copula parameter bθ can be obtained by maxi-
mizing this pseudo log-likelihood function ℓ (θ).

For obtaining Σ in three-dimensional case, it involves
computing σij for i,j2{1, 2, 3} with the values of Kendall’s
tau, t i,j, for three random variables. For elliptical family of
copulas, σij0sin(πt i,j/2) and the Σ is given as

Σ ¼
1 σ12 σ13

σ21 1 σ23

σ31 σ32 1

24 35 ð9Þ

However, sometimes it may be possible that the estimate
of Σ is not positive definite. In that case, a procedure based
on eigenvalue decomposition is used to transform correla-
tion matrix into positive definite (McNeil et al. 2005). Using
the relationship in Eq. 9, the correlation matrix of Student’s t
copula is estimated and then a numerical search technique is

employed for estimating bϑ (Mashal and Zeevi 2002). In this
study, a real-coded genetic algorithm (GA) is applied to find
the optimal parameters of the FNA and Student’s t copulas.

3 Selection of suitable copula model

3.1 Performance measures

The appropriate dependence structure is selected by mini-
mizing the distance between fitted parametric copula and the

Table 1 Mathematical expressions for trivariate Archimedean family of copulas and their associated properties

Copula
family

C (u1, u2, u3) ϕ�1
2 oϕ1 �ð Þ Conditions

Clayton u�θ2
1 þ u�θ2

2 � 1
	 
θ1 θ2= þ u�θ1

3 � 1

� ��1
θ1

1
θ1

θ2t þ 1ð Þθ1 θ2= � 1
n o

θ1<θ2, θ2(0,∞)

Gumbel–
Hougaard

exp � � log u1ð Þθ2 þ � log u2ð Þθ2
h iθ1 θ2=

þ � log u3ð Þθ1

 � 1

θ1

( )
tθ1 θ2= θ1<θ2, θ2[1,∞)

Frank � θ�1
1 log 1� c�1

1 1� 1� c�1
2 1� e�θ2u1
� �

: 1� e�θ2u2
� �� �θ1 θ2=

	 

: 1� e�θ1u3
� �n o

� ln
1þe�t e�θ2�1ð Þf gθ1 θ2= �1

e�θ1�1 θ1<θ2, θ2(0,∞)
where, c1 ¼ 1� e�θ1 and c2 ¼ 1� e�θ2

θ2 and θ1 represents dependence parameters; u1, u2, and u3 denotes marginal CDFs
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empirical copula. Anderson–Darling (AD) and Integrated
Anderson–Darling (IAD) statistics are used as a distance
measures between empirical copulas and fitted parametric
copulas.

The empirical copula Cn from the pseudo-observations
(U1,n, V1,n, W1,n),⋯,(Un,n, Vn,n, Wn,n), is given by (Genest et
al. 2009):

Cn u; v;wð Þ ¼ 1
n

Pn
i¼1

I Ui;n � u;Vi;n � v;Wi;n � w;
� �

; u; v;wð Þ 2 0; 1½ �

ð10Þ
where (Ui,n, Vi,n,Wi,n) are pseudo-observations computed from
the collected observational data (X1,Y1,W1),⋯,(Xn,Yn,Wn),

Ui;n ¼ 1
nþ1

Pn
j¼1;

1 Xj � Xi

� �
; Vi;n ¼ 1

nþ1

Pn
j¼1;

1 Yj � Yi
� �

; Wi;n ¼ 1
nþ1

Pn
j¼1;

1 Wj � Wi

� �
; i 2 1; . . . ; nf g ð11Þ

The expressions for AD and IAD distance measures are
given as (Ané and Kharoubi 2003):

AD ¼ max
1�i�n;1�j�n;1�k�n

bCn
i
n ;

j
n ;

k
n

� �� Cpθ
i
n ;

j
n ;

k
n

� ���� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cpθ

i
n ;

j
n ;

k
n

� �
1� Cpθ

i
n ;

j
n ;

k
n

� �� �q
ð12Þ

IAD ¼
Xn
i¼1

Xn
j¼1

Xn
k¼1

bCn
i
n ;

j
n ;

k
n

� �� Cpθ
i
n ;

j
n ;

k
n

� �h i2
Cpθ

i
n ;

j
n ;

k
n

� �
1� Cpθ

i
n ;

j
n ;

k
n

� �� � ð13Þ

where i, j, and k represents order statistics of the random
variable u1, u2, and u3. Since empirical copula is defined on
a lattice ℓ, the distance statistics are defined with discrete
norms. The copula family with minimum AD and IAD
distance is chosen as the best fitted copula.Apart from these
distance-based measures, the relevance of each copula mod-
el is measured using the concept of entropy, which measures
uncertainty of the distribution fX1;X2;X3 x1; x2; x3ð Þ:

E fX1;X2;X3 x1; x2; x3ð Þ� � ¼ �
Z Z Z

fX1;X2;X3 x1; x2; x3ð Þ ln fX1;X2;X3 x1; x2; x3ð Þ� �
dx1dx2dx3 ð14Þ

The entropy offers a distance measure based on copula
density, whereas the AD and IAD statistics are computed
using CDFs. For copula representation of trivariate density,
the entropy of fX1;X2;X3 x1; x2; x3ð Þ is equal to the sum of the
entropies of individual marginal distribution plus the entro-
py of the copula distribution function. The entropy of the
univariate distribution fX(x) is defined as,

E fX ðxÞ½ � ¼ �
Z

fX ðxÞ ln fX ðxÞ½ �dx ð15Þ

Therefore, the discrete entropy of the copula model can
be expressed as,

E fX1;X2;X3 x1; x2; x3ð Þ� � ¼ E fX1 x1ð Þ½ � þ E fX2 x2ð Þ½ � þ E fX3 x3ð Þ½ �

þE c FX1 x1ð Þ;FX2 x2ð Þ;FX3 x3ð Þ½ �f g
ð16Þ

where,

E c FX1 x1ð Þ;FX2 x2ð Þ;FX3 x3ð Þ½ �f g

¼ �
Xn
i¼1

Xn
j¼1

Xn
k¼1

cpθ
i

n
;
j

n
;
k

n


 �
ln cpθ

i

n
;
j

n
;
k

n


 �� �
ð17Þ

For visual inspection, a graphical comparison between
observed data and simulated samples from each copula
family is performed. This also offers qualitative assessment
in finding a suitable copula model.

