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Abstract In this paper, we analyze the Granger causal-
ity from natural or anthropogenic forcings to global
temperature anomalies. The lag-augmented Wald test
is performed, and its robustness is also evaluated con-
sidering bootstrap method. The results show there is
no-evidence of Granger causality from natural forcings
to global temperature. On the contrary, a detectable
Granger causality is found from anthropogenic forcings
to global temperature confirming that greenhouse gases
have an important role on recent global warming.

1 Introduction

A current global problem is the role of the human
contribution on climate changes. In fact, greenhouse
gases seem to have a relevant impact on global surface
temperature’s rise. Global warming may be also caused
by natural forcing as solar or volcanic activities. Thus,
the relationships between global surface temperature
and natural or anthropogenic forcings have been the
most important subjects of research in the last decades.
The studies are often performed by means of Granger
causality (GC) that is about an incremental forecasting
power. In particular, a variable x Granger cause a vari-
able y if the forecasts of y can be improved by means
of x. Sun and Wang (1996) provide evidence of GC
from CO2 emission to global temperature. Kaufmann
and Stern (1997) suggest that human activity has
played a role in the historical record of temperature.
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A study by Triacca (2001), a follow-up on Kaufmann
and Stern, shows other conclusions obtained from the
results of Kaufmann and Stern. Triacca (2005), using
Toda and Yamamoto’s method (Toda and Yamamoto
1995), evidences that there is no Granger causality
between atmospheric concentration of carbon dioxide
and global temperature. Elsner (2007) finds GC from
global temperature to Atlantic sea surface temperature,
confirming the theory that climate change influences
hurricane intensity, considering that changes in global
temperature are due to anthropogenic forcings. Re-
cently in Kodra et al. (2011), a detectable Granger
causality from CO2 to global temperature is explained.
The authors also perform an out-of-sample study in
order to give more evidence for their in-sample results.
The out-of-sample results are based only on descrip-
tive statistical indices, and we do not know if out-of-
sample Granger causality is statistically significant. In
Attanasio et al. (2012), out-of-sample Granger non-
causality tests are performed from anthropogenic or
natural forcings to global temperature. The study evi-
dences the rejection of the null hypothesis of Granger
noncausality when greenhouse gases are used, whereas
Granger causality is not found from natural forcings
to global temperature. Other results (Mokhov and
Smirnov 2008; Reichel et al. 2001), using in-sample
tests, evidence the influence of solar activity on the
global surface temperature.

The different results may depend on the models
adopted in the analysis, or whether the tests are in-
sample or out-of-sample. In particular, in-sample analy-
sis depends on time series characteristics, and there is
often the possibility of overfitting. In fact, significant
in-sample Granger causality does not guarantee signifi-
cant out-of-sample predictability. Out-of-sample tests
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are often recommended because they may stress the
true forecasting ability of one variable for another,
and the results are more robust in terms of overfitting
(Chao et al. 2001; Clark 2004; Gelper and Croux 2007).
Differently, Inoue and Kilian (2004) find the results
of in-sample tests more credible than those of out-of-
sample tests.

This paper is a follow-up of Attanasio et al. (2012).
Here, we consider in-sample Granger noncausality
test using the same dataset to investigate the possible
differences between in-sample or out-of-sample results.
The paper is organized as follows: a review of Granger
causality is given in the next section. We present the
data in Section 3. A preliminary study of the time
series is explained in Section 4. Results of Granger
causality analysis are discussed in Section 5, and a brief
conclusion is drawn in Section 6.

2 Granger causality methodology

Granger (1969) has defined a concept of causality
very useful in econometric research. Let Ix,y

t = {x0, . . . ,

xt, y0, . . . , yt} be the information set. We will say that
the variable x Granger cause the variable y if the mean
square error of the best predictor of yt+1 based on Ix,y

t is
smaller than the mean square error of the best predictor
of yt+1 that uses Iy

t = Ix,y
t − {xs, s ≤ t}. Before testing

for Granger causality, it is important to establish the
properties of the time series involved in the analysis,
because the use of nonstationary time series can involve
spurious causality results (Stock and Watson 1989; Sims
et al. 1990). In this paper, the lag-augmented Wald test
is applied (Toda and Yamamoto 1995) that is robust to
the integration and possible cointegration properties of
the variables. In fact, it is applicable if the variables are
stationary, integrated or cointegrated of an arbitrary
order. The procedure requires only the knowledge of
the maximum order of integration of the series.

