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Abstract This study employed two artificial neural network
(ANN) models, including multi-layer perceptron (MLP) and
radial basis function (RBF), as data-driven methods of hourly
air temperature at three meteorological stations in Fars
province, Iran. MLP was optimized using the Levenberg–
Marquardt (MLP_LM) training algorithm with a tangent sig-
moid transfer function. Both time series (TS) and randomized
(RZ) data were used for training and testing of ANNs. Daily
maximum and minimum air temperatures (MM) and anteced-
ent daily maximum and minimum air temperatures (AMM)
constituted the input for ANNs. The ANN models were

evaluated using the root mean square error (RMSE), the
coefficient of determination (R2) and the mean absolute error.
The use of AMM led to a more accurate estimation of hourly
temperature compared with the use of MM. The MLP-ANN
seemed to have a higher estimation efficiency than the RBF
ANN. Furthermore, the ANN testing using randomized data
showedmore accurate estimation. The RMSE values for MLP
with RZ data using daily maximum and minimum air temper-
atures for testing phase were equal to 1.2°C, 1.8°C, and 1.7°C,
respectively, at Arsanjan, Bajgah, and Kooshkak stations. The
results of this study showed that hourly air temperature driven
using ANNs (proposed models) had less error than the
empirical equation.

1 Introduction

Air temperature is one of the most important meteorological
elements influencing hydrologic phenomena. The hourly
data of air temperature are required in some environmental
and agricultural sections such as in crop growth models, for
simulation of crop photosynthesis, soil N transformation,
root growth, and hourly crop evapotranspiration estimation.
In addition, the prediction of hourly air temperature is need-
ed in soil science, for simulation of soil temperature at
different soil layer. In fact, instantaneous air temperature
affects the flux of heat into and out of the soil and the
vertical flux of sensible heat from the earth (Rosenberg
et al. 1983; Zand-Parsa et al. 2006; Saito et al. 2006;
Majnooni-Heris et al. 2011).

In developing countries, the data records in meteorolog-
ical stations cover only the values of daily maximum and
minimum air temperatures, and the hourly air temperatures
are measured rarely. To equip the meteorology stations to
measure hourly data is essentially expensive in the
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mentioned countries. Under these situations, the use of daily
air temperature to indirectly estimate hourly air temperature
offers an easy and very reliable alternative. One of the
alternative approaches, which has captured researchers at-
tention in the past decades, is the artificial neural network
(ANN) applied in various fields of water resources and
hydrology (Kisi 2007; Rezaeian Zadeh et al. 2010; Marofi
et al. 2011; Hosseinzadeh Talaee et al. 2011; Tabari et al.
2010a, b, 2011).

The background of applying ANN to hydrologic processes,
especially rainfall-runoff simulation goes back to the 1990s
(e.g., Halff et al. 1993; Hjemfelt and Wang 1993; Karunanithi
et al. 1994; Hsu et al. 1995; Smith and Eli 1995; Minns
and Hall 1996). Preliminary concepts and hydrologic applica-
tions of ANNs have been detailed by ASCE (2000a, b) and
Govindaraju and Rao (2000).

The application of ANN in the prediction of time-
dependant temperatures is less frequent than in other areas
of knowledge. Some investigations were conducted for the
prediction of daily, half-daily, or maximum air temperatures
(e.g., Smith et al. 2006; Moon et al. 2009). Tasadduq et al.
(2002) used ANNs for the prediction of hourly mean values
of ambient temperature 24 h in advance. The results of their
study showed that the ANN can be a valuable tool for hourly
temperature prediction in particular, and other meteorologi-
cal predictions in general. It must be noted that they used
just one temperature value as input to the ANNs in their
investigations. Abdel-Aal (2004) applied 24-hourly temper-
atures from previous day as input to the ANNs for forecast-
ing the 24-hourly temperatures of the next day. The ANNs
performances were significantly superior to naive forecasts
based on persistence and climatology. In another recent
study, Dombayci and Gölcü (2009) developed an ANN
model to predict daily mean ambient temperatures in Denizli,
south-western Turkey. They employed monthly and daily
temperatures and also the mean temperature value of the
previous day as input data for the ANN. Their results showed
that the ANN approach is a reliable model for daily mean
ambient temperature prediction.