3.2 Tail dependence of flood characteristics

The tail dependence coefficient (TDC) captures the concor-
dance between extreme values in the lower left quadrant tail
and upper right quadrant tails of the variables. In order to study
occurrence of extreme events, the pair-wise analysis of upper
tail dependence of flood variables is performed for the fitted
copula models. If u be a threshold value then upper tail depen-
dence between two variables X and Y, denoted as lU is given as

lU ¼ lim
u!1�

FX ðxÞ > ujFY ðyÞ > uf g ð18Þ

in terms of copula the above equations can also be expressed as
(Nelsen et al. 2008),

lU ¼ lim
u!1�

1� 2uþ C u; uð Þ
1� u

¼ 2� lim
u!1�

1� C u; uð Þ
1� u

¼ 2� d0C 1�ð Þ

ð19Þ
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where, the function δC(•) is the diagonal section of copulaC and
given by δC(u)0C(u,u) for every u [0,1]. The estimate lUmeas-
ures the concordance between extremely high values of random
variables. If lU (0,1], then FX(x) and Fy(y) are said to show
upper tail dependence or extremal dependence in upper tail.

To study nonparametric TDC, several methods have been

suggested in literature such as lLOGU estimator (Coles et al.

1999), lSECU estimator (Joe et al. 1992), Capéraá-Frahm-

Genest estimator lCFGU (Capéraá et al. 1997; Frahm et al.

2005), and Schmidt–Stadtmüller estimator lSSU (Schmidt and

Stadtmüller 2006). The estimator lLOGU can be interpreted as
logarithm of the copula diagonal (Coles et al. 1999). The
estimate lSECU can be interpreted as the slope of the secant
along the copula diagonal (i.e., close to the 45° line) and
hence can specify wrongly the value of TDC when the data

are not accumulated along the diagonal. Except for lCFGU , all
other estimators require specification of a threshold. This

study adoptslCFGU for TDC. If {(u1, v1),⋯,(un, vn)} be random
sample obtained from Copula C(•), the bivariate upper TDC

using lCFGU is given by (Capéraá et al. 1997),

blCFGU ¼ 2� 2 exp
1

n

Xn
i¼1

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

1

ui


 �
log

1

vi


 �s
log

1

max ui; við Þ2
 !,( )" #

ð20Þ

Though lCFGU estimator assumes that the underlying copula
can be approximated by an extreme-value copula, the estimator
performs well even if the copula does not belong to extreme
value classes as discussed by Frahm et al. (2005). For a

comparison purpose, the estimates of lLOGU and lSSU are also
presented, although these estimators can show higher variance

as compared toblCFGU . If the diagonal section of copulaC(u,u) is
differentiable for u (1−ε,1) for any ε>0, then,

lU ¼ 2� lim
u!1�

1� C u; uð Þ
1� u

¼ 2� lim
u!1�

dC u; uð Þ
du

¼ 2� lim
u!1�

logC u; uð Þ
logðuÞ ð21Þ

The log estimator is based on Eq. 21 and can be
expressed as

blLOGU ¼ 2� log bCn 1� k
n

� �
; 1� k

n

� �� �
log 1� k

n

� � ð22Þ

where k {1,⋯,n−1} represents the threshold to be selected.
An optimal threshold is selected by applying a plateau-
finding algorithm as described in Frahm et al. (2005). In

first step, the curve of blk is smoothed by nonparametric
kernel function. A kernel smoother defines a set of weights
{Wi(x), i01, ⋯, n} for each x and can be expressed as,

bf ðxÞ ¼Xn
i¼1

WiðxÞyi ð23Þ

where yi is the observations to be smoothed. For a given
kernel band width b, the weight sequence is defined as,

WiðxÞ ¼ K
x�xi
bð ÞPn

i¼1

K
x�xi
bð Þ

;
Pn
i¼1

Wi xið Þ ¼ 1 and
R
KðuÞdu ¼ 1

ð24Þ

In this study, the box kernel with specified bandwidth (say,
b ¼ 0:005nb c, b ∈ N) is chosen as suggested by Frahm et al.
(2005). The analytical expression of K(•) for box-kernel esti-
mator can be given using following window function

KðxÞ ¼ 1; xj j � 1 2= ;
0; otherwise

�
ð25Þ

where K(x) defines a unit interval centered at the origin.
Thus the kernel smoothed map of k 7!blk leads to the

means of 2b + 1 successive points of bl1; . . . ;bln to a new

smoothed map of el1; . . . ;eln�2b In next step, a vector pk ¼elk ; . . . ;elkþm�1

	 

; k ¼ 1; . . . ; n� 2b� mþ 1 is defined

with a plateau length m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2b

p
. This procedure contin-

ues and the algorithm stops at the first plateau pk, whose
elements fulfill the following condition,

Xkþm�1

i¼kþ1

eli � elk��� ��� � 2σ ð26Þ

where σ represents the standard deviation of el1; . . . ;eln�2b .

Then the TDC lLOGU is estimated as arithmetic mean of the
vector corresponding to the plateau,

blLOGU ðkÞ ¼ 1

m

Xm
i¼1

elkþi�1 ð27Þ

If no plateau fulfills the stopping condition, the TDC is
estimated as zero and the procedure is repeated with a
different set of parameters.

The expression forlSSU is given as (Schmidt and Stadtmüller
2006),

blSSU ðkÞ ¼ n

k
Cn

k

n
;
k

n


 �
� 1

k

Xn
i¼1

I Ri > n� kð Þ ^ Si > n� kð Þgf

ð28Þ
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where Cn u; vð Þ ¼ P U > 1� u;V > 1� vð Þ ¼ uþ v� 1þ
C 1� u; 1� vð Þ denotes empirical survival copula (Nelsen
2006).