We consider two nested models, the unrestricted
regression model

yt = μ1 +
k∑

j=1

α jyt− j +
k∑

j=1

ψ jxt− j + εt (1)

and the restricted model

yt = μ2 +
k∑

j=1

β jyt− j + ut (2)

where μ1 and μ2 are constants, α, ψ , and β are the
coefficients of the models, εt and ut are univariate white
noise, and k is the order of the models. If (ψ1, . . . , ψk),

in Eq. 1, is equal to the zero vector, then x does not
Granger-cause y. The null hypothesis of noncausality
corresponds to

H0 : ψ1 = ψ2 = . . . = ψk = 0 . (3)

Estimating the parameters of the models (1) and (2) by
ordinary least squares (OLS), the significance of this
restriction is evaluated by the test statistics F,

F = (RSSr − RSSu) /q
RSSu/(T − m)

(4)

where RSSr is the residuals sum of square of restricted
model (2), RSSu is the residuals sum of square of un-
restricted model (1), q is the number of coefficients re-
stricted to zero (q = k), m is the number of coefficients
of the unrestricted model (m = 2k + 1), and T is the
number of observations. Under the assumption that the
time series are stationary, the test statistics in Eq. 4 as-
ymptotically has a F(q, T − m) distribution under H0.
A significant statistics implies that the null hypothesis
of noncausality is rejected.

When the time series are not stationary, the standard
asymptotic theory cannot be employed because the test
statistics F in Eq. 4 has a nonstandard distribution
(Sims et al. 1990). Toda and Yamamoto (1995) propose
to overfit the unrestricted model (1) by d extra lags,
where d is the maximum order of integration of xt and
yt, in order to test the null hypothesis (3). In fact, if the
true data generation process is Eq. 1, then the model

yt = μ1 +
k∑

j=1

α jyt− j +
k∑

j=1

ψ jxt− j

+
k+d∑

j=k+1

(
α jyt− j + ψ jxt− j

) + εt

with αk+1 = . . . = αk+d =ψk+1 = . . .=ψk+d = 0 describes
the data-generating process equally well. In particular,
we should point out that the parameters of the extra
lags,

{
ψ j

}k+d
j=k+1, are unrestricted in testing for Granger

causality from x to y because they are zero by as-
sumption. The null hypothesis of noncausality is always
as in Eq. 3. Therefore, this hypothesis can be tested
considering the unrestricted model

yt = μ1 +
k+d∑

j=1

α jyt− j +
k+d∑

j=1

ψ jxt− j + εt (5)

and the restricted model

yt = μ2 +
k+d∑

j=1

β jyt− j +
k+d∑

j=k+1

γ jxt− j + ut . (6)
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The coefficients of the two models are estimated by
means of OLS, and the test statistics became

F = (RSSr − RSSu) /k
RSSu/(T − (2k + 2d + 1))

(7)

where here, RSSr is the residuals sum of square of
restricted model (6) and RSSu is the residuals sum of
square of unrestricted model (5). Toda and Yamamoto
(1995) show the test statistics (Eq. 7) asymptotically has
a standard distribution F(k, T − 2k − 2d − 1). So the
function of the extra coefficients is only to guarantee
the use of asymptotical distribution theory.

We know the lag-augmented Wald test can suffer
from size distortion and low power especially for small
samples. Then the bootstrap method is often used to
determine the robustness of Granger causality results
(Giles 1997; Hacker and Hatemi-J 2006; Hatemi-J and
Shukur 2002; Lukasz 2010; Mantalos 2000; Mavrotas
and Kelly 2001; Shukur and Mantalos 2000). Thus the
following bootstrap scheme is applied:

1. Considering the d extra lags, estimate the parame-
ters of the unrestricted and restricted models in
Eqs. 5 and 6 and calculate the statistics F as in Eq. 7.

2. Under the null hypothesis of noncausality and with-
out the d extra lags, estimate the parameters μ2 and
{β j}k

j=1 of the restricted model (2) and calculate the
residuals ût.

3. Apply bootstrap procedure (resampling with replace-
ment) on ût and obtain the pseudo-residuals u∗

t .
4. Create the pseudo-data y∗

t given by

y∗
t = μ̂2 +

k∑

j=1

β̂ jy∗
t− j + u∗

t (8)

5. Using the pseudo-data y∗
t , repeat the steps 1 and

calculate the F bootstrap statistics.
6. Execute steps from 3 to 5 for N times.
7. Calculate the bootstrap p value which is the pro-

portion of the F estimated bootstrap statistics that
exceed the same statistic evaluated on the observed
data.

