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Abstract In this work, artificial neural networks (ANNs)
were developed and applied in order to forecast the discomfort
levels due to the combination of high temperature and air
humidity, during the hot season of the year, in eight different
regions within the Greater Athens area (GAA), Greece. For the
selection of the best type and architecture of ANNs-forecasting
models, the multiple criteria analysis (MCA) technique was
applied. Three different types of ANNs were developed and
tested with the MCA method. Concretely, the multilayer per-
ceptron, the generalized feed forward networks (GFFN), and
the time-lag recurrent networks were developed and tested.
Results showed that the best ANNs type performance was

achieved by using the GFFN model for the prediction of
discomfort levels due to high temperature and air humidity
within GAA. For the evaluation of the constructed ANNs,
appropriate statistical indices were used. The analysis proved
that the forecasting ability of the developed ANNs models is
very satisfactory at a significant statistical level of p<0.01.

1 Introduction

During the hot period of the year, the human body activates
defense mechanisms such as perspiration in order to maintain
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its temperature at normal bearable levels. The cooling system
of the human body may begin to fail in case of high levels of
temperature and humidity in the environment along with low
wind speed. This causes thermal discomfort, which, in ex-
treme cases, may lead to heat stroke. In general, when the
human body receives a higher heat load than what it can
remove into the environment, a sense of thermal discomfort
is established. In almost half of the different settings around
the world, the risk of mortality increased by between 1 and
3 % per 1 °C change in high temperature (Hajat and Kosatky
2010). Díaz et al. (2002) found that very hot weather is
associated with high mortality levels, especially regarding
persons over 65 years old. Muthers et al. (2010) compared
the heat-related mortality during the summer of the year 2003
with other years and analyzed whether 2003 summer was
exceptional in Vienna (Austria). Results showed that mortality
increases significantly with thermal stress, but this increase
attenuated in the last decades. Nastos and Matzarakis (2011)
investigated whether there is any association between the
daily mortality for the wider region of Athens, Greece and
the thermal conditions, for the 10-year period 1992–2001. The
findings extracted by the applied generalized linear models
showed that statistically significant relationships (p<0.01)
between air temperature, human thermal indices, and mortal-
ity exist on the same day. The feeling of thermal discomfort
due to high values of relative humidity and air temperature
varies from person to person, influenced by age, sex, weight,
used clothing, shading, existence of wind, activity, etc.
(Moustris et al. 2009). As high risk groups are considered
elderly people with serious health problems, infants, and
people working under conditions allowing for the onset of
heatstroke; namely, people working outdoors and under the
effect of strong solar radiation (Matzarakis et al. 1999; Becker
et al. 2003; Conti et al. 2005).

In the last decades, many various indices have been pro-
posed in order to calculate the human thermal perception levels,
such as the physiologically equivalent temperature (PET;
Matzarakis et al. 1999; Mayer and Höppe 1987; Höppe 1999;
Nastos and Matzarakis 2006, 2008a, b; Matzarakis and Nastos
2010) and the Universal Thermal Climate Index (Jendritzky et
al. 2002; Fiala et al. 2011). Additionally, more simplistic dis-
comfort indices had been proposed, such as the Cooling Power
index (Siple and Passel 1945; Besancenot 1978; Tzenkova et
al. 2003) and the Thom’s discomfort index (DI; Thom 1959).

It is of great consensus among the scientific community that
heat stress combined with air pollution, especially in urbanized
areas, affects human health and activities. Matzarakis and
Mayer (1991) studied the thermal and air quality components
of the urban climate in Athens, Greece during the summer heat
wave of year 1987. For this purpose, they calculated and
analyzed the predictive mean vote, PET as well as the Thom’s
DI, during year 1987 summer heat wave over Athens, Greece.

Nastos and Matzarakis (2008a, b) examined the effects of the
daily minimum air temperature (Tmin) and human biometeoro-
logical variables, as well as their day-to-day changes, on sleep
disturbances (SD) in the inhabitants of Athens, Greece. The
extracted results suggested that a considerable increase in SD
existed in 1994 compared to 1989. This was due to the many
consecutive days with heavy thermal load (PET>35 °C and
Tmin>23 °C) in 1994 compared to the lack of such days in
1989. Cohen et al. (2012) examined the daily and seasonal
climatic behavior of various urban parks with different vege-
tation cover and its impact on human thermal sensation in the
summer and winter in Tel Aviv, Israel. The results showed that
an urban park with a dense canopy of trees has maximum
cooling effect during summer and winter in daytime.