Daily minimum and maximum air temperatures are com-
monly measured at Iranian weather stations, but hourly air
temperature has been measured in electronic forms by auto-
matic weather stations since 2000 only, so we could not access
the hourly values for previous years. In addition, in some
periods, the data obtained are corrupted and unusable. Hence,
we can derive the lost data by using the ANNs models.

To the best knowledge of authors, there is no study to
implement daily min/max values of air temperature and also
antecedent daily min/max ones as input to the ANNs for
hourly air temperature driven. Also, application of radial
basis function (RBF) networks with these inputs may result
in a constructive assessment of ANNs in data-driven issues
(here, hourly air temperature).

To that end, issues such as choice of transfer function,
learning algorithm, and network type and finding optimal
network structure, need careful consideration. Transfer func-
tions that are most commonly employed in multi-layer per-
ceptrons (MLPs) are sigmoidal-type functions such as the
logistic and hyperbolic tangent functions (Maier and Dandy
2000). The objective of this study is to evaluate the appli-
cability and capabilities of ANN models and empirical
equations for the prediction of hourly air temperature using
data from Fars province, Iran. Hence, two ANN models:
MLP and RBF and one empirical method were used and
their performances were compared.

2 Materials and methods

2.1 Multi-layer perceptron

MLP is perhaps the most popular ANN architecture (Dawson
and Wilby 1998). It is a network formed by simple neurons
called perceptron. The perceptron computes a single output
from multiple real-valued inputs by forming a linear combi-
nation according to input weights and then possibly subjecting
the output to some nonlinear transfer function (see Fig. 1).

Mathematically this can be represented as:

y ¼ f ð
Xn

i¼1

wipi þ bÞ ð1Þ

where, wi represents the weight vector, pi is the input vector
(i01, 2..n), b is the bias, f is the transfer function, and y is
the output. The transfer function used in this study was the
tangent sigmoid function defined for any variable s as:

f ðsÞ ¼ 2
ð1þe�2sÞ � 1 ð2Þ

MLP is usually trained using the back error propagation
algorithm. This popular algorithm works by iteratively
changing a network's interconnecting weights such that the
overall error (i.e., between observed values and predicted
outputs by ANNs) is minimized (Sudheer et al. 2002).

2.2 Neural networks training algorithm

In this study, the Levenberg–Marquardt MLP training algo-
rithm was used (More 1977). The Levenberg–Marquardt
algorithm approaches a second-order training speed without
having to compute the Hessian matrix. This algorithm pro-
duced better results for the application under consideration.
The objective of the training is to minimize the global error
E defined as:

E ¼ 1
p

Xp

p¼1

Ep ð3Þ
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where p is the total number of training patterns, and EP is the
error for training pattern p. EP was calculated as:

Ep ¼ 1
2

Xn

k¼1

ðok � tkÞ2 ð4Þ

where n is the total number of output nodes, ok is the
network output at the kth output node, and tk is the target
output at the kth output node (Kisi 2007). In the training
algorithm, an attempt was made to reduce this global error
by adjusting weights and biases.

2.3 Radial basis function

The RBF ANN model, developed by Powell (1987) and
Broomhead and Lowe (1988), consists of an input layer, a
single hidden layer, and an output layer. Figure 2 shows a
typical RBF model. The number of input and output nodes
is similar to the MLP neural networks, determined by the
nature of actual input and output variables. However, RBF
networks tend to learn much faster than a MLP. The output
of RBF was calculated as:

Y ¼
Xp

p¼1

WPθ X � Xp

����� � ð5Þ

where X is the input value, Y is the output value, θ( ) is the
radial basis function, W is the weight connecting the hidden
and output nodes, XP represents the center of each hidden

node (depends on the observed input data), and X � Xp

���� is

the Euclidean distance between input and hidden nodes.
Each hidden node represents a group of input nodes that

have similar information from the input data. The transfor-
mation associated with each node of the hidden layer is a
Gaussian function (Sudheer et al. 2002).