In our application, the bootstrap p value is calculated
using N = 10, 000.

3 Data

Here, we deal with the following annual time series:

– Global temperature anomalies yt: data available at
http://www.cru.uea.ac.uk/cru/data/;

– CO2, CH4, and N2O: data available at http://data.
giss.nasa.gov. We have used IPCC (2001) expres-

sions to convert greenhouse gas changes to instan-
taneous radiative forcing. In particular, ct is CO2

radiative forcing (RF), mt is CH4 RF, and nt is N2O
RF;

– Total solar irradiance TSIt: data available at www.
geo.fu-berlin.de;

– Cosmic ray intensity CRIt: data available at ftp.
ncdc.noaa.gov;

– Stratospheric aerosol optical thickness (SAOT) at
550 nm SAOTt: data available at http://data.giss.
nasa.gov;

The period of study ranges from 1850 to 2007. We
are interested in testing Granger causality from the
single forcing to global temperature anomalies. Using
the same approach of Kodra et al. (2011), we apply
Granger noncausality tests for the last 58, 68, 78, 88, 98,
108, 118, 128, 138, 148, and 158 observations of our se-
ries. In this way, we may observe the influence of green-
house gases or natural forcings to global temperature’s
rise. In particular, we also analyze Granger causality
from global radiative forcing gt (gt = ct + mt + nt) to
global temperature.

4 Unit root tests on global temperature anomalies
and forcings

In order to apply lag-augmented Wald test, the order of
integration of the series is required. In particular, a time
series wt is integrated of order h (wt ∼ I(h)) if �hwt is
stationary, where �rwt is nonstationary for r < h. In
this section, we focus on the presence or absence of
stochastic trends in the global temperature anomalies
and forcings employing the augmented Dickey–Fuller
test (Dickey and Fuller 1981).

The model of the augmented Dickey–Fuller (ADF)
test is specified as follows:

�wt = q0 + q1t + ϕwt−1 +
p∗∑

j=1

ξ j�wt− j + vt (9)

where vt is a white noise. The lagged first differences of
the dependent variables provide a correction for possi-
ble serial correlation. If ϕ = 0 and q1 = 0, then wt has
a unit root and a stochastic linear trend. Alternatively,
if ϕ < 0, then the series is linear trend stationary. The
null hypothesis is that the series is nontrend stationary.
The ADF statistics is

ADFt = ϕ̂

se(ϕ̂)
(10)

where ϕ̂ is the OLS estimate of ϕ, and se(ϕ̂) is the ϕ̂’s
standard error. The critical values are not standard, and

http://www.cru.uea.ac.uk/cru/data/
http://data.giss.nasa.gov
http://data.giss.nasa.gov
http://www.geo.fu-berlin.de
http://www.geo.fu-berlin.de
file:ftp.ncdc.noaa.gov
file:ftp.ncdc.noaa.gov
http://data.giss.nasa.gov
http://data.giss.nasa.gov
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Fig. 1 Plots of global temperature anomalies (GT anomalies,
unit in degrees Celsius), total solar irradiance (TSI, unit in watts
per square meter), cosmic ray intensity (CRI, unit in count rate
of a polar neutron monitor), and stratospheric aerosol optical
thickness at 550 nm (SAOT, unit in optical thickness at 550 nm)

they depend on the deterministic component selected
in Eq. 9. The value of p∗, where p∗ is the model order,
is selected between 0 and 10 using Akaike information
criteria given by

AIC(p∗) = ln
(
σ̂ 2

v (p∗)
) + 2 (p∗ + l)

T
(11)

where σ̂ 2
v (p∗) = T−1 ∑T

t=1 v̂2
t is the error variance esti-

mator based on the OLS residuals v̂t of the model (9),
and l is the number of deterministic components.

The deterministic component in Eq. 9 is chosen,
observing the graphic of the time series. In our cases,
we consider linear trend and constant for the original
series wt, constant for the first difference �wt, and
without trend and constant for the second difference

�2wt. Only for SAOTt the deterministic component is
taken constant for the original series.

