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Abstract This study presents an attempt to resolve
fluctuations in surface temperatures at scales of a few
seconds to several minutes using time-sequential ther-
mography (TST) from a ground-based platform. A
scheme is presented to decompose a TST dataset into
fluctuating, high-frequency, and long-term mean parts.
To demonstrate the scheme’s application, a set of four
TST runs (day/night, leaves-on/leaves-off) recorded
from a 125-m-high platform above a complex urban
environment in Berlin, Germany is used. Fluctuations
in surface temperatures of different urban facets are
measured and related to surface properties (mater-
ial and form) and possible error sources. A number
of relationships were found: (1) Surfaces with sur-
face temperatures that were significantly different from
air temperature experienced the highest fluctuations.
(2) With increasing surface temperature above (be-
low) air temperature, surface temperature fluctuations
experienced a stronger negative (positive) skewness.
(3) Surface materials with lower thermal admittance
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(lawns, leaves) showed higher fluctuations than sur-
faces with high thermal admittance (walls, roads).
(4) Surface temperatures of emerged leaves fluctuate
more compared to trees in a leaves-off situation. (5) In
many cases, observed fluctuations were coherent across
several neighboring pixels. The evidence from (1) to
(5) suggests that atmospheric turbulence is a significant
contributor to fluctuations. The study underlines the
potential of using high-frequency thermal remote sens-
ing in energy balance and turbulence studies at complex
land–atmosphere interfaces.

1 Introduction

1.1 Fluctuations of surface temperatures
at land–atmosphere interfaces

Surface temperatures of land surfaces are controlled by
the surface energy balance (Monteith and Unsworth
2008). Surface temperatures vary as a consequence of
radiative input and output (Q∗), changes in subsurface
conduction of heat (QG) and changes in sensible (QH)
and latent heat exchange (QE) with the atmosphere.
Radiative input is relatively constant on short time
periods (<1 h), the exceptions being sky conditions
with broken clouds and situations underneath plant
canopies where sun flecks cause rapid changes in short-
wave irradiance (Chazdon 1988). However, at higher
frequencies, in the order of seconds to minutes, surface
temperatures are expected to respond to the turbulent
sensible and latent heat flux densities in the at-
mosphere. The instantaneous wind field of atmospher-
ic turbulence and the resulting changes of laminar
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boundary layer thickness are expected to control tem-
perature fluctuations and cause them to respond to
atmospheric heat surplus or deficits (carried by turbu-
lent eddies) on the same length and time scales as the
atmospheric motions themselves.

Paw-U et al. (1992) operated a directional infrared
thermometer at a nominal frequency of 10 Hz over
a maize canopy and identified ramp structures in
the surface temperature signal of the crop that were
significantly correlated with simultaneously measured
fluctuations in air temperature above the canopy. The
magnitude of surface temperature ramps was, how-
ever, significantly smaller than the air temperature
ramps. The ramps in the surface temperature sig-
nal reflect the abrupt replacement of progressively
warmed (or cooled) near-surface air with well-mixed
cool (warm) air from aloft driven by coherent ed-
dies in the turbulent flow. Katul et al. (1998) in-
vestigated the temporal variability in surface temper-
ature fluctuations of a forest clearing. They linked
fluctuations in surface temperature to turbulent ve-
locities in the overlaying atmosphere. They measured
large fluctuations in surface temperatures in the or-
der of 2 K which scaled with inactive eddy motion
in the atmospheric boundary layer. Ballard et al.
(2004) measured high-frequency fluctuations of direc-
tional thermal radiance in a grass canopy at 1-s to 5-
min intervals and hypothesized that turbulent mixing
plays a dominant role in explaining high-frequency
traces.

Surface temperature fluctuations due to turbulent
exchange are expected to depend on the surface ma-
terial’s thermal properties and the efficiency of the
atmosphere to exchange heat through the laminar and
turbulent boundary layers. The latter process is driven
by atmospheric dynamics, which are in turn controlled
in part by the surface’s form (roughness).

Our hypothesis is that surface temperature fluctua-
tions on various facets of a complex land–atmosphere
interface are driven by the high-frequency dynamics of
the instantaneous surface–atmosphere exchange. For
longer integration periods (>20 min to 2 h), we suggest
that spatial differences in mean surface temperature
between facets and trends in mean surface temperature
are controlled by different radiative input and conduc-
tive storage fluxes which, in turn, are controlled by
surface material (albedo, thermal properties) and form
(orientation, sky view factor, solar geometry, porosity).
At higher frequencies (<20 min), however, surface
temperature fluctuations can be expected to follow
the discussed dynamic effects of wind (i.e., turbulent
exchange). As a practical approach, we hence suggest
to separating the spatial field of measured surface

temperatures conceptually into a mean (trend) and a
fluctuating (high-frequency) part to assist us in quan-
tifying the forcing processes acting on different time
scales.

1.2 The use of time-sequential thermography

State-of-the-art thermal infrared (TIR) cameras allow a
simultaneous sampling of spatial and temporal changes
of surface temperatures by recording a time series (t) of
thermal images (x = x, y). We will refer to this as time-
sequential thermography (TST; Hoyano et al. 1999).
TST is typically restricted to fixed ground-based plat-
forms with a directional field of view (FOV), as sen-
sors on airborne or satellite platforms do not provide
enough temporal repetition and/or geometric resolu-
tion to resolve small-scale and short-term changes that
are potentially caused by a turbulent atmosphere.

1.2.1 TST in urban environments

TST in previous research on urban surfaces was mostly
motivated by either (a) the potential to infer thermal
properties of the urban surface, (b) to determine terms
of the surface energy balance, or (c) to analyze building
environment heat transfer. Most studies reported in the
peer-reviewed literature use TST to resolve spatial dif-
ferences in mean temperature and warming and cooling
rates from hourly to diurnal time steps. Hoyano et al.
(1999) used TST runs of buildings over 24 h recorded
at 1-min intervals to infer sensible heat flux density of
individual building facets. Sugawara et al. (2001) and
Chudnovsky et al. (2004) used fixed TIR cameras on
top of high-rise buildings (>100 m) that were operated
at intervals of 5 and 60 min to estimate thermal proper-
ties of urban surface facets at the neighborhood scale.
Meier et al. (2010) used TST recorded at 1-min intervals
to investigate thermal dynamics in an urban courtyard
over 2 days and used the attenuation of thermal persis-
tence effects (e.g., shadow) in order to derive surface
thermal admittance. All studies cited above analyzed
and discussed temporal variation on time scales typi-
cally larger than those of turbulent length scales.

1.2.2 TST in vegetation studies

In non-urban ecosystems, TST has been applied to
study temporal and spatial variations in surface tem-
peratures of grassland (e.g., Shimoda and Oikawa 2008,
TST at 5-min intervals) or the estimation of biomass
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heat storage (e.g., Garai et al. 2010, TST at 2-min
intervals). Higher-frequency analysis has been used in
the laboratory to study stomatal regulation and tran-
spiration of individual leaves (e.g., Jones 1999, TST
at 1-min intervals). Leuzinger and Körner (2007) in-
vestigated thermal regulation of leaf temperatures in
a forest canopy using TST at 5-s intervals. They ob-
served fluctuations in leaf temperatures up to 2 K
that remained entirely unexplained, but also con-
cluded that the unexplained fluctuations correlated
poorly against measured wind speed. They do not
rule out that wind causes the observed fluctuations
but argue that the actual turbulent patterns experi-
enced by the sampled trees may have deviated sub-
stantially from their single-point anemometer. Ballard
et al. (2004) used TST to study grass surface tem-
peratures at 1.3 m above the canopy at a 20-s inter-
val and report qualitatively a “rapid effect of cool-
ing from the wind is easily noticeable” in their TST
runs.