The use of artificial neural networks (ANNs) based on
predictive models to thermal control strategies produced in
many cases better results than mathematical and statistical
models. The thermal comfort conditions were improved and
there were in some cases significant energy savings (Moon
and Kim 2010).

Santamouris et al. (1999) developed an ANN in order to
model the heat island effect in the greater Athens urban area,
Greece. Mihalakakou et al. (2002) applied ANN to simulate the
heat island effect over Athens, Greece, using synoptic types as a
predictor. Kostopoulou et al. (2007) compared multilinear re-
gression analysis, canonical correlation analysis, and ANNs in
order to simulate the maximum and minimum temperature in
different seasons and areas over Greece. Chronopoulos et al.
(2008) developed an application of artificial neural network
models to estimate air temperature data in Greek areas with
sparse network of meteorological stations. Moustris et al.
(2009) developed ANNs in order to forecast 24 h in advance
the discomfort levels due to the combination of air temperature,
air humidity, andwind speed during the hot period of the year at
representative locations of Athens city, Greece. Moustris et al.
(2010a) applied ANNs to forecast the discomfort levels for the
next three consecutive days, as well as the number of consec-
utive discomfort hours during the day using air temperature, air
humidity, and wind speed in the greater Athens area, Greece.
Gobakis et al. (2011) developed a model for urban heat island
prediction using ANN techniques. Finally, Chronopoulos et al.
(2011) presented an ANN model-based approach to assess
bioclimatic conditions in remote mountainous areas, in the
mountainous area of Samaria Forest canyon, Greece, using a
relatively limited number of microclimatic data from easily
accessible meteorological stations.

The aim of this work is to investigate the ability of ANN
models to predict the comfort–discomfort levels within the
greater Athens area (GAA). For this reason, numerous ANN
models were developed, and the multiple criteria analysis
(MCA) technique was applied in order to choose the best
ANN architecture.
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2 Data and methodology

TheGAA is located in a small peninsula at the southeast part of
the mainland of Greece (Fig. 1). It covers an area of 450 km2

and is surrounded by mountains of moderate height (400–
1,500 m) at the east, west, and north sides while the sea
(Saronikos Gulf) lies at the south side. Small openings to the
north, northwest, and northeast, connect the GAA with the
Greek mainland (Paliatsos and Nastos 1999; Theoharatos et
al. 2010). During the last decades, the expansion of the city of
Athens established the so-called urban heat island (Philandras
et al. 1999), which acts synergistically with the incidence of
heat waves (Matzarakis and Nastos 2010), exacerbating the
thermal perception of the inhabitants. Therefore, higher ther-
mal conditions combined with the atmospheric pollution, has
an explicit effect on people’s health and the quality of living
(Moustris et al. 2010b). The issue of human thermal sensation
in various outdoor areas of a city has drawn rather limited
attention in the research field (McGregor et al. 2002; Spagnolo
and de Dear 2003; Moustris et al. 2009). Most of the comfort–
discomfort studies are conducted in indoor conditions such as
vehicles, offices, and residential buildings (Shimizu and Jindo
1995; Atthajariyakul and Leephakpreeda 2005; Moon et al.
2009).

In this work, for the investigation of comfort–discomfort
levels, the Thom’s DI was used (Thom 1959). This is due to
the fact that DI is a very simple discomfort index, as well as
the availability of meteorological data covering the exam-
ined area (air temperature and relative humidity) and their
low variability. The Thom’s DI refers to a human being
indoors in a state of relaxation without having any vigorous
physical activity and dressed in light clothing. In order to
calculate DI, values of air temperature and relative humidity
have to be used and this is the main reason why DI is one of
the most frequently used discomfort indices worldwide. For
these two meteorological parameters, there are available
measurements from many places all over the world covering
significant time series of data. The weaknesses of DI is that
it does not take into account many other parameters, which
have a great influence on the energy balance of the human
body such as the short and long wave radiation, wind speed,
metabolic rate, age and sex, activity of the person, etc.

The equation that is used for the calculation of the DI
(Giles et al. 1990; Tzenkova et al. 2003) is :

DI ¼ 0:4� T þ Twð Þ þ 4:8in�C

or

DI ¼ T � 055� 00055� RHð Þ � T � 14:5ð Þin�
C

where, T is the air temperature (degree Celcius), Tw is the wet
bulb temperature (degree Celcius), and RH is the relative
humidity of the air (percentage). This is an easily used and
calculable bioclimatic index. It can accurately describe only
the thermal comfort–discomfort during the hot period of the
year. The values of the DI and the sense of thermal comfort–
discomfort of the population are depicted in Table 1.