2.4 Development of ANN models

In general, the development of ANN models involves four
stages: architectural design, training, testing, and optimiza-
tion. The network architectural design refers to assigning a
number of processing elements (neurons) that perform calcu-
lations and the number of layers that contain these neurons.
Training is the stage at which data records are introduced to a
preconfigured network to discern relationships between input
and output variables. During this stage, data are selected and
entered into the network. Furthermore, weights are constantly
adjusted for the network outputs to match observed values and
minimize errors. This process is repeated until the network
output has converged and the global error has hopefully
reached its minimum. When convergence is achieved, further
training is stopped, weights are fixed, and the network is said
to be trained. During the testing phase, the trained network is
tested using another data that has not been used for training.
Optimization involves adjusting the number of neurons, trans-
fer functions, and their coefficients and fine-tuning other
parameters for optimum network performance (Weiss and
Kulikowski 1991).

2.5 Analytical method

Hourly air temperature was estimated by empirical func-
tions, such as linear, exponential, or sinusoidal using daily
maximum and minimum air temperatures (Baskerville and
Emin 1969; Allen 1976; Ephrath et al. 1996; Saito et al.
2006). Saito et al. (2006), Zand-Parsa et al. (2006), and
Majnooni-Heris et al. (2011) estimated the instantaneous
air temperature using the proposed equation of Kirkham
and Powers (1972) as follows:

T ¼ T þ AT cosð2p t � 13

24
Þ ð6Þ

Fig. 1 Schematic of a typical
MLP

Fig. 2 Schematic of a typical RBF
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where T and T are instantaneous and average daily temper-
atures (degrees Celsius), respectively, AT is the amplitude of
air temperature (the half of difference between maximum
and minimum of air temperature, degrees Celsius), and t is
local time within the day. In Eq. 6, the cosine function is
maximum (+1) at 1300 hours and minimum (−1) at
0100 hours and the values of T become maximum and
minimum at these times, respectively. In this study, Eq. 6
was also used for predicting hourly air temperature.

3 Dataset and methodology

Daily maximum and minimum air temperature and hourly air
temperature datasets were obtained from Arsanjan synoptic
station (53°16′36″ E, 29°56′36″ N) and Bajgah (52°37′00″ E,
29°44′00″ N) and Kooshkak (52°36′00″ E, 30°06′00″ N)
climatology stations located in Fars province in southwest
Iran (Fig. 3). The air temperature data from all stations were
for the year 2007. Climate of Bajgah is semi-arid with warm
summers and most of the rains occur in the winter months
(Sepaskhah and Andam 2001). Kooshkak has the same cli-
mate as Bajgah (semi-arid). Also, the Arsanjan was classified
in arid and semi-arid regions and the mean annual precipita-
tion, evaporation, and temperature are 323.8 mm, 989.1 mm,
and 18.2°C, respectively (Emadi et al. 2010).

As many as 255 daily maximum and minimum air tem-
perature values and 6,120 hourly air temperature values
were used for training phase (70% of data) and 110 daily
maximum and minimum temperature values and 2,640
hourly air temperature values were used for testing phase
(30% of data).

As mentioned earlier, the MLP and RBF networks were
implemented to predict hourly air temperature. The training
of MLP was done using the Levenberg–Marquardt (MLP-
LM) algorithm. In addition, the tangent sigmoid transfer
function was used for hidden layer and the linear function
for output layer, respectively. In this study, two methods
were used for the use of data for the training and testing of
the networks. In the first method, time series (TS) data
without randomization were used and in the second method
randomized (RZ) data were used. According to the above-
mentioned methods, four input vectors are employed for the
MLP and RBF networks, where the first two models are
based on the TS data sets and the rest are based on RZ data
sets. Table 1 summarizes the combination of input data used in
simulations. Targets (outputs) of the networks were 24-h time
series of air temperature in a day.