The specific objectives of the current contribution
are to (a) present a scheme to decompose a sig-
nal of measured apparent surface temperatures by
time-sequential thermography into a high-frequency
fluctuating and a long-term mean part, (b) apply the
decomposition scheme to a set of time-sequential ther-
mography runs from a complex urban environment that
is composed of many different facets and surface mate-
rials, and (3) quantify surface temperature fluctuations
of the different urban facets and relate them to surface
properties, quantify possible instrumental error sources
and effects along the line of sight (LOS). To simplify
the discussion, in this contribution we will use the term
“temperature” and the symbol T for “apparent surface
temperatures” with a surface emissivity of ε = 1.0. If we
refer to air temperature, or corrected surface tempera-
tures, this will be explicitly noted.

2 Methods

2.1 Experimental setup

To address objectives (b) and (c), this contribution
builds upon data sampled by a TIR camera that
recorded temperature fluctuations in a complex urban
setting. We use data from an urban environment be-
cause this provides the opportunity to simultaneously
sample a large spectrum of various land-surface materi-
als and 3-D form (height above ground, slope, azimuth,
vegetation, and artificial materials) under the same
meteorological forcing.

2.1.1 Thermal camera

The TIR camera used in this study is a VarioCAM®

head (InfraTec GmbH, Dresden, Germany) that was
operated at 1 Hz. The camera uses an uncooled mi-
crobolometer focal plane array (320 × 240 pixels) that
is thermally stabilized with a Peltier element. It is
recording the signal at a resolution of 16 bit (ther-
mal resolution 0.08 K at 30◦C) with an accuracy of
2% (InfraTec 2005). The spectral range of the cam-
era’s sensitivity is between 7.5 and 14.0 μm. The
camera’s aperture is protected by a polyethylene foil
with an estimated transmissivity of τfoil = 0.75 in the
sensitive range, which is considered in the radiance-
to-temperature conversion. The array is protected by
an encapsulation (IP 65), and the camera is enclosed
in an environmental enclosure that hosts a ventila-
tion and heating system to avoid strong temperature
fluctuations. During operation, case temperature was
continuously monitored. Every 6 s, all microbolometer
elements were homogenized (shutter), and the camera
case temperature was stored in order to use the opti-
mized radiance-to-temperature calibration parameters
and to avoid drift effects. The calibration parameters
for the camera system were determined by the man-
ufacturer using blackbody temperatures. The resulting
time-series were corrected in post-processing for geom-
etry (lens distortion) and for lens vignetting/narcissus
effects before any further post-processing steps. All
corrections are described in detail in Meier et al. (2011).

2.1.2 Field of view

The TIR camera was installed on top of an isolated
high-rise building overseeing part of the city of Berlin,
Germany (52.4556◦ N, 13.3200◦ E, WGS-84). The cam-
era was mounted on a boom at a height of 125 m
above ground level 3 m off the roof’s edge. The original
FOV of the camera is 64 × 50◦ and covers an area of
approximately 0.3 km2. As a result of the geometric
correction, the FOV in the analysis was cropped to
57 × 44◦. TST runs were recorded with a fixed FOV
oriented toward northwest (325◦) and inclined by 59◦
from the nadir (FOV ranges between 36.3◦ and 81.8◦
from the nadir). Due to the oblique view, the sensor-
target distance varies between 125 and 700 m (median
234 m), which corresponds to a geometric resolution
between 0.5 and 2.5 m for the instantaneous field of
view (IFOV) of 3.6 mrad.

Urban cover and form in the FOV is documented
in Fig. 1. The underlying terrain has a gentle slope
of about 1◦ from the foreground (SE, 42 m a.s.l.) to
the image background (NW, 65 m a.s.l). The FOV is
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Fig. 1 Field of view of
thermal camera for a leaves
on, b leaves off, c digital
building model, and d surface
classification

(a) (b)

(c) (d)

characterized by a high fraction of urban vegetation and
contrasting building densities. The upper right (north-
ern part) is dominated by five- to six-story buildings en-
closing courtyards. The center and the left side (south)
include a park with mature trees and detached low and
mid-rise residential houses. Figure 1c shows modeled
buildings and ground elevation in the camera’s field
of view (in absence of vegetation). The dataset was
calculated from a 3-D building vector model format
(Kolbe 2009) in combination with a digital ground
model (DGM). The building model and the DGM
combined results into a digital surface model (DSM),
which will be further used in the analysis.

Trees found in the FOV are dominantly deciduous
that include Acer platanoides, Acer pseudoplatanus,
Fagus sylvatica, Populus nigra, Quercus robur, Tilia sp.
The FOV also shows a few evergreen trees (approxi-
mately 10% of all trees, Taxus baccata, Pinus sylvestris,
Abies procera). Tree height varies between 10 and 30 m.
Figure 1a and b shows the contrasting surface of the
leaves-on and leaves-off situation.

2.1.3 Climate measurements

Downward short-wave ↓ ESW and long-wave radia-
tion ↓ ELW (CM3 and CG 3, Kipp & Zonen, Delft,
the Netherlands), air temperature Tair, and relative
humidity (RH; HMP45A, Vaisala, Vantaa, Finland)
are measured on top of the isolated high-rise build-
ing. Additionally, a fast anemometer/thermometer

(USA-1, Metek GmbH, Elmshorn, Germany) and hy-
grometer (Li-7500, Licor Inc., Lincoln, NK, USA)
were operated at the same location. Within the FOV,
at a horizontal distance of 300 m from the high-
rise building (52.4568◦ N, 13.3161◦ E, WGS-84, “Cli-
mate Station” in Fig. 1), Tair and RH were mea-
sured at ground level (2 m) underneath a relatively
open tree canopy and again 3.5 m above an exposed
19 m pitched roof (both HMP45A, Vaisala, Vantaa,
Finland). Wind velocity/direction (Lambrecht GmbH,
Göttingen, Germany) was measured 4 m above the
same roof.

2.1.4 TST runs

In April 2009, four 80-min runs were recorded at 1 Hz.
The weather conditions during the four runs and for
the preceding 24 h are summarized in Table 1. Two of
the runs, D1 and N1, are from early April when leaves
of the deciduous trees have not yet emerged (“leaves-
off”), and hence, more ground and building walls are
visible. The second set, runs D2 and N2 (“leaves-on”),
is from late April 2009 when leaves emerged and a
closed canopy formed over the park. All runs were
recorded under cloudless skies. Daytime runs are char-
acterized by high downward short-wave radiation with
averages of 634 (D1) and 780 (D2) W m−2. The wind
velocity was relatively low and ranged between 2.3 and
2.6 m s−1 at 23 m a.g.l. and between 1.6 and 2.9 m s−1 at
125 m a.g.l.
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Table 1 Weather conditions during the four runs

Run Day Night

D1 D2 N1 N2
Leaves-off Leaves-on Leaves-off Leaves-on

Date April 7, 2009 April 20, 2009 April 6, 2009 April 20, 2009
Time CET 11:00–12:20 11:48–13:08 20:37–21:57 21:00–22:20

Short-wave incoming 80 min average W m−2 634 780 0 0
Preceding 24 h total MJ m−2 day−1 19.5 25.8 22.2 25.8

Long-wave incoming 80 min average W m−2 317 286 292 269
Preceding 24 h total MJ m−2 day−1 25.6 23.2 24.4 23.4

Wind 23 m m s−1 2.6 2.3 2.3 2.4
125 m m s−1 1.6 1.8 2.9 2.9

Wind direction 23 m ◦ from N 125 66 96 39

Air temperature 2 m ◦C 20.4 16.7 12.5 11.8
125 m ◦C 18.8 16.3 13.1 12.4

Standard deviation 125 m K 0.63 1.12 0.19 0.15

Relative humidity 2 m % 49.8 36.7 60.1 52.6
125 m % 47.5 24.5 57.2 41.8

Standard deviation 125 m g m−3 0.0063 0.0061 0.0047 0.0043

Standard deviations of air temperature and humidity are based on 10 Hz measurements averaged over 10 min

2.2 Analysis of TST data

2.2.1 Decomposition schemes

The TST runs of T(x, t) were decomposed in post-
processing using spatial and temporal averaging
operators with the goal to separate high-frequency
fluctuations in temperatures from the mean patterns
and trends. A temporal averaging operator is written
using an overbar. For example, the temporal average
of the temperature T(x, t) of a single pixel in the image
is T(x):

T(x) = 1
N

N∑

t=0

T(x, t) (1)

A spatial average is written using angle brackets, so the
average temperature of a spatial subset or the entire
image is 〈T〉(t) :

〈T〉(t) = 1
M

M∑

x=0

T(x, t) (2)

This short-hand notation is in accordance with the
common notation in atmospheric turbulence theory
(Raupach and Shaw 1982), although it should be noted
that the spatial averaging operator in this application
does not equally weight surface areas due to the dis-
torted image geometry (IFOV vs. distance) and so this
term is not equal to the spatially averaged complete sur-
face temperature as defined by Voogt and Oke (1997).