4 Trivariate flood characteristics

The annual maximum peak discharge, volume, and dura-
tion values of flood events are obtained from daily
stream flow data. Annual peak flow magnitude is select-
ed from the portion of daily stream flow hydrographs
having the highest peak flow from each year’s stream
flow record. The single-peaked flood hydrograph is
shown in Fig. 1. Flood duration (D) can be determined
by identifying the time of rise (point “s” in Fig. 1) and
fall (point “e” in Fig. 1) of the flood hydrograph. The
start of the surface runoff is marked by the sharp rise of
the hydrograph and end of the flood runoff is identified
by the inflection point on the receding limb of the
hydrograph. Between these two points, the total flood
volume is estimated. If time of rise of the flood hydro-
graph is denoted by SD (day) and fall by ED (day), the
flood volume (V) of each flood event is determined using
following expression (Yue 2001a, b)

Vi ¼ V total
i � V baseflow

i

� �
¼
XSD
j¼SD

qij � Di

2
qis þ qieð Þ; 8i ¼ 1; 2; . . . ; n ð29Þ

where, qij is the jth day observed stream flow value for
ith year, qis and qie are the observed daily stream flow
values on start and end date of the flood hydrograph for

the ith year. The annual flood peak series is constructed
by,

Qi ¼ max qij; j ¼ SDi; SDi þ 1; . . . ; EDi

� �
; 8i ¼ 1; 2; . . . ; n

ð30Þ

The duration series is given by the difference between
starting and ending day of the flood event, and can be
expressed as,

Di ¼ EDi � SDi; 8i ¼ 1; 2; . . . ; n ð31Þ

5 Estimation of flood risks

The copula models can form the basis for the estimation
of various quantities, which can be very useful for risk
analysis of floods, such as estimation of conditional
probability distributions as well as conditional and joint
return periods. The return period of a prescribed event
is generally adopted as a criterion for design purposes
in hydrologic projects, which provides a simple means
for risk analysis. Usually, the return period is defined as
“the average time elapsing between two successive real-
izations of the given event” (Salvadori 2004). The basic
concepts of return periods are thoroughly discussed in
Yue and Rasmussen (2002) and Salvadori and De
Michele (2004).

5.1 Primary return period

The objective of frequency analysis of hydrologic data is
to relate the magnitude of extreme events to their fre-
quency of occurrence through the use of probability
distributions (Chow et al. 1988). For multivariate case,
in which X1, X2…, Xd exceeds their respective thresholds
(X1>x1,⋯Xd>xd), the joint return period is computed
using inclusive probability (“OR” and “AND” cases) of
all three events, known as primary return periods (Salva-
dori 2004). For trivariate case, the joint primary return
period in “OR” case TOR

X1X2X3
(for annual flood analysis) is

given by,

TOR
X1X2X3

x1; x2; x3ð Þ ¼ 1
P X1�x1 ;_X2�x2;_X3�x3ð Þ ¼ 1

1�P X1�x1 ;_X2�x2;_X3�x3ð Þ

¼ 1
1�FX1X2X3 x1;x2;x3ð Þ ¼ 1

1�C u1;u2;u3ð Þ

ð32Þ
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Fig. 1 Typical flood hydrograph showing flood flow characteristics
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The joint primary return period in “AND” case TAND
X1X2X3

(for annual flood analysis) can be expressed as,

TAND
X1X2X3

x1; x2; x3ð Þ ¼ 1
P X1�x1 ^X2�x2^X3�x3ð Þ ¼ 1

1�FX1 x1ð Þ�FX2 x2ð Þ�FX3 x3ð ÞþFX1X2 x1;x2ð ÞþFX2X3 x2;x3ð ÞþFX1X3 x1;x3ð Þ�FX1X2X3 x1;x2;x3ð Þ

¼ 1
1�FX1 x1ð Þ�FX2 x2ð Þ�FX3 x3ð ÞþC u1;u2ð ÞþC u2;u3ð ÞþC u1;u3ð Þ�C u1;u2;u3ð Þ ð33Þ

where C(u1,u2), C(u2,u3), and C(u1,u3) are bivariate copula
CDFs for flood characteristics.

The conditional distribution function of X1, X2 given
(X3≤x3) in “OR” case is given by,

FX1X2X3 x1; x2jX3 � x3ð Þ ¼ P X1 � x1;X2 � x2jX3 � x3½ �
¼ FX1X2X3 x1;x2;x3ð Þ

FX3 x3ð Þ ¼ C u1;u2;u3ð Þ
u3

ð34Þ
where FX3 x3ð Þ is the marginal CDF of random variable X3.
The corresponding conditional return period under this con-
dition can be expressed as,

TX1X2jX3
x1; x2jX3 � x3ð Þ

¼ 1

1� FX1X2jX3
x1; x2jX3 � x3ð Þ ð35Þ

Similarly, the conditional distribution of X1 given
X2 � x2;X3 � x3ð Þ is given by,

FX1jX2X3
x1jX2 � x2;X3 � x3ð Þ ¼ P X1 � x1jX2 � x2;X3 � x3½ �

¼ FX1X2X3 x1;x2;x3ð Þ
FX2X3 x2;x3ð Þ ¼ C u1;u2;u3ð Þ

C u2;u3ð Þ

ð36Þ
where C(u2, u3) is a bivariate copula CDF. The corresponding
conditional return period can be expressed as,

TX1jX2X3
x1jX2 � x2;X3 � x3ð Þ

¼ 1

1� FX1jX2X3
x1jX2 � x2;X3 � x3ð Þ ð37Þ

5.2 Secondary return period

Flood events can be subcritical, critical, and supercritical. In
this context, the concept of secondary return period is

practically useful for design of hydraulic structures (Salvadori
2004; Vandenberghe et al. 2011). Salvadori and De Michele
(2004) used Kendall distribution function to define the
“secondary return period”. The primary return period pre-
dicts that a critical event is expected to appear once in a
given time interval (i.e., it gives an average forecast),
where as the secondary return period provides the average
time between the occurrence of two supercritical events.
The probability of supercritical event for any realization
can be computed using Kendall distribution function in
place of C(u) in computation of joint primary return
period in OR case.

For a d-dimensional distribution F ¼ Cθ̂ðU Þ and t∈(0,1]
the critical probability level p is defined as (Salvadori et al.
2011)

p ¼ FðX Þ ¼ t; X 2 R d
� � ð38Þ

Thus the isosurface p partitions Rd into three non-
overlapping regions, viz., the subcritical region consisting
the points which are less than p; the critical layer p, where F
(X)0t; the supercritical region consisting the points which
are greater than p . The return period of a supercritical or
potentially dangerous event associated with critical proba-
bility level p can be computed as

TX1X2X3 x1; x2; x3ð Þ ¼ 1

KCθ̂
pð Þ ¼

1

1� KCθ̂
pð Þ ð39Þ

where KCθ̂
(.) is Kendall’s distribution function associated

with trivariate copula Cθ̂ðU Þ at critical probability level

p. KCθ̂
denotes survival probability and Kendall’s distri-

bution of the region of the supercritical events; a mul-
tivariate form of univariate event {X>x}. Thus, any

Table 2 Statistic properties of flood varaibles

Variables Maximum Minimum Mean Standard deviation Coefficient of skewness Coefficient of kurtosis

Peak flow (Mm3/day) 398.8 36.70 126.20 73.60 2.060 8.02

Volume (Mm3) 1,242 19.5 283.30 202.6 2.065 9.66

Duration (days) 27 5 11.69 4.63 1.10 4.52
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point in the subcritical region will have a smaller joint CDF
function value than any point in the supercritical region. The
functionKCθ̂

(.) helps to project multivariate information into a

single dimension. For bivariate Archimedean copulas, an
explicit expression for KCθ̂

is available; though for FNA

structure, the form of Kendall distribution function is complex
as shown by Okhrin et al. (2009). For elliptical class of
copulas, the function KCθ̂

can be constructed numerically

using Monte Carlo simulation.