Haldrup and Lildholdt (2002) find that when wt is
I(2), the ADF statistics gives rise to excessive rejection
of the unit root null in favor of the stationary alter-
native. It depends on the ADF statistics which has a
different distribution caused by the extra unit root. The
authors suggest to test I(2) against I(1) prior to testing
I(1) against I(0). Using the same approach described in
Lutkepohl and Kratzig (2004), if wt can be I(2), a unit
root test is applied to �2wt first. If the null hypothesis
is rejected, a unit root test is applied to �wt. If the null
hypothesis of unit root cannot be rejected in �wt, then
the time series wt is I(2); otherwise, considering wt as an
I(2) series is not a good choice, and we test I(1) against
I(0). In this last case, a unit root test is applied to wt.

4.1 Unit root test outcomes

The graphic of global temperature (Fig. 1) shows this
time series may be I(1). Therefore, the original series
yt is tested. The ADF test suggests that global tem-
perature is I(1). This result is also one of the principal
conclusions of recent researches (Kaufmann and Stern
1997; Kodra et al. 2011; Liu and Rodriguez 2005; Stern
and Kaufmann 1999). Then we conclude that yt has a
stochastic trend.

The time series TSIt and CRIt (Fig. 1) have a pe-
riodicity of 11 years approximately. This is confirmed
by means of a spectral analysis based on Bartlett es-
timator. The total solar irradiance and the cosmic ray
intensity are I(1), whereas the time series SAOTt is
stationary. The results are shown in Table 1. Thus, the
maximum order of integration between global temper-
ature and the single natural forcing is d = 1.

The plots of radiative forcings (Fig. 2) indicate
these time series may be I(2). Therefore, the second
difference is tested first. ADF test suggests radiative
forcings are I(2) (Table 1). Greenhouse gases have

Table 1 ADF test for global
temperature anomalies yt,
TSI, CRI, SAOT, carbon
dioxide RF ct, methane RF
mt, nitrous oxide RF nt, and
global RF gt

Time series ADF statistics ADF p∗ Critical value (5 %) Conclusion

yt −2.25 3 −3.45 I(1)

TSIt −2.17 8 −3.45 I(1)

CRIt −2.35 8 −3.45 I(1)

SAOTt −5.31 2 −2.89 I(0)

�2ct −9.07 5 −1.95 I(0)

�ct −0.35 6 −2.89 I(1)

�2mt −2.29 8 −1.95 I(0)

�mt −2.11 9 −2.89 I(1)

�2nt −9.39 6 −1.95 I(0)

�nt 0.40 7 −2.89 I(1)

�2gt −8.55 5 −1.95 I(0)

�gt −0.64 6 −2.89 I(1)
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Fig. 2 Plots of carbon dioxide radiative forcing (CO2 RF),
methane radiative forcing (CH4 RF), nitrous oxide radiative
forcing (N2O RF), and global radiative forcing (Global RF).
Units in watts per square meter

been found to have one unit root (Kaufmann and Stern
1997; Stern and Kaufmann 1999), then there is not a
clear drawing about the order of integration of these
series. Considering that yt is integrated of order one, we
have two possible combinations: yt ∼ I(1) and radiative
forcing I(1), and yt ∼ I(1) and radiative forcing I(2).
In the first case, the maximum order of integration
d is equal to 1; otherwise, d = 2. Which value of d
do we select to apply the methodology of Toda and
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Fig. 3 Graphs of the residuals û1t, û2t, û3t, and û4t. Units in
degrees Celsius

Table 2 ADF test for the residuals
{
ûit

}4
i=1

Time series ADF statistics Critical value (5 %) Conclusion

û1t −6.26 −3.42 I(0)

û2t −5.68 −3.42 I(0)

û3t −6.52 −3.42 I(0)

û4t −6.21 −3.42 I(0)

Yamamoto? We can perform this method considering
d = 1 and d = 2 as in Triacca (2005). We observe an
interesting notice. Let us consider the residuals of the
following regression models:

– yt = ϑ1 + φ1ct + u1t;
– yt = ϑ2 + φ2mt + u2t;
– yt = ϑ3 + φ3nt + u3t;
– yt = ϑ4 + φ4gt + u4t.