We define departures at a time step t from the tem-
poral average using the prime symbol

T ′(t) = T(t) − T (3)

In analogy, we suggest a dot-in-a-box symbol (�) to
denote the deviation of a pixel at location x from the
spatial average of a region or an entire image:

T�(x) = T(x) − 〈T〉 (4)

The time-sequential thermography images were de-
composed following two schemes: firstly according to
the inner-temporal outer-spatial scheme:

T(x, t) = T ′(x, t) + T
�

(x) + 〈T〉 (5)

The left-hand side is the instantaneous temperature as
measured by the thermal camera. T ′(x, t) is the tem-
poral departure of the instantaneous temperature of a
pixel from its (temporal) average temperature. We call
this term ftrend. ftrend quantifies how the temperature
of a pixel compares to its own long-term average tem-
perature and is a function of both time and space. The

second term, T
�

(x), is the spatial departure of the tem-
porally averaged temperature of a pixel from the entire
spatiotemporal average of the time sequence. We call
this term mpattern. mpattern is a 2-D image (describ-
ing the entire run) that shows the pixel’s temperature
departure from the image mean, i.e., if a pixel is on
average warmer or cooler than the entire image. The
last term in Eq. 5, 〈T〉, is the spatiotemporal average of
the time-sequential images, which is a single scalar that
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denotes the average temperature of the entire run of
all pixels. We name the last term mtotal. All terms and
their respective names are summarized in Table 2.

In analogy, we can also form an inner-spatial outer-
temporal decomposition:

T(x, t) = T�(x, t) + 〈T〉′(t) + 〈T〉 (6)

The left-hand side is again the instantaneous temper-
ature image, similar to Eq. 5. T�(x, t) is the spatial
departure of the instantaneous temperature of a pixel
from the spatial average of the instantaneous image.
We name this term fpattern. fpattern tells us how the
temperature of a pixel compares to the temperature of
spatially separated pixels at the same time. fpattern is
also a function of time and space. The second term in
Eq. 6, 〈T〉′(t), is the temporal departure of the spatial
average temperature of an instantaneous image from
the spatiotemporal average of the time sequence. We
call this term mtrend. This is a time series with a single
value per time step. It tells us if an image is generally
warmer or cooler than the entire time sequence and
hence will typically show the warming/cooling trend
of the entire time sequence. As calibration is applied
every 6 s, part of the signal in mtrend is expected to
come from the drift of the entire microbolometer focal
plane array. By subtracting mtrend, errors from sensor
drift can be reduced. The last term in Eq. 6 again is the
spatiotemporal average of the time-sequential images,
i.e., mtotal. Note that by definition of an average, it
follows: 〈T〉 = 〈T〉.

Combining Eqs. 5 and 6 gives:

T ′(x, t) + T
�

(x) + 〈T〉 = T�(x, t) + 〈T〉′(t) + 〈T〉 (7)

As the spatiotemporal average is the same in both
cases, Eq. 7 simplifies to:

T ′(x, t) + T
�

(x) = T�(x, t) + 〈T〉′(t) (8)

By combining the two averaging schemes, we can form
a total fluctuating component, which is the deviation
from both the spatial and temporal average. This term
will be called ftotal.

f total = T(x, t) − T
�

(x) − 〈T〉′(t) − 〈T〉 (9)

Based on Eqs. 5 and 6, ftotal can be rewritten as

f total = T�(x, t) − T
�

(x) = T ′(x, t) − 〈T〉′(t) (10)

ftotal can be considered as the high-frequency
fluctuation of a pixel from the spatiotemporal mean.
It has long-term warming (or cooling) removed as
it shows only the deviation from its own average
temperature. Further, ftotal eliminates changes in
temperature that affect the entire image. Hence, this
term is very useful as it eliminates instrumental effects
(shutter) that can affect the entire microbolometer
focal plane array.

It is important to note that the scheme introduced
here, and the interpretation of the terms, assumes
that the FOV is much larger than the spatial scale of
expected high-frequency fluctuations—in other words,
the characteristic scale of the FOV must be larger
than the integral turbulent length scale expected to
cause fluctuations. Under those assumptions, the av-
erage temperature of the image is only affected by
a mean trend (warming or cooling) or instrumental
effects. The same applies to the temporal length of the
TST recording, which must be significantly longer than
the duration of expected fluctuations.

2.2.2 Integral statistics

From each of the decomposition terms introduced in
Section 2.2.1, temporal and/or spatial statistical para-
meters can be calculated (except for mtotal, which is
a scalar). The temporal statistics of ftotal are notably

Table 2 Summary of terms used in the decomposition scheme

Term Name Dimensions Description

〈 T 〉 = 〈T〉 mtotal Scalar Spatiotemporal average of the time sequence

T
�

(x) mpattern 2-D array Departure of the average temperature of a pixel from
the spatiotemporal average of the time sequence

〈 T 〉′(t) mtrend 1-D array Departure of the average temperature of an instantaneous
image from the spatiotemporal average of the time sequence

T�(x, t) fpattern 3-D array Departure of the instantaneous temperature of a pixel from the
average temperature of the instantaneous image

T ′(x, t) ftrend 3-D array Departure of the instantaneous temperature of a pixel from the
average temperature of that pixel

T
�

(x, t) − T
�

(x) ftotal 3-D array Spatiotemporal departure of a pixel from both
T ′(x, t) − 〈 T 〉′(t) the spatial and temporal mean
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useful. The temporal standard deviation of ftotal is
defined as

σ ′
f total(x) =

√
(T ′(x, t) − 〈T〉′(t))2 (11)

and results in an image that quantifies for each pixel (x)
the integral variability of the temperature fluctuation
over a given time period. Note that the prime above
the sigma indicates that this is the temporal standard
deviation of ftotal (as there is also an instantaneous
spatial standard deviation which is not used). Similarly,
a temporal skewness of the temperature fluctuations
can be defined:

Sk ′
f total(x) =

(
T ′(x, t) − 〈T〉′(t)

σ ′
f total

)3

(12)

These statistics will be used to quantify the fluctuations
and are correlated against thermal, material, and urban
form parameters. In the current study, all integral sta-
tistics (σ ′

f total, Sk ′
f total) were calculated for a time period

of 20 min. σ ′
f total and Sk ′

f total of four 20-min blocks
were then averaged in each run (80 min). Based on
spectral analysis (Section 2.2.3), 20 min was considered
to be short enough to exclude a significant influence by
the diurnal course of differential warming and cooling
of surfaces, yet long enough to include effects of tur-
bulent exchange of larger eddies. Similarly, statistics
can be applied to a spatial field in order to quantify
spatial variability. Note that the FOV of the camera
does not allow an unbiased sampling and so effects
of view geometry and thermal anisotropy (Voogt and
Oke 1998) will limit the practical use of the spatial
statistics. The spatial standard deviation of mpattern,
for example, is defined as

σ�
mpattern =

√
〈T�2

(x)〉 (13)

Note that the dot-in-a-box symbol above the sigma
indicates that the term is a spatial standard deviation.
And similarly for the spatial skewness:

Sk�
mpattern =

〈 (
T

�
(x)

σ�
mpattern

)3〉
(14)

2.2.3 Spectral analysis

To quantify the temporal scale of fluctuations in more
detail, a Fourier transform was applied to the entire
80 min of ftotal in each run. All pixels were transformed
into temporal spectral energies in 16 different loga-
rithmically spaced bands, using a standard fast Fourier
transform, after applying a linear detrending to the time
series (Stull 1988). This resulted in images (x) of the
spectral densities in different bands.