The meteorological variables which were used in this
work have been recorded by the Hydrological Observatory
of Athens, operated by the National Technical University of
Athens. It is an evolution from the hydro-meteorological
network METEONET of the Laboratory of Hydrology and
Water Resources Management of the National Technical
University of Athens (METEONET 2011). The meteorolog-
ical variables concern hourly values of air temperature

Fig. 1 The map of Greece and the GAA (upper panel), and the
location and the altitude of the hydrometeorological network stations
within the GAA (lower panel)

Table 1 Values of DI and the corresponding thermal sensation (Giles
et al. 1990)

DI (°C) Sense of thermal discomfort

DI<21 No discomfort

21≤DI<24 Under 50 % of the population feels discomfort

24≤DI<27 Over 50 % of the population feels discomfort

27≤DI<29 Most of population suffers discomfort

29≤DI<32 Everyone feels severe stress

DI≥32 State of medical emergency
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(degree Celcius) and relative humidity (percentage) and
cover the 5-year period 2006–2010.

These meteorological data were provided by eight fully
automatic telemetric hydrometeorological stations installed
within the GAA. Concretely, the eight regions are: Ano Lios-
sia, Galatsi, Ilioupoli, Mandra, Menidi, Penteli, Pikermi, and
Psittalia. These regions are depicted in Fig. 1 (lower panel).

Ιn order to predict the maximum daily value of the DI for
the next 3 days along with the number of consecutive hours
during the day where DI≥24οC (over 50 % of the population
feels discomfort due to hot) for each one of the eight examined
stations areas, numerous ANN models were created.

At first, the appropriate number of input variables that
were used for the training of the ANN models was defined.
The trial-and-error approach was used in order to decide for
the best ANNs architecture. The input parameters for the
ANN models training are depicted in Table 2.

Afterwards, the appropriate number of the previous days
that were used as input data to the ANN model was defined.
This was done by using the trial-and-error technique.Moustris
et al. (2010a) have used data of the six previous days to feed
an ANN model in a similar model. Therefore, this is the
number of days that this ANN model is initially tested. Add-
ing and removing days and comparing the results provide the
most accurate forecast. The results of these models are eval-
uated by the coefficient of determination. This statistical index
is selected because it is the most widely used in the literature to
evaluate similar models (Comrie 1997; Karul et al. 2000;
Antonic et al. 2001; Yang and Kim 2004; Jiang 2008; Tseliou
et al. 2010; Pelliccioni et al. 2010). Moreover, it is possible to
compare models by using this statistical index among models
that have the same or similar complexity (Dreyfus 2005). For
this reason, only one parameter changes when a model is
compared to another. This can be the number of neurons,
hidden layers, epochs, etc.

Finally, MCAwas used in order to select the most accurate
ANN models with the aid of the coefficient of determination

of each model. MCA is a useful tool for addressing some of
these challenges involved in the evaluation of models that
include many parameters. The ranking methodology was
used. It is a simple method that involves assigning each
decision element a rank that reflects its perceived degree of
importance relative to the decision being made. The decision
elements can then be ordered according to their rank (first,
second, etc.). Ranks are assigned according to the following
nine-point scale (Mendoza et al. 1999):

1 ➜ Weakly important
3 ➜ Less important
5 ➜ Moderately important
7 ➜ More important
9 ➜ Extremely important

The ranking is then multiplied by the coefficient of deter-
mination (R2) of each criterion, and the sum is the total score
of each model (MCA score). Each model has six criteria to be
evaluated. The first three are the value of the DI for the first,
second, and the third day. The other three are the number of
consecutive hours with high thermal discomfort levels during
the day for the first, second, and the third day. The ranking
given to these criteria is depicted in Table 3. The ranking was
selected according to the above nine-point scale.