6 Application

6.1 Study area

The case study of Delaware River basin is chosen for illustra-
tion of the methodology, the basin drains an area of
34,447 km2 in the states of New York, Pennsylvania, New
Jersey, and Delaware. Major flood events in the basin took
place in the years 1955, 1999, 2001, 2003, 2004, 2005, 2006,

(a)

(b)

(c)

Scatter plot Chi-Plot Kendall plot 

Fig. 2 Graphical representation of strength of dependence of flood
variables using ranked scatter plot, chi-plot, and Kendall plot. First row
(a) peak flow–volume combination; second row (b) peak flow–

duration combination; and third row (c) volume–duration combination
of flood variable. UQ, UV, and UD denotes pseudo-samples of peak
flow, volume and duration respectively

Table 3 Correlations to measure dependencies among flood variables

Dependence measure Peak flow–volume Volume–duration Peak flow–duration

Pearson’s r 0.785a (6.905e–014) 0.613a (1.487e–007) 0.283 (0.027)

Spearman’s ρ 0.756a (1.834e–012) 0.665a (4.839e–009) 0.277 (0.030)

Kendall’s C 0.584a (3.007e–011) 0.508a (1.980e–008) 0.209 (0.021)

Bracketed values represent p value of the estimate
a Correlation is significant at 5 % significance level
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and 2010 (DRBC 2011). US Geological Survey stream gauge
01438500 (41° 18′ 33″ latitude and 74° 47′ 43″ longitude) at
Port Jervis, New York is used in the study, as part of Delaware

River flows. The location has a drainage area of 9,013 km2

and datum gauge is 112.7 m above sea level. About 61 years
daily stream flow data from the years 1949 to 2009 are

Table 4 The mathematical expressions for probability density functions and parameters of different probability distributions

Marginal
distribution
function

Density function Remarks

Log-normal fX ðxÞ ¼ 1
x
ffiffiffiffiffiffiffi
2pσ2y

p exp � lnðxÞ�μyð Þ2
2σ2y


 �
x > 0;σy > 0;�1 < μy < 1Y ¼ lnðX Þ μy and σy are mean and standard deviations

of Y
μy ¼

P
yi

n ;σ2
y ¼

P
y2i �ny2

n�1

Gamma fX ðxÞ ¼ baxa�1e�bx

Γ að Þ ; x � 0; a; b > 0;

Γ að Þ ¼ R10 ta�1e�tdt for a > 0
Positively skewed distribution α0shape
parameter β0scale parameter

A ¼ ln xð Þ �
P

lnðxÞ
n

a ¼ 1
4A 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

qh i
; b ¼ a

x

Gumbel fX ðxÞ ¼ 1
b e

� x�gð Þ b= exp �e� x�gð Þ b=
� �

�1 < x < 1
Negatively skewed distribution −∞<γ<∞,
β>0

γ0location parameter

Fréchet f ðxÞ ¼ a
b

b
x�g

	 
aþ1
exp � b

x�g

	 
a	 

x>0,α>0,β>0, γ>0

Table 5 Performance of various probability models for fitting marginal distributions for flood variables

Flood variables Distributions Estimated parametera RMSE AIC ADn KSn p
valueb

Peak flow Gamma ba ¼ 3:93 2:79; 5:52ð Þ 0.0408 −386.35 0.89 0.10 0.26bb ¼ 32:13 22:33; 46:22ð Þ
Log normal bμy ¼ 4:70 4:57; 4:83ð Þ 0.0330 −412.02 0.55 0.07 0.60bσy ¼ 0:51 0:43; 0:62ð Þ
Gumbel bb ¼ 104:5 89:16; 122:40ð Þ 0.1234 −251.31 27.1 0.24 0.001bg ¼ 168:7 140:74; 196:72ð Þ
Fréchet ba ¼ 0:16 ð�0:03; 0:35Þ 0.0299 −422.02 0.47 0.06 0.77bb ¼ 43:42 34:93; 53:97ð Þbg ¼ 93:06 80:79; 105:33ð Þ

Volume Gamma ba ¼ 2:24 1:61; 3:12ð Þ 0.0269 −437.30 0.44 0.07 0.75bb ¼ 126:5 87:25; 183:54ð Þ
Log normal bμy ¼ 5:41 5:21; 5:60ð Þ 0.0330 −412.23 0.86 0.10 0.27bσy ¼ 0:75 0:63; 0:91ð Þ
Gumbel bb ¼ 400:0 317:85; 482:17ð Þ 0.1077 −267.88 27.5 0.24 0.0007bg ¼ 307:1 264:44; 356:64ð Þ
Fréchet ba ¼ 0:14ð�0:06; 0:33Þ 0.0216 −461.67 0.30 0.06 0.77bb ¼ 126:0 101:4; 156:65ð Þbg ¼ 191:1 155:31; 226:9ð Þ

Duration Gamma ba ¼ 7:12 5:04; 10:08ð Þ 0.0275 −434.57 0.44 0.08 0.52bb ¼ 1:64 1:14; 2:35ð Þ
Log normal bμy ¼ 2:39 2:29; 2:48ð Þ 0.0254 −443.88 0.34 0.067 0.81bσy ¼ 0:38 0:32; 0:46ð Þ
Gumbel bb ¼ 14:20 12:67; 15:72ð Þ 0.0807 −303.14 22.83 0.18 0.03bg ¼ 5:72 4:85; 6:74ð Þ
Fréchet ba ¼ 0:06 ð�0:16; 0:28Þ 0.0274 −432.75 0.38 0.074 0.81bb ¼ 3:39 2:72; 4:21ð Þbg ¼ 9:52 8:54; 10:5ð Þ

Best estimate is shown in italics
a Bracketed value denotes 95 % confidence interval for the estimate of parameters
b p value for KS test statistics
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analyzed. Table 2 presents statistical properties of flood vari-
ables during the study period. The high kurtosis and positively
skewed in nature of flood variables suggests that they can be
best modeled by heavy tailed distributions.