Because of the use of sigmoid functions in the ANN
model, the hydrologic data must be normalized onto the
range [0, 1] before applying the ANN methodology. It was
found to be useful to normalize the time series to the range

Fig. 3 The location of selected stations in Fars province, Iran

Table 1 Combinations of MLPs and RBFs for hourly air temperature
driven

Type of data Model Input combinations

Time series
data

Model 1 Tmin(t), Tmax(t)

Model 2 Tmin(t), Tmax(t), Tmin(t−1), Tmax(t−1),
Randomized
data

Model 1 Tmin(t), Tmax(t)

Model 2 Tmin(t), Tmax(t), Tmin(t−1), Tmax(t−1)

Tmax maximum air temperature, Tmin minimum air temperature, t time
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[0.05, 0.95] to avoid the problem of output signal saturation
that can sometimes be encountered in ANN applications
(Smith 1993). Thus, before applying ANNs, all data were
normalized and to that end they were transformed into the
range of [0.05, 0.95] as:

Xn ¼ 0:05þ 0:9 Xr�Xmin
Xmax�Xmin

ð7Þ

where Xn and Xr are the normalized input and the original
input; and Xmin and Xmax are the minimum and maximum of
input ranges, respectively.

Normalized data were used to train both MLP and RBF
ANN models. Program codes, including Neural Network
Toolbox, were written in the MATLAB language for the
ANN simulation. The randomization of data was performed
by the MATLAB programming.

The three-layer network with sigmoid transfer function
for hidden layer and linear transfer function for output layer
can represent any functional relationship between inputs and
outputs, if the sigmoid layer has enough neurons (Hagan et
al. 1996), so in all MLPs, three-layered networks (one
hidden layer) were used. The ANN results were transformed
back to the original domain and the root mean square errors
(RMSE) were computed for both the training and testing
data for each ANN.

4 Results and discussion

For finding the optimum network, various epochs, and
neuron numbers were examined. The architecture that pro-
duced the smallest error was used for the development of
networks for the derivation of hourly temperature. Optimal
numbers of neurons for input, hidden, and output layers of
MLPs were 4, 6, and 24, respectively.

To have a true comparison with MLPs, the RBF models
were developed using the same data sets. The optimal number
of neurons for hidden layers of RBF was 75 and the other
layers (input and output) had the same neurons as MLPs. The
mentioned number of neurons in hidden layer was obtained
using a simple trial and error procedure. The number of param-
eters in the RBF models was high compared with MLPs.

The values of RMSE and coefficient of determination
(R2) for Arsanjan, Bajgah, and Kooshkak stations datasets
were computed to evaluate the performances of the ANNs,
as shown in Tables 2, 3, and 4, respectively.

The values of RMSE and R2 between the measured
values and the values predicted by ANN models were close
to zero and one, respectively, showing that ANN models
were capable of predicting hourly air temperature using
daily maximum and minimum air temperatures. The values
of RMSE for MLP training were close to each other for both
TS and RZ data. The Tables show that the validated MLP2

Table 2 Performance of MLP and RBF models for Arsanjan station

Coefficient of determination (R2) RMSE (°C)

Training Testing Training Testing

Time series data

MLP1 0.98 0.98 1.3 1.4

MLP2 0.98 0.98 1.1 1.3

RBF1 0.99 0.96 1.0 1.5

RBF2 0.99 0.87 0.7 2.6

Randomized data

MLP1 0.98 0.98 1.1 1.3

MLP2 0.98 0.97 1.1 1.2

RBF1 0.99 0.98 1.0 1.2

RBF2 0.99 0.56 0.6 2.8

Table 3 Performance of MLP and RBF models for Bajgah station

Coefficient of determination (R2) RMSE (°C)

Training Testing Training Testing

Time series data

MLP1 0.97 0.94 1.6 2.8

MLP2 0.97 0.96 1.7 2.0

RBF1 0.97 0.91 1.6 3.3

RBF2 0.99 0.94 1.0 2.8

Randomized data

MLP1 0.98 0.97 1.4 2.0

MLP2 0.98 0.97 1.4 1.8

RBF1 0.98 0.90 1.4 3.6

RBF2 0.99 0.93 0.7 2.9

Table 4 Performance of MLP and RBF models for Kooshkak station

Coefficient of determination (R2) RMSE (°C)