The initial ANN model was a multilayer perceptron
(MLP) with one hidden unit consisting of 11 processing
elements (PEs). Both hidden and output layer use momen-
tum as learning rule with step size01.0, momentum00.7
and the activation function tanhaxon, which is given by the
equation (Bishop 1995):

tan hðxÞ¼ ex � e�x

ex þ e�x
ð2Þ

The number of epochs was set to 1,000, and the weights
updated to batch. The steps that are followed to construct the
final ANNs model are described below. It should be noted

Table 2 Input data for the ANN
models training Input data for training (input layer) Output data (output layer)

Station number (1–8); where 1, Ano Liossia; 2,
Galatsi; 3, Ilioupoli; 4, Mandra; 5, Menidi; 6,
Penteli; 7, Pikermi; 8, Psitalia

The maximum daily value of DI for each
one of the next 3 days

The number of the consecutive hours during the day
with high levels of thermal discomfort, thus
meaning when DI≥24 °C for each one of the
next 3 days

Month number (5, 6, 7, 8, and 9)

The maximum daily temperature for each one
of the six previous days

The number of the hours during the day
with high levels of thermal discomfort,
thus meaning when DI≥24 °C for each
one of the six previous days

The maximum daily value of relative humidity
for each one of the six previous days

The maximum daily value of DI for each one of
the six previous days
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that the models with the highest MCA score proceed to the
next step each time.

1. Selection of the input variables used for the training of
the ANN models. All and some of the variables are
tested as inputs.

2. Selection of the number of the previous days used for
input data. Six days are initially tested. Then, the num-
ber of days decreases until a lower MCA score is
achieved. Afterwards, the number of days increases
until a lower MCA score is achieved.

3. Selection of the number of hidden layers. One hidden
layer is initially tested and then one more unit is added
each time.

4. Selection of the number of epochs. One thousand
epochs are initially tested and then increase by 1,000
each time.

5. Selection of the number of the PEs in the hidden layers.
In this step, genetic algorithms (GA) are used in order to
define the optimum number of PEs because manually
testing would be much more time consuming (Ceravolo
et al. 2009).

6. Selection of the best type of neural networks. The MLP,
generalized feed forward networks (GFFN), and time-lag
recurrent networks (TLRN) type of neural networks were
tested.

The result of the above steps was the selection of the best
of the numerous ANNs developed models. These models
were trained with data concerning the period 2006–2009
and then were tested on the data of year 2010. It should be
noted that data of year 2010 are absolute unknown to the
trained ANN model.

The predictions of the ANN models were compared to the
real-observed ones and evaluated by using statistical methods
and indices (Ma and Iqbal 1983; Elbir 2003; Shahi et al. 2009;
Velten 2009). The accuracy of the models was evaluated by R2,
the Index of Agreement (IA), the mean bias error, the mean
absolute bias error, and the root mean square error. The predic-
tion of the exceedances (according to the DI thresholds), was
evaluated by the true predicted rate (TPR), false-positive rate,
false alarm rate, and success index (SI; Nunnari et al. 2004;
Papanastasiou et al. 2007).

3 Results and discussion

At first, the number of the inputs that were used for the
training of the ANN model was defined. The trial-and-error

approach was used. The initial input and output data are
those presented in Table 2.

The initial ANN model 1 was a MLP with one hidden
layer consisting of 11 PEs or artificial neurons. The 20 %
of the training data were used for the cross-validation
method (Moustris et al. 2010a). Both hidden and output
layer use the momentum as learning rule with step size0
1.0, momentum00.7, and the activation function is the
tanhaxon. The number of epochs was set to 1,000 and
the weight updated to batch. Data from the five previous
days were used to train the network and produced results.
In ANN model 1, all the input parameters have been used
to train the network while in the ANN model 2, the
station’s number and the month’s number have not been
used (Table 2). The accuracy of each model was
expressed by the R2 and the results are depicted in Table 4.
ANN model 2 achieves a higher MCA score and clearly
outperforms the ANN model 1. Therefore, the input
parameters station number and month number were not
being used as input parameters.

Then, the number of the previous days that were used as
input data to the ANN model was tested. The structure of
ANN model 2 was used. The trial-and-error technique was
applied. By adding one extra day each time to the training
data of the ANN model, it is possible to find the number of
days where the MCA score is maximized.

The following models were tested:

& ANN model 2 (data from five previous days)
& ANN model 3 (data from six previous days)
& ANN model 4 (data from seven previous days)

The results are presented in Table 4. The ANN model 3
achieves the maximum MCA score; therefore, data from the
six previous days were used in order to train the ANN
model. The next step was to define the number of the hidden
layers. The number of hidden layers is increased until the
MCA score begins to fall. This is the criterion for selecting
the number of hidden units. Two ANN models were tested:

& ANN model 3 (one hidden layer)
& ANN model 5 (two hidden layers)

The results are depicted in Table 4. The ANN model 3
achieves higher MCA score. Therefore, one hidden layer
was used for the appropriate structure of the ANN model.
This option is in agreement το the literature. The ANNs
with one hidden layer seem to be more reliable forecasting
models than those with two or more hidden layers.