2.2.4 Spatial coherence

To quantify the spatial scale (spatial extent) of tem-
perature fluctuations in the image, cross-correlations
of the temperature time-series (ftotal) were calculated
between neighboring pixels:

C′
f total(x, r)

= (T ′(x, t) − 〈T〉′(t))(T ′(x + r, t) − 〈T〉′(t))
σ ′

f total(x) σ ′
f total(x + r)

(15)

C′
f total will indicate if neighboring pixels, displaced by

a distance r, experience similar fluctuations in their
time series of ftotal. C′

f total is useful to quantify any
spatial coherence in fluctuations and to assess if any
observed coherence relates to surface materials, sur-
face form, and/or residual sensing element geometry
(potential effects of calibration/shutter). Practically, for

Table 3 Manual classification
of surfaces in the field of view

Surface n % of No. of contiguous Median
(pixels) FOV areas slope (◦)

Roof − tile 4,955 6.5 45 34
Roof − gravel 1,535 2.0 15 0
Roof − tar 1,806 2.4 16 30
Roof − metal 1,776 2.3 2 11
Wall − painted 4,304 5.6 37 90
Wall − brick 2,664 3.5 23 90
Ground − roads 1,675 2.2 21 1
Ground − grass 1,406 1.8 10 2
Trees − deciduous 12,662 16.5 33
Trees − coniferous 1,797 2.3 13
Excluded 284 0.4 4
Unclassified 41,936 54.6
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Table 4 Integral parameters
for all pixels in the FOV
(except for the ones listed as
excluded) in comparison to
2 m air temperature

Parameter Day Night

D1 D2 N1 N2
Leaves-off Leaves-on Leaves-off Leaves-on

Air temperature (2 m) (◦C) 20.4 16.7 12.5 11.8
mtotal (◦C) 24.3 23.8 12.9 12.1
σ�

mpattern (K) 3.8 6.1 1.1 1.4

Sk�
mpattern (K) 1.16 0.93 −0.35 −0.57

each pixel, the correlation to its neighboring pixels
(displaced by r) was calculated for cardinal directions
(left, up, right, down), and the average correlation in
all four directions is shown. C′

f total was calculated for
r = 1, 2, 4, 8, and 16 pixels over periods of 20 min. Note
that the actual distance on the ground varies between
0.5 and 2.5 m per pixel displacement due to the oblique
sensor view. C′

f total ranges between 1 (perfect spatial
correlation) to −1 (perfect negative correlation), and
0 indicates no correlation with fluctuations of nearby
pixels.

2.3 Surface classification and 3-D data

All pixels in the FOV were manually classified by visual
(subjective) analysis of rectified (oblique) photos from
the camera’s location, with the help of the 3-D building
model and aerial photos. Four overarching form-based
facet categories were identified—(a) roofs, (b) walls,

(c) ground, and (d) trees. The categories were further
separated based on their facet material into material
classes. Roofs were separated into classes “tile,” “tar,”
“metal,” and “gravel”; walls into “brick” and “painted”
(painted stone or concrete); ground into “road” (im-
permeable) and “lawns”; and trees into “deciduous”
and “evergreen” (Fig. 1d; Table 3). Pixels were only
classified if they contained the same surface material
across the pixel. To avoid neighboring effects, all masks
were cropped using a 3 × 3 erosion filter. For trees,
crown areas were classified but not stems. Only trees
that were easily identifiable in the leaves-on runs were
included; 284 pixels (0.4% of the FOV) were removed
from further analysis because they contained either
low-emissivity materials or A/C and heat venting sys-
tems with significant anthropogenic heat release. The
removed areas are listed as “excluded” in Fig. 1d and
are not used in any reported statistics or visualizations;
45.4% of all pixels in the FOV were classified into one
of the masks. The remaining 54.6% are either pixels
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Fig. 2 Spatial temperature anomaly (mpattern) of all four runs. The visualization uses a linear grey scale between the 1 and 99th
percentile in each image. Pixels drawn in white have been excluded from analysis
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with mixed materials, part of the high-rise building’s
facade in the lower right foreground (excluded), or
areas that had fine structure and were eroded by the
3 × 3 filter (in the background).

Each TST pixel is linked to the corresponding DSM
via 3-D geometrical transformations used in computer
graphics (Foley and van Dam 1984), ground control
points, and the interior and exterior orientation pa-
rameters of the camera. Further details are described
in Meier et al. (2011). The combination of FOV and
DSM attributes a height above ground, a slope, and an
azimuth to each building pixel (roof or wall). Vegeta-
tion is not resolved in the DSM, so information on tree
crown geometries is not available.

3 Results

We will report temperature fluctuations in relation to
facet materials (Section 3.1), to height above ground
(Section 3.2) and azimuth (thermal anisotropy, Section
3.3). Those results will then be discussed in Section 4.

3.1 Effects of surface materials

3.1.1 Mean temperatures

Spatial differences in mean temperatures are not the
focus of this study, yet they are essential for under-
standing the magnitude of temperature fluctuations.

The average spatiotemporal temperatures (mtotal)
for all four runs are summarized in Table 4. mtotal is
above air temperature (at 2 m) in the daytime runs (D1
and D2) and close to air temperature in the nocturnal
runs (N1 and N2).

The spatial temperature departure (mpattern) is
shown as images in Fig. 2 for all four runs. Figure 3
shows statistics of mpattern conditionally sampled for
each of the facet materials. In the daytime runs (D1 and
D2), trees, lawns, and shadowed walls experience the
lowest average temperatures. In contrast, roofs, sunlit
walls, and street surfaces show the highest average
temperatures. The distribution of mpattern (Sk�

mpattern)
in D1 and D2 is positively skewed toward higher tem-
peratures (Table 4). The daytime median values for
mpattern of several roof types ranges between +5 K

Fig. 3 Ensemble averages of
spatial temperature anomaly
(mpattern) sorted by facet
material in all four runs. The
numbers in the upper left
graph indicate the number
of pixels included in each
class and are the same
for all four runs
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and +11 K. Trees show the lowest temperatures of
all material classes and are close to, yet above, air
temperatures.

During the night (N1 and N2), roofs and lawns show
the lowest temperatures and are typically 1–2.5 K below
air temperature. In contrast, wall and road surfaces are
the warmest and 1–2 K above air temperature. Trees
are closest to air temperature. mpattern in the FOV is
negatively skewed (Sk�

mpattern; Table 4), indicating that
there are more extreme departures form mtotal for
cooler surfaces.

3.1.2 Integral standard deviation of temperature
f luctuations

Integral standard deviation of σ ′
f total is shown as images

(x) for all runs in Fig. 4, and statistics for the different
facet material classes are summarized in Fig. 5. In both
daytime runs (D1, D2), metal roofs show the highest
σ ′

f total of all surface materials (label 1 in Fig. 4) and
show temperature fluctuations that are nearly twice as
strong as for any other observed material. Tile, tar,
and gravel roofs show intermediate σ ′

f total (label 2). In
both daytime runs, painted (stone and concrete) walls
have the lowest σ ′

f total (label 3), followed by brick walls.
Fluctuations on vegetation pixels are intermediate

(label 4) and comparable to those on non-metal roofs.
Figure 4 illustrates how σ ′

f total of deciduous trees (in
the park) changes from the leaves-off situation (D1),
where mostly fluctuations on the ground (lawns) are
visible, to higher fluctuations of the trees’ crowns in
the leaves-on situation (D2). Note that coniferous trees
have not changed their relative signature compared
to other materials (Fig. 5, D1 and D2). In both runs,
lawns show the highest σ ′

f total of all vegetated areas
(label 5). Special cases are roads where traffic lanes
are characterized by a high σ ′

f total (label 6). At night
(N1, N2), the only surfaces with noticeable elevated
σ ′

f total are lawns (label 7) and trees in N2. Again a clear
difference between the leaves-off (N1) and leaves-on
(N2) situation is evident in the park where trees in N2
are set apart from the rest of the image (label 9). In
Fig. 4, walls are visible as areas that have a lower σ ′

f total
than the average of the image (label 8).