In Fig. 3, the plots of ûit are shown, for i = 1, 2, 3, 4.
Graphic analysis suggests these residuals are stationary.
Also, the ADF (Table 2), with p∗ = 0, recommends
uit ∼ I(0), i = 1, 2, 3, 4. As described in Hamilton
(1994), ADF test statistics is constructed as in Eq. 9
without constant and trend but the critical values are
different because the test is applied to the residuals ûit

from a spurious regression (Phillips and Ouliaris 1990).
Therefore, ûit is a stationary linear combination of yt

and radiative forcing, then these two series are of the
same order of integration. Observing the previous two
combinations, the only choice is that global tempera-
ture and the respective radiative forcing are I(1). In this
way, we have also found an important structure of our
series. In fact, global temperature and radiative forcing
are cointegrated (Engle and Granger 1987; Granger
1981), so there is a long-run equilibrium relationship
tying the individual series together. Therefore, the exis-
tence of a cointegrating relationship suggests that there
must be a Granger causality in at least one direction
(Granger 1988), but it does not indicate the direction of
temporal causality between the variables.

5 Granger causality results

In the previous section, we have analyzed the order
of integration of global temperature and forcings. We
have found that the maximum order of integration
is always equal to 1. Granger noncausality tests are
performed for k = 1, k = 2, and k = 3 in Eqs. 1 and
2. In this way, the models are parsimonious, and the
residuals are always uncorrelated. Therefore, the mean
of bootstrapped residuals is zero.

Here, Granger causality is studied between different
sets of two series. Of course, a multivariate approach
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Table 3 Results of causality
test (p values) from total
solar irradiance to global
temperature, with d = 1,
using Toda and Yamamoto
(TY) and bootstrap methods

a Significant at the 5 % level

Subperiod TY Bootstrap

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1950–2007 0.164 0.165 0.346 0.155 0.156 0.326
1940–2007 0.329 0.253 0.425 0.312 0.230 0.417
1930–2007 0.239 0.238 0.417 0.223 0.225 0.418
1920–2007 0.153 0.134 0.276 0.148 0.138 0.296
1910–2007 0.277 0.218 0.377 0.270 0.220 0.409
1900–2007 0.270 0.253 0.369 0.259 0.258 0.405
1890–2007 0.227 0.196 0.208 0.226 0.206 0.252
1880–2007 0.235 0.200 0.219 0.230 0.213 0.262
1870–2007 0.264 0.265 0.338 0.259 0.271 0.389
1860–2007 0.302 0.287 0.396 0.292 0.296 0.444
1850–2007 0.222 0.208 0.294 0.222 0.214 0.342

Table 4 Results of causality
test (p values) from cosmic
ray intensity to global
temperature, with d = 1,
using Toda and Yamamoto
(TY) and bootstrap methods

a Significant at the 5 % level

Subperiod TY Bootstrap

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1950–2007 0.741 0.655 0.745 0.734 0.645 0.741
1940–2007 0.661 0.502 0.546 0.663 0.481 0.535
1930–2007 0.389 0.398 0.494 0.377 0.391 0.496
1920–2007 0.368 0.342 0.464 0.361 0.329 0.460
1910–2007 0.454 0.418 0.591 0.447 0.411 0.597
1900–2007 0.387 0.12 0.333 0.372 0.212 0.350
1890–2007 0.236 0.102 0.155 0.227 0.105 0.170
1880–2007 0.251 0.066 0.103 0.255 0.069 0.120
1870–2007 0.332 0.056 0.124 0.331 0.058 0.145
1860–2007 0.368 0.042a 0.097 0.368 0.042a 0.113
1850–2007 0.269 0.026a 0.062 0.269 0.030a 0.081

Table 5 Results of causality
test (p values) from
stratospheric aerosol optical
thickness at 550 nm to global
temperature, with d = 1,
using Toda and Yamamoto
(TY) and bootstrap methods

a Significant at the 5 % level

Subperiod TY Bootstrap

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1950–2007 0.135 0.187 0.210 0.131 0.183 0.198
1940–2007 0.184 0.315 0.478 0.178 0.322 0.480
1930–2007 0.156 0.251 0.360 0.162 0.257 0.369
1920–2007 0.163 0.278 0.376 0.166 0.283 0.387
1910–2007 0.218 0.416 0.560 0.222 0.418 0.575
1900–2007 0.120 0.219 0.350 0.119 0.229 0.367
1890–2007 0.070 0.125 0.217 0.073 0.126 0.227
1880–2007 0.078 0.119 0.159 0.081 0.117 0.159
1870–2007 0.108 0.156 0.189 0.109 0.166 0.187
1860–2007 0.109 0.153 0.204 0.112 0.158 0.207
1850–2007 0.059 0.082 0.124 0.059 0.080 0.117