Table 3 MCA ranking to the
ANN models forecasting
parameters.

1st day (DI) 1st day (hours) 2nd day (DI) 2nd day (hours) 3rd day (DI) 3rd day (hours)

9 9 7 7 5 5
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Then, using the structure of the ANN model 3 the number
of epochs was defined. The following models were developed
and tested:

& ANN model 3 (1,000 epochs)
& ANN model 6 (2,000 epochs)
& ANN model 7 (3,000 epochs)

The results are depicted in Table 4. The ANN model 6
achieves the highest MCA score. However, ANN model
3 is very close to it. Therefore, further testing of these
two models was necessary in order to define the more
accurate.

In order to find the optimal number of PEs in the hidden
layer, GA was used. These algorithms test all the possible
scenarios and select the number of PEs that provides the best
accuracy. Two models are tested:

& ANN model 8. The same as ANN model 3 but uses GA
to identify the number of PEs.

& ANN model 9. The same as ANN model 6 but uses GA
to identify the number of PEs.

The results are presented in Table 4. ANN model 8 out-
performs ANN model 9 and also ANNs models 3, 6 and 7
(Table 4). It is therefore selected as the model that will

further proceed. Finally, two more ANN models were cre-
ated to find the best type of ANN model:

& ANN model 10. It has exactly the same structure as
ANN model 8 but the type of neural network selected
was the GFFN.

& ANN model 11. It has exactly the same structure as
ANN model 8 but the type of neural networks selected
was the TLRN. Moreover, the type of this network
includes short-term memory structures which have the
following characteristics:

– Memory: Focused
– Activation function: Lagguare Axon
– Sample depth: 1
– Trajectory length: 30

The results are presented in Table 4. The best perfor-
mance was achieved by ANN model 10. This is the final
model which was selected and was further analyzed. In
order to summarize, the structure of the ANN model 10 that
was finally selected is presented below:

& Type of neural networks: Generalized feed forward neu-
ral networks.

& Input parameters: All except the station number and the
month number. Detailed description of the parameters is
in Table 3.

Table 4 Coefficient of determination (R2) and MCA score for different input data

ANN model 1st day DI 1st day (hours) 2nd day (DI) 2nd day (hours) 3rd day (DI) 3rd day (hours) MCA score

1 0.800 0.805 0.630 0.658 0.501 0.511 28.521

2 0.804 0.815 0.638 0.664 0.495 0.532 28.813

2 0.804 0.815 0.638 0.664 0.495 0.532 28.813

3 0.984 0.990 0.807 0.802 0.598 0.632 35.181

4 0.960 0.940 0.789 0.750 0.607 0.537 33.586

3 0.984 0.990 0.807 0.802 0.598 0.632 35.181

5 0.929 0.982 0.791 0.807 0.611 0.636 34.622

3 0.984 0.990 0.807 0.802 0.598 0.632 35.181

6 0.978 0.991 0.811 0.813 0.606 0.613 35.183

7 0.977 0.992 0.780 0.806 0.565 0.611 34.704

8 0.986 0.992 0.805 0.810 0.615 0.613 35.244

9 0.982 0.994 0.781 0.789 0.574 0.560 34.438

8 0.986 0.992 0.805 0.810 0.615 0.613 35.244

10 0.987 0.989 0.807 0.816 0.616 0.632 35.380

11 0.974 0.987 0.801 0.818 0.620 0.644 35.297

Bold numbers are statistically significant at 99% confidence level

334 P.A. Vouterakos et al.



& Input data of the six previous days.
& Cross-validation: 20 % of training data.
& One hidden layer.

– Number of PEs: 6 (As was defined by the use of genetic
algorithms)

– Activation function: Tanhaxon
– Learning rule: Momentum
– Step size: 0.1
– Momentum: 0.7

& Output layer

– Number of PEs: 6
– Activation function: Tanhaxon
– Learning rule: Momentum
– Step size: 0.1
– Momentum: 0.7

& Maximum epochs: 1,000.
& Weight update: Batch

A detailed analysis of the developed ANN model is
presented by using various statistical indices. The accuracy
of the created ANN model as well as the ability to predict
the exceedances was evaluated.