6.2 Dependence of flood variables

The pair-wise association among flood variables as well as
the strength of dependency is studied by employing graph-
ical tools such as ranked scatter plots, chi-plots, and Kendall
plots, since it is often difficult to judge random nature and
nonlinear behavior of data from a simple scatter plot. In
Fig. 2, ranked scatter plots, chi plots, and Kendall plots of
pair-wise flood variables are presented. For peak flow–vol-
ume pair, the increased density of points close to 45° line in
the ranked scatterplot indicates that dependence between
this variable pair is strongest whereas a weak dependence
is observed between peak flow and duration pair. The shape
of the clusters of ranked observations for peak flow–volume
and volume–duration pairs in regions around upper right
corner of the unit square suggests presence of stronger upper
tail dependence between these flood variables. The control
limits for chi plot are set to enclose a p value of 0.95. A

strong deviation from the control limit is observed for flood
variable peak flow–volume and volume–duration pair. For
peak flow–duration pair, deviation is observed from the
center of the main diagonal in Kendall plot, indicating pres-
ence of positive association between the flood variables. For
quantitative assessment, the sample estimates of Pearson’s
linear correlation r and two nonparametric dependence meas-
ures viz., Spearman’s ρ, Kendall’s τ with associated p values
of the estimate are listed in Table 3. The dependencies are
found to be significant as tested by standard two-tailed t test.

6.3 Modeling marginal distributions

For fitting marginal distribution two-parameter log normal,
two-parameter gamma, extreme value type I (Gumbel distri-
bution) and extreme value type II (Fréchet distribution) have
been evaluated. The Gumbel and Fréchet distribution are
special case of generalized extreme value (GEV) distribu-
tion. For Gumbel distribution, the shape parameter (α) of
GEV takes the form of α→0 and corresponds to an un-
bounded and thin upper tails. If α>0, then the GEV distri-
bution is termed as Fréchet; the distribution is unbounded
above and has polynomially decreasing tail function, which
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Fig. 3 Fitted marginal distributions for flood variables a peak flow, b volume, and c duration. The first, second, and third column shows probability
density functions, CDFs, and P–P plots, respectively, for three flood characteristics
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corresponds to a long- or heavy-tailed distribution. The
density form and corresponding parameters of the distribu-
tions are presented in Table 4. The parameters of the distri-
bution functions are estimated using method of maximum
likelihood. Table 5 lists various performance measures such
as Akaike information criteria (AIC), Anderson–Darling
(ADn), and Kolmogorov–Smirnov (KSn) statistics for the
flood data fitted with parametric distributions. The table
shows heavy tailed Fréchet distribution fits well for peak flow
and volume data and log-normal distribution performed better
for modeling flood duration data. The probability density
functions (PDFs), cumulative distribution functions CDFs
and corresponding probability–probability (P-P) plot for each
marginal flood variables fitted with Fréchet distributions are
shown in Fig. 3, which shows good correspondence between
theoretical distributions with the observed data.

6.4 Modeling joint dependence structure using copulas

6.4.1 Bivariate copula models

First, bivariate copula models are developed for represent-
ing the joint dependence of flood variable pairs such as
flood peak–volume, volume–duration, and flood peak–du-
ration. Four copula models namely Clayton, Gumbel–Hou-
gaard and Frank copulas, and Student’s t copula are fitted
and their corresponding results are presented in Table 6. The
parameters of copula functions are estimated using GA-
based maximum pseudo-likelihood approach. The following
GA parameters adopted: population size of 20, generations
of 200, single point cross-over with cross-over rate of 0.8,
Gaussian mutation function with mutation rate of 0.01, and
selection strategy as stochastic uniform. From Table 6, it can
be seen that the Student’s t copula resulted in higher log-
likelihood and minimum AIC values for all three combina-
tions of flood–variable pairs. These bivariate models are
used for computing the return periods of bivariate and
trivariate flood characteristics.

6.4.2 Trivariate copula models

The fully nested form of Clayton, Gumbel–Hougaard and
Frank copulas, and one elliptical Student’s t copula are
chosen to model trivariate flood characteristics. The copula
functions are fitted with maximum pseudo-likelihood esti-
mator, where parameters are estimated using genetic algo-
rithm. The GA parameters used involves, for nested
Archimedean class of copula: population size of 20, gener-
ations of 500, single point cross-over with cross-over rate of
0.8, Gaussian mutation function with mutation rate of 0.01,
and selection strategy as stochastic uniform; whereas for
Student’s t copula: a population size of 50, generations of
200, and the remaining parameters are the same as above.
The estimated copula parameters and corresponding log-
likelihood function values are presented in Table 7, which
shows highest log-likelihood function value for Student’s t
copula followed by Gumbel–Hougaard copula. The perfor-
mance of copula families are compared using distance-based
statistics AD, IAD and entropy tests, which are presented in
Table 8. From this table, it can be seen that overall Student’s

Table 6 Performance of various bivariate copula models for represent-
ing dependence structure (joint distributions) of flood variables

Copula Parameters LL AIC

Flood peak–volume

Clayton θ01.801 21.284 −40.568

Gumbel–Hougaard θ07.507 26.428 −50.856

Frank θ02.402 28.969 −55.937

Student’s ta ϑ03.81, σ1200.794 29.155 −56.309
Flood volume–duration

Clayton θ01.425 16.097 −30.194

Gumbel–Hougaard θ05.356 17.071 −32.141

Frank θ01.823 16.203 −30.405

Student’s ta ϑ086.41, σ1200.716 18.889 −35.778
Flood volume–duration

Clayton θ00.383 1.868 −1.737

Gumbel–Hougaard θ01.719 2.260 −2.520

Frank θ01.229 2.419 −2.838

Student’s ta ϑ083.79, σ1200.323 2.458 −2.916

Best estimate is shown in italics

LL log-likelihood value, AIC Akaike information criteria (AIC0−2×
log (LL)+2×m), where m0number of parameters of copula model
a

For t-copula, since σ120σ21, the correlation matrix Σ ¼ 1 σ12

σ21 1

� �

Table 7 Estimated parameters
of trivariate models for various
copula families

Best estimate is shown in bold
followed by next best estimator
in italics

Copula classes Parameters Log-likelihood
value

Archimedean Clayton bθ1 ¼ 0:89;bθ2 ¼ 1:71 29.82

Gumbel–Hougaard bθ1 ¼ 1:44;bθ2 ¼ 2:35 35.88

Frank bθ1 ¼ 3:27;bθ2 ¼ 7:21 34.42

Elliptical Student’s t bϑ ¼ 5:08; bσ1;2 ¼ 0:79; bσ2;3 ¼ 0:72; bσ1;3 ¼ 0:32 59.77
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t copula performed best for trivariate flood data as compared
to other copula families. The low performance of Frank
copula can be attributed to its radially symmetric structure
whereas flood events are often upper tail dependent.