Table 6 Results of causality
test (p values) from CO2 RF
to global temperature, with
d = 1, using Toda and
Yamamoto (TY) and
bootstrap methods

a Significant at the 5 % level

Subperiod TY Bootstrap

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1950–2007 0.051 0.011a 0.012a 0.060 0.015a 0.018a

1940–2007 0.002a 0.005a 0.012a 0.005a 0.011a 0.028a

1930–2007 0.004a 0.008a 0.016a 0.006a 0.015a 0.034a

1920–2007 0.003a 0.007a 0.013a 0.005a 0.014a 0.022a

1910–2007 0.002a 0.009a 0.010a 0.003a 0.016a 0.019a

1900–2007 0.001a 0.007a 0.010a 0.001a 0.015a 0.022a

1890–2007 0.001a 0.005a 0.013a 0.001a 0.011a 0.020a

1880–2007 0.007a 0.018a 0.021a 0.012a 0.029a 0.033a

1870–2007 0.010a 0.015a 0.015a 0.017a 0.025a 0.022a

1860–2007 0.010a 0.016a 0.018a 0.015a 0.024a 0.028a

1850–2007 0.008a 0.014a 0.015a 0.012a 0.022a 0.024a
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Table 7 Results of causality
test (p values) from CH4 RF
to global temperature, with
d = 1, using Toda and
Yamamoto (TY) and
bootstrap methods

a Significant at the 5 % level

Subperiod TY Bootstrap

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1950–2007 0.000a 0.003a 0.042a 0.003a 0.019a 0.161
1940–2007 0.000a 0.003a 0.036a 0.002a 0.029a 0.155
1930–2007 0.000a 0.000a 0.006a 0.000a 0.006a 0.040a

1920–2007 0.000a 0.001a 0.009a 0.000a 0.009a 0.054
1910–2007 0.000a 0.007a 0.034a 0.003a 0.038a 0.117
1900–2007 0.001a 0.017a 0.078 0.007a 0.059 0.187
1890–2007 0.001a 0.012a 0.051 0.004a 0.043a 0.129
1880–2007 0.000a 0.007a 0.034a 0.002a 0.032a 0.094
1870–2007 0.000a 0.004a 0.026a 0.001a 0.017a 0.067
1860–2007 0.000a 0.001a 0.010a 0.001a 0.008a 0.036a

1850–2007 0.000a 0.001a 0.008a 0.000a 0.006a 0.029a

Table 8 Results of causality
test (p values) from N2O RF
to global temperature, with
d = 1, using Toda and
Yamamoto (TY) and
bootstrap methods

a Significant at the 5 % level

Subperiod TY Bootstrap

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1950–2007 0.620 0.634 0.079 0.643 0.677 0.121
1940–2007 0.473 0.672 0.060 0.497 0.710 0.096
1930–2007 0.399 0.634 0.048a 0.422 0.673 0.078
1920–2007 0.381 0.648 0.038a 0.399 0.678 0.062
1910–2007 0.376 0.595 0.035a 0.398 0.633 0.052
1900–2007 0.391 0.558 0.036a 0.407 0.588 0.052
1890–2007 0.356 0.537 0.031a 0.374 0.564 0.042a

1880–2007 0.333 0.498 0.032a 0.347 0.525 0.047a

1870–2007 0.299 0.495 0.048a 0.318 0.516 0.063
1860–2007 0.300 0.478 0.063 0.313 0.497 0.073
1850–2007 0.307 0.469 0.057 0.323 0.482 0.075

Table 9 Results of causality
test (p values) from global RF
to global temperature, with
d = 1, using Toda and
Yamamoto (TY) and
bootstrap methods

a Significant at the 5 % level

Subperiod TY Bootstrap

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1950–2007 0.014a 0.006a 0.011a 0.025a 0.014a 0.026a

1940–2007 0.001a 0.002a 0.007a 0.003a 0.007a 0.025a

1930–2007 0.001a 0.003a 0.010a 0.001a 0.009a 0.026a

1920–2007 0.001a 0.002a 0.008a 0.003a 0.007a 0.025a

1910–2007 0.001a 0.003a 0.007a 0.001a 0.009a 0.016a

1900–2007 0.000a 0.003a 0.005a 0.002a 0.008a 0.013a

1890–2007 0.000a 0.002a 0.006a 0.000a 0.006a 0.011a

1880–2007 0.002a 0.007a 0.011a 0.004a 0.012a 0.021a

1870–2007 0.001a 0.005a 0.007a 0.003a 0.009a 0.014a

1860–2007 0.001a 0.004a 0.007a 0.002a 0.008a 0.012a

1850–2007 0.001a 0.003a 0.005a 0.004a 0.004a 0.009a
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(Gelper and Croux 2007) using models of higher di-
mension, as VAR models, could be envisaged in order
to investigate the robustness of the bivariate results
(Triacca 1998, 2002).