As concerns the daily DI values, an excess day is when
the daily value of DI is greater or equal to 24 °C (over 50 %
of the population feels discomfort due to hot). As concerns
the consecutive hours with DI≥24 °C, an excess day is

when the number of consecutive hours is greater or equal
to 12 (at least the half of the day). Tables 5, 6, and 7 present
the performance of the developed ANN forecasting model
for a 24, 48, and 72-h prediction ahead, respectively.

According to Table 5, the predictive ability of the con-
structed ANN model 10 is very high. The values of the
coefficient of determination, concerning the prediction of
the next-day maximum daily value of DI, are ranging be-
tween 0.991 and 0.981. The same conclusion is clear based
on the ΙΑ. The values of the IA are ranging between 0.993
and 0.997, showing a very high predictive ability. Similar
conclusions are obtained for the predictive ability of the
ANN model 10 in terms of the number of hours with strong
thermal discomfort levels during the next 24 h.

Analogous results and conclusions obtained for the pre-
diction of the exceedances, i.e., the days with DI≥24 °C as
well as the days with more than 12 consecutive hours with
strong thermal discomfort levels, for the next day. The SI
values are ranging between 98.0 and 99.4 % in terms of
whether or not the next day is an exceedance day, showing a
very good predictive ability.

According to Table 6, the prediction ability of ANN
model 10, 2 days ahead, seems also to be very high. The
values of the coefficient of determination, concerning the
prediction of the maximum daily value of DI 2 days ahead,
are ranging between 0.680 and 0.837. The same conclusion
is clear based on the ΙΑ. The values of the IA are ranging
between 0.902 and 0.948, showing a very high predictive

Table 5 Statistical analysis of
ANN model 10; 24-h prediction
ahead, year 2010

MBE mean bias error, MABE
mean absolute bias error, RMSE
root mean square error, FPR
false-positive rate, FAR false
alarm rate, SI success index
aIn degree Celcius
bIn hours

24-h Prediction of DI values

Accuracy of the ANN model 10 Prediction of the exceedances

R2 MBE MABE RMSE IA TPR (%) FPR (%) FAR (%) SI (%)

LIO 0.991 0.0a 0.2a 0.0a 0.997 98.8 0.0 0.0 99.4

GAL 0.986 0.0a 0.2a 0.1a 0.996 97.8 1.6 1.1 98.0

ILI 0.988 0.0a 0.2a 0.1a 0.996 98.9 0.0 0.0 99.4

MAN 0.990 0.0a 0.2a 0.0a 0.997 97.4 1.3 1.3 98.0

MEN 0.981 0.0a 0.3a 0.1a 0.993 97.6 1.4 1.2 98.0

PEN 0.988 0.0a 0.2a 0.0a 0.997 97.8 0.0 0.0 99.4

PIK 0.990 0.1a 0.2a 0.0a 0.997 95.6 0.0 0.0 98.0

PSI 0.981 −0.1a 0.3a 0.1a 0.993 97.9 2.0 1.1 98.0

24-h Prediction of the number of consecutive hours with DI≥24 °C

LIO 0.989 0b 1b 0b 0.997 93.0 0.9 2.4 97.4

GAL 0.989 0b 1b 0b 0.997 94.2 0.0 0.0 98.0

ILI 0.991 0b 0b 0b 0.997 100.0 0.0 0.0 100.0

MAN 0.987 0b 1b 0b 0.997 90.9 0.0 0.0 98.0

MEN 0.988 0b 1b 0b 0.997 83.7 0.0 0.0 95.4

PEN 0.969 0b 0b 0b 0.991 – 0.7 100.0 99.4

PIK 0.988 0b 1b 0b 0.996 91.7 0.0 0.0 99.4

PSI 0.990 0b 1b 0b 0.997 98.1 1.1 1.9 98.6
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ability. Similar conclusions are obtained for the predictive
ability of the ANN model 10 in terms of the number of
hours with strong thermal discomfort levels during the day
and for 2 days ahead.