Figure 6 shows time series of sample pixels repre-
senting each of the classes. Temperature fluctuations
over 60 min for the runs D1 and N1 are plotted at
1 Hz and compared to air temperature at 5-min inter-
vals. The graph illustrates the fundamental differences
between day (D2) and night (N2). The daytime situa-
tion is characterized by a wide range of temperatures
and significant fluctuations at multiple frequencies in
all traces, while during night temperatures are more

ftotal
' σ ftotal

'

σftotal
'

ftotal
'

N2 - Night, leaves-onD2 - Day, leaves-on

N1 - Night, leaves-offD1 - Day, leaves-off

σ

σ

Fig. 4 Average standard deviation of temperature fluctuations
(σ ′

f total) over 20 min visualized for all four runs. The visualization
uses a non-linear gray scale between the 1 and 99th percentile

in each image. Pixels drawn in white have been excluded from
analysis. For labels 1–9, see text
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Fig. 5 Ensemble averages of the standard deviation of tempera-
ture fluctuations (σ ′

f total) sorted by facet materials in all four runs.
The numbers in the upper left graph correspond to the median

mtotal of each class. The numbers of samples are similar to Fig. 3.
The gray-shaded area is the baseline sensor noise as discussed in
“Appendix A1”

uniform, and fluctuations are restricted to small scale
(high frequency).

3.1.3 Spectral analysis of temperature f luctuations

Figure 7 summarizes spectral energies of temperature
fluctuations (ftotal) for different bands of the Fourier
transform of each pixel (x). The selected images range
over three orders of magnitude, between periods of
P = 5 s to about P = 500 s (columns). At the highest
frequencies (P = 5 s), the spectral energy of the images
is rather uniform across them, exceptions being lanes
on roads where vehicles move (label 1) and paths in the
park where pedestrians walk (label 2). Note that roads

are partially obscured by leaves that emerged in runs
D2 and N2 and so traffic is not as easily visible as in D1
and N1. Also noticeable are border effects, i.e., pixels
on building edges or between contrasting surfaces are
characterized by higher energy—in particular in run
D2. Runs N1 and N2 reveal a radial pattern, with lower
spectral energies in the center of the image compared
to the corners.

At intermediate frequencies (P = 50 s), spectral
energies of ftotal show significant differences between
D1 and D2. In particular, foliage on trees with large
leaves in D2 causes an increase in spectral energy of
ftotal (label 3) compared to other materials and the
leaves-off situation, where only a few conifers and
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Fig. 6 Sample time series of temperature fluctuations during
60 min of a day (D2) and a night (N2) of selected pixels represent-
ing typical behavior for the facet material classes. All pixels are
exposed to direct solar irradiance. Values are expressed relative

to the anomaly (ftotal + mpattern, left axis—which is common
for both graphs) and absolute temperature (ftotal + mpattern +
mtotal, individual in both graphs)

D1 - Day, leaves-off

D2 - Day, leaves-on

N1 - Night, leaves-off

N2 - Night, leaves-on

P = 5 s P = 50 s P = 500 s

Fig. 7 Normalized spectral energies f S( f ) of temperature
fluctuations (ftotal) for all runs (rows) for three selected different
bands with period P = 5, 50, and 500 s (columns). The visualiza-

tion uses a linear gray scale between the 1 and 99th percentile
in each image. Pixels drawn in white have been excluded from
analysis. For labels 1–7, see text
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lawns (label 4) stand out. A similar pattern is ob-
served during night, with tree crowns in the center
of the park showing larger spectral energies (label 3
in N2), although overall energy in the fluctuations is
lower.

At low frequencies (P = 500 s), spectral energies
reveal a more complex pattern, with gradients across
objects. For example, trees in D2 show a clear differ-
ence between the south-facing and north-facing parts of
crowns (label 5). The highest fluctuations are observed
for metal roofs (label 6). During the night, fluctuations
are weak and only a few tree crowns (label 5) and lawn
patches (label 7) stand out.

Figure 8 shows ensemble spectra of temperature
variations (ftotal) for different facet categories in 16
logarithmically spaced bands from 1 s to 1 h. The
curves shown are median values of each category. All

spectra show a relative minimum around 30 s (50 s at
night) and a peak in the range 2–10 min. Spectra strat-
ify into different surface categories above ∼ 30s, with
the highest fluctuations for lawns and trees. Notable
is the convergence of the spectra between trees and
lawns from the leaves-off situation (D1) to the leaves-
on situation (D2), where the two classes overlap. On
the high-frequency end (right), all materials converge
below 10 with increasing energy, the exception being
roads, which stay above any other category throughout
the high-frequency end at day.

3.1.4 Coherence of f luctuations

Figure 9 visualizes the spatial coherence C′
f total of all

runs, and Fig. 10 summarizes ensemble statistics of

Fig. 8 Ensemble averaged
spectral energy S( f ) of
temperature fluctuations
(ftotal) for all pixels,
multiplied by frequency f .
The spectra have been
classified into five main facet
categories
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N2 - Night, leaves-onD2 - Day, leaves-on

N1 - Night, leaves-offD1 - Day, leaves-off Cftotal
,

Cftotal
,

Cftotal
,

Cftotal
,

Fig. 9 Spatial coherence C′
f total of temperature fluctuations at r = 2 pixels over 20 min. The visualization uses a linear gray scale

between the 1 and 99th percentile in each image. Pixels drawn in white have been excluded from analysis. For labels 1–5, see text

C′
f total sorted by material class. C′

f total was calculated
based on Eq. 15 and quantifies how well the temper-
ature fluctuations of a pixel correlate with its neighbors
at a distance of r = 2 pixels. The strongest spatial corre-
lation is found on metal roofs (e.g., label 1), followed by
tar roofs. But also vegetated surfaces show a significant
C′

f total that reveals the form of individual crowns and
lawn patches (lawns—label 2, deciduous tree crowns—
label 3 in Fig. 9). Walls (e.g., label 4) or roads show little
cross-correlation. During the night, most surfaces are
not well correlated, with the exception of clearly visible
lawn patches in the park (label 2). Similar patterns have
been observed for distances of r = 1, 4, 8, and 16 pixels
(not shown).

3.2 Effects of urban form

3.2.1 Mean temperatures vs. height above ground

Figure 11 shows average temperatures and temperature
fluctuations as a function of height above ground for
walls and roofs. The height above ground was extracted
for all pixels from the 3-D city model (Section 2.3).
Only data from the leaves-off situation is shown in
Fig. 11 to reduce possible interference with vegeta-
tion. During the day, temperatures (mpattern) of walls

and roofs are above air temperatures and increase
with height (Fig. 11a). During the night, temperatures
decrease with height. Although lower walls stay sig-
nificantly warmer than air temperatures, the differ-
ence between surface and air temperature is reduced
with height. Roofs are all significantly cooler than air
temperatures, and also their temperature generally de-
creases with height (Fig. 11d).

3.2.2 Temperature f luctuations vs. height above
ground

Temperature fluctuations on walls are small. Neverthe-
less, during both the daytime (Fig. 11b) and nighttime
(Fig. 11e), a small increase of σ ′

f total with height can
be identified. Skewness Sk′

f total increases from more
negative numbers on lower walls to values close to zero
in the middle and higher part of walls. Such a trend is
not observed for roofs, where effects of slope are likely
included.

3.3 Effects of thermal anisotropy

Microscale temperature patterns created by the 3-D
urban surface structure, as well as by the thermal prop-
erties of urban surfaces, lead to directional variations
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Fig. 10 Ensemble averages of the spatial coherence at r = 2 pixels (C′
f total) sorted by facet materials in all four runs. The numbers in

the upper left graph indicate the number of pixels included in each class and are the same for all four runs

of long-wave emittance. This directional variation is
termed effective thermal anisotropy (Voogt and Oke
2003). The application of TIR remote sensors from a
fixed FOV to the determination of surface tempera-
tures is complicated by effective thermal anisotropy
(Lagouarde et al. 2004). The term “effective” is used in
order to indicate that anisotropy arises because of sur-
face structure and temperature patterns, rather than the
non-Lambertian behavior of individual facets (Voogt
2008).