For further visual illustration, a set of random sample of
size0500 are generated from both Gumbel–Hougaard and
Student’s t copulas and transformed back into their original
units using corresponding marginal distribution functions
and compared with observed data as shown in Fig. 4 (a–c
for Student’s t and d–f for Gumbel–Hougaard copula). From

these plots, it can be observed that the Student’s t copula is
performing satisfactorily, as the random pairs generated
from this copula (gray dots) are adequately overlapped with
the dependence pattern of sample data (black dots).
Corresponding Kendall’s τ value from the simulated data is
also presented in Fig. 4. There is restriction in the application
of fully nested Gumbel–Hougaard copula as the correlation
between two pairs should be identical and lower than the third
pair (such as rank-based correlation of tP;V � tV ;D ¼ tP;D ) as
observed from the pair-wise simulated data.

The maximum distance, dmax computed between non-
exceedance probability and Student’s t copula-based joint
distribution is found to be 0.062. The critical values of the
Kolmogorov–Smirnov test at 5 % significance level is

Da¼0:05
n¼61 ¼ 0:17. Hence, Student’s t copula is verified as an

acceptable model at 5 % significance level. A scatter plot
between the empirical joint CDF obtained using Grigorton
plotting position formula and theoretical joint CDF obtained
using Student’s t copula is presented in Fig. 5. A good
agreement between empirical and theoretical probabilities
at the tails of the distribution is observed. Hence, Student’s
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Fig. 4 Scatter plots of observed versus 500 simulated samples of flood variable pairs from Student’s t copula (a–c) and fully nested Gumbel–
Hougaard copula model (d–f). Solid black dots observed samples, light gray dots simulated samples

Table 8 Comparison of copula models performance in representing
the trivariate flood properties

Performance
statistics

Clayton Gumbel–
Hougaard

Frank Student’s
t

AD 0.22 0.29 1.67 0.11

IAD 0.65 0.85 7.67 0.21

Entropy −190.68 −485.03 −283.23 −743.97

Best estimate is shown in bold followed by next best estimator in italics
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t copula is suitable for representing trivariate joint distribu-
tion of flood properties.

6.5 Analyzing tail dependence

In order to test the tail properties of simulated sample from
the copula families, a pair-wise tail-dependence test is per-
formed. The upper tail dependence coefficient for Clayton
and Frank copulas are equal to zero. Hence, these two
copulas are excluded from tail-dependence analysis. The
TDC of empirically transformed (i.e., from ECDF) flood

variable pairs is computed usinglcfgU ,lLOGU andlSSU estimators.

For lSSU and lLOGU estimate of observed data (of sample
length061), the optimal plateau is selected using box-kernel
of bandwidth b ¼ 0:05nb c ¼ 3ð Þ . The empirical TDC of
observed flood variable pairs is listed in Table 9.

For comparing TDC estimate of Gumbel–Hougaard and
Student’s t copula, bivariate random numbers are generated

for sample size 500. The optimal plateau for lSSU and lLOGU is

selected using box-kernel of bandwidth b ¼ 0:005nb c � 3ð Þ.
The computation is repeated for ten different runs (i.e., bln;i;
i ¼ 1; . . . ; 10). Then each TDC estimate is compared using

sample mean bμ blU	 

and standard deviation bσ blU	 


of ten

different runs. The results are summarized in Table 10. The
resulting box-plot for simulated tail-dependence coefficient of
three different estimators is presented in Fig. 6. The asymmet-

rical nature of box-plots show that sample variance of blLOGU

and blSSU is higher as compared to blCFGU . From Table 10 and
Fig. 6, it can be observed that Student’s t copula is able to
simulate observed upper TDC estimate well as compared to

Gumbel–Hougaard copula, especially for blCFGU estimator. The

sample variance of blCFGU estimator for Student’s t copula is
less than that of Gumbel–Hougaard copula. The parametric
upper TDC of Student’s t copula involving dependence pa-

rameter ϑ05.08 and σij is (Frahm et al. 2005) lparamUij
¼ 2� 2

tϑþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑþ 1ð Þp ffiffiffiffiffiffiffiffiffiffiffiffi

1�σijð Þ
1þσijð Þ

r
 �
; i; j 2 f1; 2; . . . ; ng where tϑ+1 is

a CDF of Student’s t random variable with ϑ+1 degrees of
freedom. The pair-wise parametric TDC estimate using Stu-
dent’s t copula are: peak flow and volume lparamUPV

¼ 0:43 ,

volume and duration lparamUVD
¼ 0:35 and peak flow and dura-

tion lparamUPD
¼ 0:13 respectively.

7 Probabilistic analysis of flood variables

7.1 Primary return periods of flood peak flow conditional
to volume and duration

The frequency analysis of multivariate extreme events are
helpful in understanding critical hydrologic behavior of flood
in a River basin scale through use of various combinations of
flood characteristics. It can also be helpful in taking
nonstructural safety measures, and to delineate flood
plains and developing flood mitigation strategies. From hy-
drological perspective, these scenarios are important, as ex-
treme flood events with high peak flow and long duration and
hence high volume may be devastating at watershed scale; on
the other hand, short-duration events with high peak discharge
and moderate volume may cause flash floods.

Table 11 presents return period obtained using univariate
marginal distributions of peak flow, volume, and duration;
and joint return periods for “AND” and “OR” cases for
bivariate as well as trivariate distributions. The joint return
period in “AND” case is longer than the joint return period
in “OR” case when same univariate return period is as-
sumed. The effect of including third variable (duration in
this case) in computing joint return period can also be

Fig. 5 Comparison of empirical joint probability distribution
(obtained using plotting position formula) and theoretical joint proba-
bility distribution obtained from Student’s t copula

Table 9 Empirical tail dependence coefficient for three flood variable
pairs

Flood variable pairs l̂cfgU l̂LOGU l̂SSU

Peak flow–volume 0.68 0.63 0.67

Volume–duration 0.55 0.36 0.25

Peak flow–duration 0.29 0.12 0.29
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observed from Table 11. For all the cases considering tri-
variate flood properties, the joint return period in “AND”
case TAND

QVD q; v; dð Þ is greater than the other cases of return

periods; and the joint return period in “OR” case TOR
QVD

q; v; dð Þ is lower than the pair-wise bivariate joint return
periods. Hence, it also infers that the occurrence of trivariate
flood characteristics simultaneously is less frequent in
“AND” case and more frequent in “OR” case.