Analogous results and conclusions obtained for the predic-
tion of the exceedances, i.e., the days with DI≥24 °C as well
as the days with more than 12 consecutive hours with strong
thermal discomfort levels, 2 days ahead. The SI values are

Table 6 Statistical analysis of
ANN model 10; 48-h prediction
ahead, year 2010

aIn degree Celcius
bIn hours

48-h Prediction of DI values

Accuracy of the ANN model 10 Prediction of the exceedances

R2 MBE MABE RMSE IA TPR (%) FPR (%) FAR (%) SI (%)

LIO 0.832 −0.1a 0.9a 0.7a 0.948 89.4 16.2 12.6 86.9

GAL 0.818 −0.1a 0.9a 0.7a 0.944 89.7 14.1 10.3 88.1

ILI 0.837 −0.2a 0.9a 0.7a 0.947 88.8 12.5 9.2 88.2

MAN 0.795 0.0a 0.9a 0.8a 0.937 92.2 10.5 10.1 90.9

MEN 0.812 0.0a 1.0a 1.1a 0.934 90.4 12.9 10.7 88.9

PEN 0.680 0.0a 1.3a 1.3a 0.902 75.6 8.3 20.9 86.9

PIK 0.817 0.4a 0.7a 0.6a 0.937 88.2 12.9 15.5 87.6

PSI 0.795 −0.6a 1.1a 0.8a 0.926 87.6 12.2 6.6 87.7

48-h Prediction of the number of consecutive hours with DI≥24 °C

LIO 0.822 0b 2b 4b 0.946 72.1 2.6 8.8 90.5

GAL 0.776 0b 1b 3b 0.929 73.1 2.0 5.0 89.5

ILI 0.833 0b 1b 1b 0.949 66.7 2.9 8.6 87.6

MAN 0.832 0b 2b 3b 0.950 63.6 2.5 12.5 90.2

MEN 0.818 0b 2b 4b 0.946 65.1 0.9 3.5 89.5

PEN 0.568 0b 1b 2b 0.863 – 0.7 100.0 99.4

PIK 0.774 0b 0b 0b 0.929 50.0 0.7 14.3 95.4

PSI 0.806 −1b 3b 8b 0.935 78.9 5.3 10.9 89.0

Table 7 Statistical analysis of
ANN model 10; 72-h prediction
ahead, year 2010

aIn degree Celcius
bIn hours

72-h Prediction of DI values

Accuracy of the ANN model 10 Prediction of the exceedances

R2 MBE MABE RMSE IA TPR (%) FPR (%) FAR (%) SI (%)

LIO 0.638 −0.1a 1.4a 1.5a 0.866 80.0 26.5 20.9 77.1

GAL 0.588 −0.2a 1.5a 1.6a 0.845 76.4 26.6 20.0 75.2

ILI 0.687 −0.2a 1.4a 1.4a 0.879 82.0 21.9 16.1 80.4

MAN 0.588 0.0a 1.4a 1.6a 0.846 86.3 19.7 19.2 83.2

MEN 0.645 0.0a 1.6a 2.2a 0.854 80.7 21.4 18.3 79.7

PEN 0.423 0.1a 1.7a 2.4a 0.785 51.1 11.1 34.3 77.8

PIK 0.614 0.6a 1.1a 1.3a 0.839 88.2 22.4 24.1 82.4

PSI 0.610 −0.8a 1.5a 1.5a 0.837 78.4 20.4 11.6 78.8

72-h prediction of the number of consecutive hours where DI≥24 °C

LIO 0.627 −1 3 9 0.863 44.2 2.7 13.6 82.7

GAL 0.588 −1 4 12 0.840 48.1 4.0 13.8 79.7

ILI 0.651 −1 3 9 0.872 52.1 3.8 13.8 82.4

MAN 0.597 0 3 7 0.860 30.3 2.5 23.1 83.0

MEN 0.619 0 3 8 0.868 37.2 1.8 11.1 81.1

PEN 0.384 0 2 4 0.782 – 0.7 100.0 99.4

PIK 0.532 1 3 6 0.828 16.7 2.1 60.0 91.5

PSI 0.631 −1 4 14 0.857 59.6 9.6 22.5 79.5
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Fig. 2 Observed (blue line) vs. predicted (red line) maximum daily DI values using the ANN forecasting model 10 during the warm period of the
year; 24 h prediction ahead, year 2010
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Fig. 3 Observed (blue line) vs. predicted (red line) maximum daily DI values using the ANN forecasting model 10 during the warm period of the
year; 48 h prediction ahead, year 2010
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Fig. 4 Observed (blue line) vs. predicted (red line) daily DI values using the ANN forecasting model 10 during the warm period of the year; 72 h
prediction ahead, year 2010
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ranging between 86.9 and 90.9 % in terms of whether or not
the next day is an exceedance day, showing a very good
predictive ability.