5.1 Natural forcings effect

It is clear in our results that there is no Granger causal-
ity from every natural forcings to global temperature.
In fact, the null hypothesis of noncausality is never re-
jected exclusive of two cases for CRIt. These outcomes
are statistically robust because the p values of the Toda
and Yamamoto method are very similar to those of
bootstrap method (Tables 3, 4 and 5). Furthermore, we
have also analyzed the global effect of the natural forc-
ings on global temperature, considering the variable xt

in Eq. 1 as xt = (TSI, CRI, SAOT)t. Granger causality
is never found1 (with only one exception).

This evidence of Granger noncausality may depend
on either linear models selected or in-sample tests. But
Pasini et al. (2006), using neural network models, have
shown that natural forcings have a weak nonlinear ex-
planation on global temperature which does not permit
to overcome the linear performance. Furthermore, in
Attanasio et al. (2012), out-of-sample Granger causal-
ity is not found if natural forcings are used as regressors.
These results confirm the low linear (or nonlinear)
connection from natural forcings to global temperature.

5.2 Greenhouse gases effect

The results show that there is an evident Granger
causality from CO2 radiative forcing to global tempera-
ture (Table 6). In fact, using a 5 % significant level, we
cannot reject the null hypothesis of noncausality from
CO2 RF to global temperature just in the first subpe-
riod with k = 1. These outcomes are also confirmed by
the bootstrap method.

Granger causality from CH4 RF to global tempera-
ture is always detectable for k = 1 and k = 2 exclusive
of one subperiod for the bootstrap scheme (Table 7).
There are some differences for k = 3. In this case, the
null hypothesis of Granger noncausality is not rejected
in two subperiods employing standard Wald test and
in eight subperiods using bootstrap method. There-
fore, Granger causality of methane is less strong than
Granger causality of carbon dioxide.

Instead, there is no detectable Granger causality
from N2O radiative forcing to global temperature
(Table 8). The statistics is always insignificant for k = 1

1The results are available from the author upon request.

and k = 2, whereas we can often reject the null hypoth-
esis of noncausality for k = 3 by means of the Toda and
Yamamoto method. This does not mean that Granger
causality is not an appropriate method for studying the
causal relationship between these variables. In fact, this
weak Granger causality can depend on the possible
limitation of in-sample approach. In fact, a strong linear
out-of-sample Granger causality exists from N2O to
global temperature (Attanasio et al. 2012). In addition,
linear model cannot often catch the relationship in
the complex climate system because this relationship
may be nonlinear. Recent studies have shown that
anthropogenic variables have nonlinear connection
(Attanasio and Triacca 2011; Pasini et al. 2006). Hence,
we will consider other approaches or methods in future
investigations in order to understand better the role of
this greenhouse gas on temperature trend.

Global radiative forcing considers the global ra-
diative forcings of carbon dioxide, nitrous oxide, and
methane. It is interesting to understand the global
impact of these gases on temperature using Granger
causality. The outcomes show that there is a detectable
Granger causality. In fact, the null hypothesis of non-
causality is always rejected (Table 9), so a strong ev-
idence of linear causality of gt on yt appears over all
subperiods. It is an important outcome because it shows
that the global contribution of greenhouse gases has a
significant impact on the recent global warming.

6 Conclusion

In this paper, we have analyzed the interaction be-
tween external forcings and global temperature. The
results stress that natural forcings do not Granger-cause
global temperature. Among a number of man-made
greenhouse gases, CO2 has the greatest influence on
the global climate. Granger causality from methane
to global temperature is also evident, but it is less
strong. Granger causality from nitrous oxide to global
temperature is low because it depends on the model or-
der selected; otherwise, the combined radiative forcing
linearly Granger-cause global temperature. This impor-
tant result proves that anthropogenic influences have a
relevant role about the rise in global temperature.
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