Figure 12 shows the effects of the effective anisot-
ropy on mean temperatures and fluctuations. The
rectangular street grid in the FOV is aligned along
120/300◦ and 30/210◦, respectively. Most building walls

and roofs have therefore an azimuth of 30◦ (NNE),
120◦ (ESE), 210◦ (SSW), or 300◦ (WNW). Walls with
an azimuth towards WNW are hidden in the current
FOV and not sampled by the camera (which points
toward 325◦). These walls are therefore not represented
in Fig. 12. However, the camera can tangentially see
roofs with an azimuth of around 300◦ that have a gentle
slope. This applies mostly to the foreground.

While most NNE-facing walls are slightly below air
temperature in the daytime runs, walls facing ESE
and SSW are 3–6 K warmer than air temperatures
(Fig. 12a). For roofs, NNE-facing facets are the coolest
and SSW-facing facets are the warmest. A similar
pattern is found for D2. The nighttime runs (N1,
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Fig. 11 Height dependence
of a, d spatial temperature
anomaly (mpattern),
b, e standard deviation of
temperature fluctuations
(σ ′

f total), and c, f skewness of
temperature fluctuations
(Sk′

f total) of walls (brick and
paint) and roofs (all materials
except metal) the two
leaves-off runs (D1 and N1).
Numbers in e are the number
of pixels considered in each
class and are the same for all
other figures. Only classes
with more than 100 pixels
are shown
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N2) do not show any directional variability of roofs,
while north facing walls are about 1.5 K cooler in the
evening than south facing ones (not shown). Tempera-
ture fluctuations expressed as σ ′

f total do not change sig-

nificantly with azimuth for walls (Fig. 12b). Roofs show
anisotropy in the magnitude of fluctuations, where the
highest fluctuations are found on SSW facing roofs and
the lowest on NNE facing roofs.

Fig. 12 Dependence of
a spatial temperature
anomaly (mpattern) and
b standard deviation of
temperature fluctuations
(σ ′

f total) of walls and roofs
as a function of geographic
azimuth. Numbers in a refer
to the number of pixels
included in the analysis.
All data are from run D1
(roofs <15◦ slope
and metal roofs excluded)
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4 Discussion

Observed fluctuations in temperature (ftotal) will be
discussed in terms of the energy balance at the sur-
face itself. The effect of instrumental noise of the mi-
crobolometer array and effects along the line of sight
are quantified in “Appendix A1” to “Appendix A5”
as those are not central to the method developed here.
Although instrumental effects explain a significant part
of the observed total variation of σ ′

f total, none of those
instrumental effects can explain the differences ob-
served between material classes or the observed re-
lations with height and azimuth of the urban form.
Those differences must be an effect of the surface
energy balance of the corresponding facets. It was
hypothesized that net all-wave radiation, Q∗, laminar
boundary-layer and aerodynamic resistances (rb and
ra), subsurface heat storage (expressed as thermal ad-
mittance), and potentially water availability control the
magnitude and spectral characteristics of both the mean
temperature and the temperature fluctuations of a
facet.

4.1 Radiation and shadowing

In runs D1 and D2, surfaces situated higher above
the ground received more direct short-wave radiation
for a longer period over the morning which explains
that the spatial temperature departure (mpattern) is
significantly above air temperature for roofs and higher
walls (Fig. 11a). In contrast, lower surfaces are more
likely in shadow and are below or at air temperature.
During the night, the influence of a reduced sky-view
factor on the long-wave radiation exchange is suitable
to explain higher temperatures of lower walls compared
to higher walls (Fig. 11d). Notable are extraordinarily
warm walls in narrow courtyards (foreground in Fig. 2,
N1 and N2) and walls in the denser part of the city
(Fig. 2, upper right). As urban form does not change
over 20 min, sky-view factor and solar access can ex-
plain mean temperatures and warming/cooling rates,
but not fluctuations.

In the daytime runs, moving shadows, however,
could create temperature fluctuations on a range of
scales. The thermal effect of shadows and accompanied
reduced or increased solar irradiance is not a high-
frequency phenomenon caused by the atmosphere,
matching our hypothesis. However, it has been shown
that depending on the duration of shadowing, the scale
of the object causing shadows, and the change in short-
wave radiation, the persistence of shadow effects varies
from several minutes to hours (Meier et al. 2010).
Shadows reduce the difference between surface and air

temperatures; hence, it is expected that shadowed parts
of the FOV show lower fluctuations due to turbulent
exchange. This is illustrated in Fig. 12, where north
facing roofs and walls have lower mean temperatures
and also less temperature fluctuations σ ′

f total.

4.2 Turbulent heat transfer

Figure 13 plots fluctuations (σ ′
f total) against mean tem-

perature (mpattern) for five overarching categories
(roofs, walls, roads, lawns, trees). For D1 and D2, clear
positive relationships between mean temperature and
fluctuations develop—the warmer a surface (the higher
the difference to air temperature), the higher are the
observed temperature fluctuations (σ ′

f total). Tempera-
tures of surfaces that are significantly warmer than air
temperature are more affected by turbulent exchange.
If cooler air from the atmosphere is mixed toward the
surface, it will cause stronger fluctuations at the surface,
and part of the sensible heat is transferred into the
air, which cools the surface. Interestingly, the different
categories in Fig. 13 show varying slopes (vegetation
shows a steeper slope, roofs intermediate, walls do not
show a clear relation). This could suggest that mate-
rial properties such as thermal admittance, but also
water availability, and potentially form factors (lami-
nar boundary layer thickness) may play an important
role (see Section 4.4). The role of water availability is
evident in the temperatures of vegetated surfaces that
transpire, which are on average (D1) and (D2) lower
than roofs (Fig. 3). This is in agreement with Leuzinger
et al. (2010) who found in an urban environment at
similar latitude daytime differences in temperatures of
∼20 K between roofs and trees. Observed fluctuations
change most dramatically with increasing difference
to air temperature for trees and lawns compared to
artificial materials that have no QE during D1 and D2.
The separation in Fig. 13 is in part be attributed to the
fact that not only sensible heat flux but also latent heat
flux causes fluctuations at high frequencies (note the
significant vapor pressure deficit in the runs, Table 1).

Over rough surfaces, turbulent exchange between
the surface and the atmosphere is intermittent. A few
eddies that occur in a short fraction of the time are
responsible for the majority of the sensible heat flux.
During daytime, the mean surface temperature T of
most urban facets is higher than the air temperature
Tair. Urban facets stay generally at a high surface tem-
peratures and are only sporadically lowered by the few
eddies bringing a lower air temperature Tair close to
the surface. This pattern causes the surface temperature
trace to experience sporadic strong negative departures
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Fig. 13 Standard deviation of
temperature fluctuations
(σ ′

f total) as a function of
spatial temperature anomaly
(mpattern) for all pixels
classified into four facet
categories (roofs, walls,
lawns, roads, and trees).
Tair is the measured air
temperature at the climate
station (2 m). In particular
during night, actual Tair is
expected to be highly variable
in space
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(i.e., a negative skewness, Sk′
f total < 0). The opposite

would be expected for surfaces that have a surface tem-
perature T < Tair which would experience a positive
Sk′

f total when sporadically warmer air is moved over
the cooler surface. This pattern is sustained because
air is thermally better mixed than surfaces, and the
range of observed surface temperatures of the urban
surface is much larger than the range in air tempera-
ture in the urban canopy. Figure 14 illustrates Sk′

f total
as a function of mean temperature (mpattern) and in
relation to air temperature. In daytime runs (D1, D2),
most materials (lawns and roofs, to some extent also
trees) show decreasing (i.e., more negative) skewness
with increasing departure from air temperature. Walls
do not show a clear trend of Sk′

f total with temperature.