According to Table 7, the prediction ability of ANN model
10, 3 days ahead, seems also to be enough satisfactory. The
values of the coefficient of determination, concerning the
prediction of the maximum daily value of DI 2 days ahead,
are ranging between 0.423 and 0.687. The same conclusion is
clear based on the ΙΑ. The values of the IA are ranging
between 0.785 and 0.879, showing a very high predictive
ability. Similar conclusions are obtained for the predictive
ability of the ANN model 10 in terms of the number of hours
with strong thermal discomfort levels during the day and for
2 days ahead.

Analogous results and conclusions obtained for the pre-
diction of the exceedances, i.e., the days with DI≥24 °C as
well as the days with more than 12 consecutive hours with
strong thermal discomfort levels, 2 days ahead. The SI
values are ranging between 75.2and 83.2 % in terms of
whether or not the next day is an exceedance day, showing
a very good predictive ability.

The observed vs. the predicted values of the DI are depicted
in Figs. 2, 3, and 4 for the 24, 48, and 72-h prediction ahead
correspondingly. In each figure, the eight regions of the GAA
are displayed separately. Figure 5 presents the differences
between the predicted and observed values of DI for the best
and the worst prediction respectively. In order to provide
quantitative relations, the differences between the predicted
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Fig. 5 Differences between predicted and observed values of DI for the best (left panel) and the worst (right panel) prediction; 24 h ahead
prediction (a), 48 h ahead prediction (b) and 72 h ahead prediction (c), year 2010
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and observed values of DI were calculated, for the best and the
worst prediction respectively, by means of the coefficient of
determination and the index of agreement for the forecasting
cases of 24, 48, and 72 h ahead

In the case of 24-h prediction ahead (Fig. 5a), the best
prediction concerns the station Ano Liosia. The differences
(predicted–observed values) range from −1.7 to +2.0 °C. The
worst prediction concerns the station Menidi. The differences
(predicted–observed values) range from −1.4 to +5.2 °C. In
both cases, it seems that the highest differences between the
predicted and the observed values are presented during the last
10 days of September. This may be due to the fact that during
the last 10 days of September, the weather is, in general,
changeable since autumn season begins.

In the case of 48-h prediction ahead (Fig. 5b), the best
prediction concerns the station Ilioupoli. The differences (pre-
dicted–observed values) range from −2.5 to +5.6 °C. The
worst prediction concerns the station Penteli. The differences
(predicted–observed values) range from −3.4 to +5.2 °C.

Finally, in the case of 72-h prediction ahead (Fig. 5c), the
best prediction concerns the station Ilioupoli. The differences
(predicted–observed values) range from −3.1 to +6.4 °C. The
worst prediction concerns the station Penteli. The differences
(predicted–observed values) range from −3.7 to +5.6 °C.

4 Conclusions

The aim of this work was the prediction of the discomfort
levels due to the combination of high temperature and air
humidity during the hot period of the year for eight different
regions within the greater Athens area. For this purpose,
numerous artificial neural networks were developed and
applied as forecasting models. For the choice of the best
ANN model architecture, the technique of multiple criteria
analysis was applied.

The analysis showed that the best type of ANN models
for the discomfort levels prediction was the generalized feed
forward neural networks. The prediction of the discomfort
levels was done using an appropriate and simplistic index
known as the Thom’s discomfort index.

The developed artificial neural network that was used for
the prediction of Thom’s discomfort index daily value,
performed very well for 3-day predictions ahead. More
specifically, the accuracy of the created forecasting model
for the first (0.98<R2<0.99, IA>0.99), second (0.68<R2<
0.84, IA>0.90), and the third day (0.42<R2<0.69, IA>
0.79) was quite satisfactory. The predictions of the exceed-
ances, in other words the days where at least 50 % of the
population feel discomfort due to hot according to DI value,
for the first (TPR>95%, SI>97%), second (TPR>75%, SI>
86 %), and the third day (TPR>51 %, SI>75 %) are very
satisfactory.

It appears that the ANN models have the ability to predict
the DI levels within an urban environment as well as the
days exceeding hazardous levels of discomfort. The results
of this study may be useful in many human activities such as
the better distribution and savings of the electric energy in
the GΑΑ according to the public needs, the protection of
public health, knowing in advance the hazardous levels of
the discomfort in different regions of the GΑΑ, and a better
and more efficient operation of the government, the hospi-
tals, the transportations, etc. A future work of the authors
will be the application of ANN models to predict more
complex thermal indices such as PET or UTCI.
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