Training Testing Training Testing

Time series data

MLP1 0.96 0.94 1.8 2.2

MLP2 0.97 0.96 1.7 1.9

RBF1 0.96 0.92 1.9 3.1

RBF2 0.98 0.93 0.7 2.9

Randomized data

MLP1 0.95 0.93 2.0 2.1

MLP2 0.97 0.96 1.5 1.7

RBF1 0.96 0.91 2.1 3.2

RBF2 0.98 0.92 1.5 2.9
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with the TS data was more accurate based on the values of
RMSE than was MLP1. Similar results were obtained for
randomized data, but there was no noticeable improvement
in the results of MLP2 over MLP1. Hence, the addition of
input vectors did not necessarily lead to improved results.
The values of R2 in both time series data and randomized
data for MLPs were high. Comparison of RMSE and R2

values of TS and RZ data for MLPs showed that randomized
data resulted in higher estimation (data derivation) efficiency.
It should be noted that in importing the TS data to the network,
the first 2 months of each season were applied for the training
phase and the other month of that season was applied for the
testing phase.

The RMSE values of MLP2 for comparison with mea-
sured data by TS and RZ data for Arsanjan, Bajgah, and
Kooshkak stations were equal to 1.3°C and 1.2°C, 2°C and
1.9°C, and 1.9°C and 1.7°C, respectively. Also, the values
of R2 were equal to 0.98 and 0.97, 0.96 and 0.97, and 0.96
and 0.96, respectively. The values of RMSE and R2 for RBF
models showed that RBF2 models were not applicable to
predict hourly air temperature, but RBF1 models had ac-
ceptable results. Clearly, the MLP model performance was
superior to that of the RBF model.

Moreover, the values of mean absolute error (MAE) were
calculated for the testing phase for all the stations and the
results are presented in Table 5. The values of MAE for
RBF2 models were very high and RBF2 models were not
appropriate and applicable for the derivation of hourly air
temperature. Adding the antecedent daily maximum and
minimum air temperatures caused the reduction in the per-
formance of the models in RBF networks. Hence, importing
the additional input to the networks to enhance hourly air
temperature derivation especially for RBF networks was not
always useful. Obviously, the results obtained from other
models were acceptable and MLP1 and MLP2 had more
accurate results than RBF1. Among these models, the low-
est and highest values of MAE were equal to 0.99°C and
3.80°C, respectively.

The estimated and measured hourly air temperatures of
MLP2 with TS data for 5 days of January (winter season)
and July (summer season) are shown in Fig. 4. This figure
shows that MLP-simulated hourly air temperatures were in
close agreement with observed values.

Table 5 Mean absolute error (MAE) values for MLP and RBF models
for all stations in testing phase

MAE (°C)

Arsanjan Bajgah Kooshkak

Time series data

MLP1 0.99 3.45 2.28

MLP2 1.11 3.29 2.98

RBF1 1.07 3.58 3.07

RBF2 8.95 19.05 23.74

Randomized data

MLP1 0.99 3.23 2.80

MLP2 1.03 3.47 3.57

RBF1 1.16 3.80 3.64

RBF2 22.19 68.55 57.16
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Fig. 4 Simulated and measured hourly air temperature for testing phase of MLP2 with time series data (5 days of January and July)
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Comparison of simulated and measured hourly air tem-
peratures of MLP2 using the TS and RZ data is shown in
Fig. 5. The MLP2 model for three stations showed the
closest matching of estimated and observed data.

Comparison of the two parts of Fig. 5 showed that testing
using the RZ data was more satisfactory than using the TS
data. Furthermore, the MLP-LM methods predicted hourly
air temperatures close to measured values.

Since both the model's training and validation were done
using the data for year 2007, the generalization ability of the
ANN models was further evaluated by validation using the
data for a different year. The data for year 2008 were
imported to the models from Arsanjan station and its results
are presented in Table 6. It was clear that the proposed
models were appropriate for the derivation of hourly air
temperature from min/max temperature data and this proved
the generalization ability of the proposed models. Since only
daily maximum and minimum air temperatures were mea-
sured at most of the meteorological stations in Iran in the
years before 2000, hourly air temperature can be estimated
using artificial neural networks.