The joint return periods of two flood variables condition-
al on third flood variable, viz., TQ;V jD q; vjD � dð Þ; TV ;DjQ
v; djQ � qð Þ and TQ;DjV q; djV � vð Þ are computed using
Eq. 35. For example, let us consider a flood event with the

following flood characteristics: annual maximum peak dis-

charge, q0398.8 Mm3/day; flood volume, v0676.6 Mm3;

and flood duration, d014 days. By using Eq. 35, the

corresponding conditional return periods are obtained as
TQ;V jD q; vjD � dð Þ0106 years, TV ;DjQ v; djQ � qð Þ04 years,

TQ;DjV q; djV � vð Þ04.4 years. The contour plots of specific
joint return periods for all the three combinations are plotted
in Fig. 7. As seen from the scatterplots, most of the flood
events have shorter primary return periods. However, there
exists only one event both in TQ;V jD q; vjD � dð Þ and TV ;DjQ
v; djQ � qð Þ cases, which have primary return period more
than 100 years. One can obtain desired information for a
particular use from contours of joint return periods (viz.,
flood volume and duration at given peak discharge, flood
peak and duration at given flood volume, and flood peak
and volume at given duration). This information will be
helpful for design of flood control structures, reservoirs,
spillways etc., where it seek design flood hydrographs.

The conditional return periods of peak flow at given volume
and constant duration, and conditional return period of peak
flow at given duration and constant volume are presented in
Fig. 8a and b, respectively. It should be noted that in Fig. 8, the
volume and duration values correspond to various percentile

Table 10 Bivariate upper TDC
estimate for Student’s t and
Gumbel–Hougaard copulas

bμ blU	 

and bσ blU	 


denote sam-
ple mean and standard devia-
tions, respectively

Variable pair Sample estimate Student’s t Gumbel–Hougaard

blcfgU
bllogU

blSSU blcfgU
bllogU

blSSU
Peak flow—volume bμ blU	 


0.653 0.628 0.656 0.662 0.651 0.727bσ blU	 

0.008 0.021 0.016 0.014 0.043 0.050

Volume—duration bμ blU	 

0.568 0.487 0.496 0.364 0.390 0.445bσ blU	 

0.017 0.040 0.036 0.042 0.048 0.054

Peak flow—duration bμ blU	 

0.264 0.204 0.256 0.362 0.376 0.426bσ blU	 

0.022 0.043 0.059 0.032 0.055 0.107
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Fig. 6 Box–whisker plots of
upper TDC for simulated
sample from copula. First row
(a–c) shows Student’s t copula,
second row (d–f) depicts
Gumbel–Hogaard copula
family. lUPQ , lUPD and lUVD

denotes upper TDC (λU)
estimate of peak flow–volume,
peak flow–duration, and
volume–duration combination
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values of the respective data. The skewness of the conditional
return period curves for flood peak shows increasing trend for
the first case (i.e., at given conditional volume for various
percentile levels and constant duration), and decreasing trend
for the second case (i.e., at given conditional duration
and decreasing trends for the second case and constant
volume). In a similar way, conditional return period of
flood volume given peak discharge and duration, and/or
conditional return period of flood duration given volume
and peak discharge can also be obtained. These scenar-
ios can be helpful in assessing flood risk for hydrologic

design purposes such as design of spillways and con-
struction of various flood protection structures (for ex-
ample levees, flood walls, diversion works).

7.2 Analysis of secondary return period

The secondary return period can be useful for analyzing risk
of supercritical flood events. The relationship between joint
primary return period TQVD(q,v,d) and the secondary return

period TQVD q; v; dð Þ is also investigated. The relationships

Table 11 Comparison of univariate, bivariate, and trivariate return periods for flood characteristics

T Peak flow
(Mm3/day)

Volume
(Mm3)

Duration
(days)

TAND
QV TAND

VD TAND
QD TOR

QV TOR
VD TOR

QD TAND
QVD TOR

QVD TQVD

5 166.56 400.89 15 7.6 8.6 13.7 3.7 3.5 3.1 14.8 2.9 9.2

10 210.41 523.14 17.7 16.7 20.3 36 7.1 6.6 5.8 40.9 5.3 23.8

20 257.64 652.8 20.3 35.5 46.8 87.8 13.9 12.6 11.2 109 10.1 54.2

50 327.34 840.74 23.8 93.6 140.6 269.3 34.1 30.5 27.7 398.2 24.5 186

100 386.71 998.13 26.4 192.4 316.2 597.7 67.7 59.6 54.8 1,055.5 48 458.7

T return period associated with univariate marginal distributions, TQVD secondary return period of flood variables
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Fig. 7 Contour plots for
conditional return periods (in
years) of flood characteristics: a
TQVjD q; vjD � dð Þ, b TVDjQ
v; djQ � qð Þ, and c TQDjV
q; djV � vð Þ. Historical events
are shown as solid dots on the
graph
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of KCΣ;ϑ and the secondary return period TQVD q; v; dð Þ
against primary return period in ‘OR’-case TOR

QVD q; v; dð Þ
are shown in Fig. 9a and b, respectively. For higher value
of critical probability level p, higher primary return period is

observed, and the survival probability function KCΣ;ϑ P
� �

tend to decrease, which corresponds to decrease in proba-
bility of supercritical events. As the probability of supercrit-
ical events decreases, the secondary return periods or mean

occurrence time between two supercritical events increases
and vice versa. It is also observed that the secondary return
period is always greater than that of primary return period. A

similar behavior is observed between KCΣ;ϑ and the primary

return period in “AND” case TAND
QVD q; v; dð Þ . It is also ob-

served that the secondary return period is always greater
than that of primary return period in OR case TOR

QVD q; v; dð Þ,
but lower than that of primary return period in AND case
TAND
QVD q; v; dð Þ.