Roads show a positive Sk′
f total, likely due to contamina-

tion by “warm” moving vehicles (see “Appendix A4”).
During nighttime, in particular tree and lawn surfaces
show positive Sk′

f total when below air temperature and
negative Sk′

f total when above.
Another notable detail is the height dependence of

Sk′
f total—walls below 10 m show a more negative Sk′

f total
compared to walls that are closer to the mean building
height (∼18 m) and where Sk′

f total ∼0 (Fig. 11c, f). We
postulate that if an eddy with an air temperature Ta

(during day and night below the surface temperature
of walls) approaches a wall, this will cause a drop in
the wall surface temperature of �T. For an eddy of
given energy, �T is expected to be of roughly the same
magnitude on top of the walls compared to the bottom
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Fig. 14 Skewness of
temperature fluctuations
(Sk′

f total) as a function of
temperature anomaly
(mpattern) for all pixels
classified into the four main
facet material categories
(roofs, walls, lawns, roads,
and trees)
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of the walls because the mean surface temperature of
the walls does not vary with height above ground (see
Fig. 11a) and the material properties are constant with
height (constant high thermal admittance). However,
the significant difference postulated between top of
wall and bottom of wall is the frequency of occurrence
of eddies that causes mixing. Christen et al. (2007)
show for turbulence in a comparable urban setting that
the integral length scale of velocity fluctuations as well
as the intermittency of sensible heat flux exchange is
the lowest just at roof height and increases in both
directions, i.e., down into the canopy and up into the
higher roughness sublayer, where eddies responsible
for exchange become less frequent. At roof level, where
turbulence is characterized by small-scale and frequent
eddies caused by the shear layer, Sk′

f total stays close to

zero. In the sheltered bottom of the urban canopy, but
also in the atmosphere above the mean shear layer (ex-
posed roofs > 20 m), eddies are infrequent and Sk′

f total
consequently experiences a more negatively skewed
distribution away from the principal shear layer.

4.3 Thermal admittance

Why are the slopes of σ ′
f total vs. mean temperature

(mpattern) in Fig. 13 not similar for different cate-
gories? This could be explained by surface and sub-
surface properties, namely the different thermal admit-
tance μ of surface materials. A facet with a high thermal
admittance (e.g., walls or roads) “accepts” any heat
flux caused/enabled by turbulent exchange quickly and
efficiently and, as a consequence surface temperatures,
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Fig. 15 Ensemble averaged spectral energy of temperature
fluctuations (ftotal) at P = 73 s as a function of literature values
for thermal admittance μ of different facet materials. Vertical
error bars denote the 25 and 75th percentiles of all pixels in
the given material class. Horizontal error bars, if given, refer

to the range of values provided in the literature. Legend: RT
roofs—clay tiles, RG roofs—gravel, RB roofs—bitumen/tar, RM
roofs—metal, WB walls—brick, WS walls—stone/paint/concrete,
GL ground—lawns, GR ground—roads, TD trees—deciduous,
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do not change dramatically. Facets with a low ther-
mal admittance (e.g., leaves, porous lawn canopies),
however, respond to a change in QH with a significant
surface temperature change (or QE).

Figure 15 shows the relationship between μ and
spectral energy at P = 73 s, the range where spectra
start to significantly diverge between materials (Fig. 8).
Values for thermal admittance are taken from the
literature describing the thermal properties of build-
ing materials (Oke 1981; Spronken-Smith and Oke
1999; Berge et al. 2009) and of vegetation (Byrne and
Davis 1980; Jones 1992; Jayalakshmy and Philip 2010).
Where several estimates exist in these sources, the
horizontal error bars in Fig. 15 indicate the range of
values reported. A relationship between temperature
fluctuations and thermal admittance is evident (D1
and D2), resulting in higher fluctuations on materials
with lower thermal admittance—although the level of
fluctuations is different (which is also influenced by the
magnitude of radiative and turbulent exchange).

4.4 Spatial scale of turbulent exchange fluctuations

The spatial coherence of fluctuations expressed by
C′

f total (Figs. 9 and 10) indicates that the spatial scale
of fluctuations is more evident on surfaces that ex-
perience significant fluctuations. There is a relatively
constant sensor noise across the microbolometer array
(“Appendix A1”) on which the energy balance effects
(as other error sources) are superimposed. Therefore,
it is not surprising that for pixels where (uncorrelated)

sensor noise is dominant and actual fluctuations ex-
pected from the energy balance are small (high thermal
admittance materials), C′

f total is close to zero. However,
if fluctuations are dominantly caused by the surface
energy balance, then C′

f total is expected to be higher
(closer to 1) as turbulent eddies exist on a range of
scales, and some will affect neighboring pixels at the
same time. It is clear that the spatial and temporal
resolution of the system limits the information that can
be extracted on the scales explicitly resolved, and tem-
perature fluctuations caused by small eddies (less than
∼1 m) will not be resolved. Nevertheless, it is notable
how clearly different surfaces separate in C′

f total. In
particular, the lawn surfaces, with an excellent response
due to their lower thermal admittance, show spatially
coherent patterns, suggesting that large coherent eddies
(30 s to several minutes) control most of the exchange
of heat over a rough surface as reported from tra-
ditional fast anemometry (e.g., Roth and Oke 1993;
Feigenwinter and Vogt 2005; Christen et al. 2007).

5 Conclusions

This contribution presents a scheme to separate a TST
dataset into mean and fluctuating signals. The pro-
posed decomposition scheme was applied to surface
temperatures from four TST datasets in a complex
urban environment over 80 min. The chosen FOV was
an urban surface composed of many different facets
(roofs, walls, trees, lawns, roads). Facets in the FOV
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experienced fluctuations in surface temperature that
related to surface materials and form. The observed
relationships can be summarized as follows:

– Surfaces that experience the strongest surface
temperature fluctuation are significantly warmer
(cooler) than air temperature. Surfaces that are
closer to air temperature show less fluctuation (see
Fig. 13).

– With increasing temperature of a surface above air
temperature, fluctuations show a stronger negative
skewness. There is also some evidence for the oppo-
site case, where surfaces with surface temperature
below air temperature show a more positive skew-
ness. This is explained by large turbulent eddies
that cause sensible heat to be exchanged between a
more uniformly mixed atmosphere and a thermally
patchy surface.

– Surface materials with lower thermal admittance
(lawns, leaves) show higher fluctuations in surface
temperature than surfaces with high thermal admit-
tance (walls, roads) (see Fig. 15). Leaf emergence
of deciduous trees between runs shows impact
on high-frequency thermal behavior. The emerged
leaves cause surface temperatures to fluctuate more
compared to a leaves-off situation.

– The spatial coherence of fluctuations suggests that
the relevant scale of atmospheric turbulence might
be significantly larger than the geometric resolution
of the image (0.5–2.5 m).

Although a significant part of the fluctuations in ap-
parent surface temperatures are caused by sensor noise,
sensor calibration effects, and other complicating fac-
tors (changes in atmospheric transmission, small lateral
movements of the camera due to wind, moving objects,
see the “Appendix”), the key findings let us conclude
that the effect of turbulent exchange of sensible heat
between different urban facets and the atmosphere on
the surface temperature signal can be measured in the
time traces of most materials.

Clearly, there are spatial and temporal constraints
that limit the study to processes inside the spatiotem-
poral scale the field observation was designed for. The
smallest fluctuations observable with the current geo-
metric resolution were 0.5 m (in the foreground). How-
ever, more recent work (Christen and Voogt 2010) has
demonstrated that significant temperature fluctuations
can happen at much smaller scales (10 cm). An upper
spatial limit is the scale of the entire FOV. The effect
of large-scale boundary layer eddies that could change
surface temperatures of the entire image are filtered by
the decomposition scheme and are not visible either.

Further, the temporal scale of resolved fluctuations
is limited. Although the nominal operation frequency
was 1 Hz, the highest frequencies are significantly con-
taminated by sensor noise. In this range, the tempera-
ture resolution of the sensor and sensor effects formed
a severe limitation. In particular in the nocturnal runs,
where the thermal structure of the atmosphere and the
absent short-wave irradiance are expected to reduce
surface temperature fluctuations, a separation of sensor
effects from energy balance effects is impossible for
most surfaces—except metal roofs and lawns.