To assess the generalization ability of the proposed models
to be implemented for hourly air temperature derivation of
other stations, MLP2 was trained using data provided from
Arsanjan station and validated using data from Bajgah station.
For this purpose, the 365 daily (time series) values of max/min

air temperature (and the related 8,760 hourly values of air
temperature for the year 2007) from Arsanjan station were
imported to the MLP2 (the best constructed models). MLP2
was trained based on these imported data from Arsanjan
station. Then, the 365 daily (time series) values of max/min
air temperature from Bajgah in 2007 and the related 8,760
hourly values were selected for validation of trained MLP2.
Comparison of simulated and measured data was depicted in

Fig. 5 Comparison of simulated and observed hourly air temperatures for three stations for time series (TS) and randomized (RZ) data, respectively

Table 6 Performance of MLP and RBF models for Arsanjan station in
2008 year

Coefficient of determination (R2) RMSE (°C)

Training Testing Training Testing

Time series data

MLP1 0.98 0.98 1.3 1.6

MLP2 0.99 0.98 1.2 1.5

RBF1 0.98 0.96 1.4 1.8

RBF2 0.99 0.87 1.6 3.1

Randomized data

MLP1 0.97 0.96 1.2 1.5

MLP2 0.98 0.97 1.1 1.3

RBF1 0.98 0.96 1.5 1.7

RBF2 0.97 0.56 1.3 3.2
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Fig. 6. The values of R2 and RMSE were 0.938 and 2.430°C,
respectively. The obtained results showed the constructed
models of a station can be used for other stations with similar
climatic conditions.

5 Comparison with analytical method

Kirkham and Powers (1972) proposed an analytical equa-
tion (Eq. 6) for estimation of hourly air temperature and it
has been applied by different authors. The values of RMSE
and R2 between the measured values and the values pre-
dicted by this analytical equation were 3.1°C and 0.84,

respectively. Also, the MAE value related to this equation
was equal to 4.1°C.

We applied Eq. 6 to the selected stations for 5 days of
January (winter season) and July (summer season) and the
results are shown in Fig. 7. In all cases, the errors in
derivation of hourly air temperatures values were greater
and the values of R2 were less than the ANN methods.

6 Conclusions

As a case study, the hourly air temperature is predicted using
min/max of daily air temperature data for three stations
located in various geographic and elevation zones in the
Fars province, Iran. The results of this study show that
hourly air temperature derivation using ANNs (proposed
models) have less error than the empirical equations that
are used worldwide. Moreover, the multi-layer perceptron
ANN with a tangent sigmoid transfer function performs
better than the radial basis function to predict hourly air
temperature. The test of proposed models using randomized
data shows higher estimation (data derivation) efficiency.
Survey of two input models shows that using Tmaxi, Tmini,
Tmaxi-1, and Tmini-1 is better than using only daily values of
Tmaxi and Tmini but adding these antecedent values does
not have a considerable improvement in the estimation
efficiency. On the other hand, RBF models have more error
with the addition of inputs. To end that, the data for the other
year is imported to the models from one station. It is found
that the proposed models are appropriate for the derivation

Fig. 6 Comparison of simulated and observed hourly air temperatures
for validation of Bajgah station using trained MLP2 by Arsanjan
station

Fig. 7 Comparison of the observed and predicted hourly air temperatures by the Kirkham and Powers equation at the study stations (5 days of
January and July)

526 M. Rezaeian-Zadeh et al.



of hourly air temperature from min/max temperature data
and this proves the generalization ability of the proposed
models. For simulation of hourly crop evapotranspiration,
hourly soil temperature at different layers and crop growth,
the model of Kirkham and Powers (1972) has been applied
by different authors successfully. Therefore, applying the
ANNs method is more attractive for the prediction of hourly
air temperature in the plant and soil models. The present
study shows that hourly air temperature can be successfully
constructed from daily maximum and minimum air temper-
atures records. Also, Generalization ability of proposed
models for application in different time periods and stations
were assessed. The ANN models developed here provide
the simple and accurate means to predict hourly air temper-
ature for the years before 2000 in the study region and to fill
missing data due to faulty operation of the measuring device
in the region and the similar climatic conditions.
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