An illustration is the 20-day flood event that occurred
during 2006, which has peak flow of 391.45 Mm3/day and
volume of 1,242 Mm3 (which corresponds to 99th percentile
value of flood volume). The secondary return period asso-
ciated with this extreme event using Eq. 39 is more than
100 years TQVD q; v; dð Þ � 108 years

� �
whereas primary

return period associated with the event for “OR” and
“AND” ca ses a r e TOR

QVD q; v; dð Þ 016 .5 yea r s and

TAND
QVD q; v; dð Þ 0507.1 years. Similarly, for a 14-day flood

event that occurred during 1955, with peak flow q0
398.79 Mm3/day (which corresponds to 99th percentile
value of annual maximum flood peak) and volume v0

676.58 Mm3, has secondary return period TQVD q; v; dð Þ 0
14.5 years, while primary return periods TOR

QVD q; v; dð Þ is

3.8 years and TAND
QVD q; v; dð Þ is 175 years, respectively. The

secondary return period of flood variables presented in
Table 11 also support this inference. This means that the
structure could be underdimensioned if it is designed
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Fig. 8 Conditional return
periods (in years) of flood
characteristics: a TQjVD
qjV � v;D � dð Þof peak flow
at given volume and constant
duration (d05 days); b TQjVD
qjV � v;D � dð Þof peak flow
at given duration and constant
volume (v0120 Mm3)
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considering only the primary return period in “OR” case and
overdimensioned if it is designed with the primary return
period in “AND” case. Thus, the presented methodology
can be very useful for risk based hydrological design of
hydraulic and water resources projects.

However, in recent times many concerns are raised over
climate change and its influence on hydrological extremes.
It would be interesting to see how the climate change may
affect future floods, and quantifying the associated risks.
These tasks can be considered for future studies to have
comprehensive evaluation of flood risks.

8 Summary and conclusions

In this study, a trivariate copula-based approach is presented
for risk analysis of flood flows of Delaware River basin at
Port Jervis, New York. The association among the three
mutually correlated flood properties (viz., annual flood peak
flow, volume, and duration) is explored and used for depen-
dence structure modeling using copulas. From graphical
tests and rank correlations of flood variable pairs, it is found
that the dependence among the flood variables is statistically
significant and therefore copula based methodology is adop-
ted for flood risk analysis. Three fully nested forms of
Archimedean copulas (viz., Clayton, Gumbel–Hougaard,
Frank copulas); and one elliptical copula (i.e., Student’s t

copula) are used to model the joint distribution of flood
variables. To test the performance of copulas in modeling
flood extreme events, apart from standard performance
measures, the nonparametric tail-dependence coefficients
are evaluated and used to verify the efficacy of copulas in
modeling hydrological extremes. The return periods for
univariate, bivariate, and trivariate cases are estimated and
comparative analysis is performed. Also, the importance of
primary and secondary return periods is analyzed.

The specific conclusions of the study are as follows:

& The copula method is found to be very effective tool for
multivariate modeling of flood risks, as copulas are
effectively preserving the dependence structure of mul-
tiple flood characteristics.

& In general, the upper tail-dependent copula families per-
formed better in modeling extreme flood events and also
capable of capturing tail behavior of data well. In rela-
tive comparison, the Student’s t copula is found to be
better than the other copulas in describing bivariate and
trivariate dependence structure of flood variables. This
may be because of the weak dependences are averaged
in other copulas. Also, in case of Student’s t copula, the
nonparametric tail probability measures showed a close
similarity with observed TDC, which suggests that the
Student’s t copula is well capturing the extremes of the
observed data.

& The comparative analysis of different return periods
showed that it is very important to compute trivariate
return periods of flood characteristics to know the
expected flood risks and their magnitude of influence if
they occur simultaneously. It also noted that the hydraulic
structures could be underdimensioned if it is designed
considering only the return period in “OR” case; and
overdimensioned if it is designed with the return period
in “AND” case. The primary and secondary return periods
of flood characteristics can be very useful for effective
risk-based design of water resources projects.

Appendix

Chi plot

Chi-plot is a scatter plot of the pairs (λi, χi), where it uses
the data ranks (Fisher and Switzer 2001). The values are
defined as,

ci ¼
Hi � FiGiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fi 1� Fið ÞGi 1� Gið Þp ðA1Þ
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Fig. 9 The relation of primary return period TOR
QVD

q; v; dð Þ versus a
survival probability function KCΣ;ϑ pð Þ ¼ 1� KCΣ;ϑ pð Þ and b the sec-
ondary return period TQVD q; v; dð Þ
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where

Hi ¼

P
j6¼i

I xj � xi; yj � yi
� �

n� 1
;

Fi ¼

P
j6¼i

I xj � xi
� �
n� 1

; and

Gi ¼

P
j6¼i

I yj � yi
� �
n� 1

and

li ¼ 4sgni max Fi � 0:5ð Þ2; Gi � 0:5ð Þ2
n o

ðA2Þ

where sgni ¼ sgn ðFi � 0:5ÞðGi � 0:5Þf gThe values of li is
a measure of the distance of the bivariate observation (xi, yi)
from the center of the data set and li∈ [−1,1]. If X and Y are
positively associated, li will tend to be positive and vice
versa for negatively correlated variable. The chi-plot also
include control limits that are placed at c ¼ 	cp

ffiffiffi
n

p
= , where

cp values are provided by Fisher and Switzer (2001). Using
simulation studies, it is found that Cp values 1.54, 1.78, and
2.18 correspond to p values of 0.90, 0.95, and 0.99, respec-
tively. In case of independence, the points lie within the
control limits of the plot. When the scatter of data points are
largely on the upper side of the control limits, it indicates
positive dependence; whereas in case of negative depen-
dence the scatter of data points are largely in the lower side
of the control limits.

Kendall plot

The Kendall plots are analogous to Q–Q plots (Genest and
Boies 2003). The Kendall plot, consists of plotting random
variable Wi:n in ordinate against order statistics of the sam-
ple H(i) in abscissa for i∈{1,⋯,n}. Wi:n is the expected value
of the ith order statistics of a random variableW0H(X,Y)0C
(U,V) of sample size of n from distribution Kn and is defined
as (Genest and Favre 2007)

Wi:n ¼ n
n� 1
i� 1


 �



Z 1

0
wkðwÞ KðwÞf gi�1 1� KðwÞf gn�1dw ðA3Þ

where k ¼ dKðwÞ
dw ;KðwÞ ¼ P UV � wð Þ ¼ R 10 P U � w v=ð Þdv ¼

w� w logðwÞand n� 1
i� 1


 �
is a binomial coefficient. The

deviation from the main diagonal is the indication of depen-
dence in Kendall plots. The plot tends to be linear in case of

independence whereas the curve tends to be KðtÞ ¼ w� w
logðwÞ in case of perfect positive dependence. In case of
perfect negative dependence, all points will lie on x axis and
a flat line will result with height zero.
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