Nevertheless, the current study underlines the po-
tential of using high-frequency thermal remote sensing
in energy balance and turbulence studies at complex
land–atmosphere interfaces. Using high sampling fre-
quencies in TST observations allows for the extraction
of information on the dynamic response of the surface
energy balance to atmospheric turbulence, thermal ad-
mittance of surface materials, and/or potentially visu-
alizes turbulent motions. This is possible in complex
canopies such as urban environments where a direct
measurement of fluxes and/or turbulent exchange in a
spatial context is otherwise not possible.
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Appendix A: Quantification of error sources

In addition to true changes in surface temperature, the
radiance signal could fluctuate due to signal noise of the
microbolometer focal plane array (“Appendix A1”),
changing temperature gradients (signal drift) across
the array as the array progressively warms up or
cools down (“Appendix A2”), changing absorption
along the LOS (“Appendix A3”), effects of moving
objects (“Appendix A4”), vibration of the camera
platform (“Appendix A5”), and effects of reflection
(“Appendix A6”). Those effects will be separately
quantified and/or discussed.

A1 Signal noise of the microbolometer array

To test the noise of the microbolometer array, the same
equipment was operated in a controlled temperature
chamber at 16◦C for 80 min, recording the temperature
of a uniformly warm concrete slab (50 × 50 × 4.5 cm)
using the same housing, calibration, and recoding set-
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tings as outdoors. The measured σ ′
f total in the center of

the array was determined as 0.169 K which corresponds
to approximately 40–50% of the average σ ′

f total in the
daytime runs and 70–75% of the average σ ′

f total in the
N1 and N2 runs in form of a random background noise.
This means that random inter-pixel noise of the Peltier
cooled array is a dominant effect that adds noise on
top of the energy-balance driven changes. Neverthe-
less, sensor noise should not correlate to any specific
surfaces in the FOV. Based on the spectral results
presented, noise dominates fluctuations in the high-
frequency part (P < 30 s), where ensemble-averaged
spectra of all facet classes converge, and surface effects
cannot be separated (see Fig. 8).

A2 Differential warming or cooling
of the microbolometer array

The effect of differential warming or cooling across the
array is expected to be eliminated constantly by the
internal calibration (shutter) but might add additional
high-frequency noise at higher frequencies than the
shutter. Differential warming or cooling is expected
to cause more variability on the corners of the array
compared to its thermally more stable center. Indeed,
N1 and N2 runs show a radial pattern with slightly lower
σ ′

f total in the center compared to the corners (Fig. 4).
In the temperature controlled chamber run, σ ′

f total in-
creases by 0.050 K from 0.169 K in the center to 0.219 K
in the corners, which corresponds ∼15% of the average
signal of σ ′

f total during the day and ∼24% during night.
The effect is more evident in higher frequencies, i.e.,
the spectral analysis (Fig. 7, N1 and N2) reveals this
radial effect clearly at a period of 5 s.

Patterns in the cross-correlation functions C′
f total that

relate to the image geometry could be a further indica-
tor of fluctuations caused preferably in certain regions
of the image (e.g., corners). Although interesting pat-
terns relating to the actual surface objects are revealed
by C′

f total (Section 3.1.4 and Fig. 9), none of the patterns
shows a dependence on distance from image center or
in any specific direction across the array.

A3 Absorption in the turbulent atmosphere
along the line of sight

To estimate the effect of air temperature and humid-
ity fluctuations along the LOS, an atmospheric ra-
diative transfer model (MODTRAN 5.2; Berk et al.
2005) was combined with the sensor’s known spectral
sensitivity (see Meier et al. 2011 for details). Using
measured standard deviations of temperature and hu-
midity fluctuations (see Section 2.1.3 and Table 2), an

upper limit of the effect of a turbulent atmosphere
was estimated as follows: The maximal error is consid-
ered as the difference between modeled atmospheric
absorption for two temperatures that were offset by
σTair at absolute air temperature Tair. The estimated
effect of air temperature fluctuations along the median
path length of 234 m is 0.018 K for N1 and 0.012 K
for N2. During daytime, due to a strongly convective
atmosphere, stronger fluctuations of Tair are observed
that cause maximum fluctuations of 0.068 and 0.073 K
for D1 and D2, respectively. This corresponds in all
cases to less than 10% of the measured signal of σ ′

f total.
Note that the calculation assumes that air temperatures
will change instantaneously along the entire line of sight
as expressed by σTair. But realistically, temperature
variations (eddies) will cause the spatially integrated
value of σTair along the LOS to be much smaller than
the single-point measurement of σTair. Similarly, the
effect of humidity fluctuations was estimated as the dif-
ference between modeled atmospheric absorption for
the same temperature, but different absolute humidity
(offset by σρv

, see Table 2) at the measured absolute
humidity ρv . Effects of humidity fluctuations along the
path are in all cases < 3% of measured σ ′

f total.

A4 Moving objects along the LOS

The approach presented in this study assumes that all
objects in the FOV are fixed and not moving. However,
in an urban environment, cars and pedestrians (which
are usually warmer) trace temperature signals that are
either directly resolved or cause sub-pixel variation.
Higher-order moments and the spectral analysis at high
frequencies (Fig. 7 at P = 5 s) indeed indicate extreme
values along road lanes that are attributable to moving
traffic. Also ensemble spectra of road surface tempera-
tures are higher in the range of 1–30 s compared to any
other surfaces (Fig. 8).

Further, wind causes flexible objects (trees) to move.
A displacement, even in the sub-pixel scale, would
change the signal emitted from pixels and can also alter
the geometry of surface objects. Tree movement was
not monitored, but studies indicate that at the observed
wind speed of ∼2.5 m s−1, the unimodal swaying of
typical coniferous trees is less than 1 m at 15-m height
(Schindler et al. 2010).

A5 Moving of the camera

Finally, the camera itself (mounted on a 3-m boom) or
the entire high-rise building might sway relative to the
ground. This would lead pixels that are on strong mean
gradients (such as edges) to show higher σ ′

f total due to
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contamination by neighboring pixels, yet affect the en-
tire image. Evidence for this effect is observed in Figs. 4
(D2) and 7 (D2, and N1, most clearly visible at 5 s). To
quantify this error, an edge detection filter was applied
to calculate the spatial standard deviation of mpattern
in a 3 × 3 neighborhood (σ3×3), which is an indication
of the sharpness of nearby “edges.” σ3×3 was then
compared to the temporal σ ′

f total on a pixel-by-pixel
basis. For the entire image, there is positive relationship
between σ3×3 and σ ′

f total with slopes of 0.008 K K−1 (r2 =
0.01) in D1, 0.044 K K−1 (r2 = 0.32) in D2, 0.025 K K−1

(r2 = 0.07) in N1, and 0.009 K K−1 (r2 = 0.03) in
N2. These relationships are estimated to explain 2.6%
of σ ′

f total in D1, 6.4% in D2, 9.0% in N1, and 1.6%
in N2. This matches the visual interpretation of the
images, where runs D2 and N1 are more affected by
this error. While wind speed was similar during the two
daytime and the two nighttime runs, wind direction was
changing from along the boom (view direction, 325◦ in
D1 and N2) to perpendicular in N1 and N2 (Table 1).
A perpendicular wind is expected to cause more lateral
swaying of the boom and/or building and hence more
displacement. If the same procedure is applied only to
the masked areas that are at least 1 pixel away from any
facet edge, the explained error is reduced to 1.2% (D1),
4.5% (D2), 4.7% (N1), and 0.7% (N2) of σ ′

f total because
sharp edges are excluded.

A6 Reflectivity

Most materials studied have emissivities <1.0 and part
of the signal in the apparent surface temperature might
be caused by reflection of fluctuating radiance from
nearby objects or the sky. As large fluctuations of the
long-wave emittance (originating from nearby objects,
the sky or the long-wave part of the direct solar irradi-
ance) are not expected, an error from reflection is likely
small. The only exception could be a non-Lambertian
behavior of a surface (e.g., metal roof) in combination
with a changing solar position over 20 min. Evidence for
this effect was not found in the current dataset.
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