
ORIGINAL PAPER

Combining a weather generator and a standard sensitivity
analysis method to quantify the relevance of weather
variables on agrometeorological models outputs

Roberto Confalonieri

Received: 25 May 2011 /Accepted: 17 August 2011 /Published online: 3 September 2011
# Springer-Verlag 2011

Abstract Sensitivity analysis (SA) is increasingly used to
explain models behaviour in response to inputs variation.
Agrometeorologists are used to apply standard SA methods
only on model parameters because of the difficulty of
applying standard sampling techniques to derive series of
weather data where each value cannot be sampled inde-
pendently from those of the neighbouring days and from
other variables in the same day. The impact of weather
variability on a crop model was here analysed by coupling
the Morris SA method to a weather generator. Spring barley
in northern Italy was simulated and different outputs
considered. Under the explored conditions, parameters
involved with temperature generation resulted the most
relevant in determining yield and maturity date. Radiation-
related parameters were high-ranked for cumulated drain-
age and actual evapotranspiration. According to the author,
this is the first time the sensitivity of a cropping system
model to weather variables is quantified using standard SA
techniques.

1 Introduction

Sensitivity analysis (SA) is a fundamental tool for supporting
mathematical models development and use (Tarantola and
Saltelli 2003) because of its capability of explaining the
variability in the outputs of the models themselves (Cariboni
et al. 2007). Although SA was traditionally used to identify
the parameters with the highest impact on model outputs and

therefore those on which concentrate the calibration activi-
ties, it is increasingly used to analyse model structure and
behaviour (Confalonieri et al. 2010a). In this context, SAwas
recently recommended as a tool to be used iteratively during
the process of model development (Jakeman et al. 2006), to
assure coherence in mathematical formalizations, to avoid
over-parameterizations by driving simplification processes
(Ratto et al. 2001; Tarantola and Saltelli 2003) and to support
the development of balanced models (Confalonieri 2010).
These features favoured the introduction of SA in different
typologies of documents defining guidelines for model
development (e.g. European Commission 2005; Jakeman et
al. 2006).

Advanced SA techniques are increasingly used also in
the field of agrometeorological modelling. Van Griensven et
al. (2006) applied a novel sampling strategy to identify the
most relevant parameters in the Soil and Water Assessment
Tool catchment model for water flow, concluding that
hydrologic parameters had the greatest impact on water
quality. Ravalico et al. (2005) proposed new criteria for
using SA within integrated models for environmental
management and decision making. They applied different
SA methods and found out that the Fourier Amplitude
Sensitivity Test was the most suitable according to the
proposed criteria. In the context of crop growth modelling,
Richter et al. (2010) used the Morris SA method (Morris
1991) to identify the parameters of a complex crop model
with the highest impact on Durum wheat yield formation at
two locations, identifying the parameters involved with
development and early light interception as the most
relevant. Confalonieri et al. (2010b) applied the Morris
and Sobol’ (1993) methods to a model for rice growth and
development, comparing the SA results obtained for five
European countries and, within each country, for 3 years
characterized by different degree of continentality.

R. Confalonieri (*)
Department of Plant Production, University of Milan,
via Celoria 2,
20133 Milan, Italy
e-mail: roberto.confalonieri@unimi.it

Theor Appl Climatol (2012) 108:19–30
DOI 10.1007/s00704-011-0510-0



In spite of the interest of the modellers community in
analysing the effect of weather variability on agrometeoro-
logical models behaviour (e.g. Wolf et al. 1996), most of the
studies on SA carried out on agrometeorological models
refer to works aiming at identifying the most relevant
parameters of the models. In particular, according to the
author, it is impossible to find in the literature studies where
standard SA methods were used to analyse the impact of
weather variables on cropping system model outputs. The
reason is that SA methods sample values from a multi-
dimensional hyperspace defined by an array of inputs; thus,
within a SA experiment, a single value is assigned to an
input for each simulation and that value is related to the
simulation output(s). Regardless to the sampling strategy
used, this leads SA methods to analyse a couple of two-
dimensional matrixes: one with a certain number of
parameters combinations and a second one with a list of
outputs for each combination of parameters. In practice,
when the relevance of weather variables on model outputs
has to be analysed, it is not possible to use standard
sampling techniques to derive coherent series of weather
data where each value cannot be sampled independently
from those of the neighbouring days and from the other
variables in the same day.

The aims of this paper were:

& To propose a procedure for analysing the sensitivity of
agrometeorological models to weather variables via the
analysis of the relevance of the parameters of a weather
generator (WG), considered as synthetic representations
of series of weather variables

& To test the procedure using the CropSyst model (Stöckle
et al. 2003) for spring barley simulations in northern
Italy

2 Materials and methods

2.1 Methodology for estimating crop model sensitivity
to weather variables

The methodology used for estimating crop model sensitivity
to weather variables is shown in Fig. 1. In order to apply a
standard SA method to quantify the relevance of weather
variables (array of daily values for each variable) on the
outputs of an agrometeorological model (state of variables in
a specific moment), a sample of the possible combinations of
WG parameters was created. This led to a 1:1 correspon-
dence between each single combination of input factors (i.e.
WG parameters) and the corresponding array of model
outputs, thus allowing the use of a standard method for SA.

For each of the WG parameters (Table 1), a distribution
was derived by (a) taking a 30-year weather series, (b)

creating 30 29-year series by eliminating each time a single
year and (c) estimating the WG parameters for the 30 29-
year series. The Shapiro–Wilk test was then applied to
verify the normality of the parameters distributions, and in
case of deviation from normality, log-normal or triangular
distributions were tested using the Kolmogorov–Smirnov
test (Fig. 1).

The absence of significant auto-correlations among the
WG parameters allowed avoiding distortions in the gener-
ated weather series. After generating the sample of WG
parameter combinations using the SA method, a 30-year
series of weather data was generated for each combination
using the WG. Thirty years were generated to reduce the
weight of the stochastic component of the generator in
affecting crop model outputs. After the generation of the
weather series from the sampled combinations of parame-
ters, the input files for the crop model were prepared (one
set for each combination) and the 30-year simulations
carried out. Relevant model outputs at physiological
maturity were then averaged for the 30 years and used to
calculate the sensitivity indices for each of the parameters
of the WG.

In order to discriminate between the impact of the
variation in WG parameters on the outputs of the crop
model and on those of the WG itself, (a) climatic indicators
were calculated to synthesize the generated weather series,
(b) they were used to calculate a second series of sensitivity
indices for the generator parameters and (c) the two series
of sensitivity indices (calculated on crop model outputs and
on the climatic indicators) were compared. The synthetic
climatic indicators used were (Table 2): accumulated degree
days (ADD), synthetic agrometeorological indicator (SAM;
Confalonieri et al. 2010c), Budyko aridity index (Bud;
Budyko 1974) and cumulated radiation (CumRad).

2.2 The weather generator

Climak (Danuso 2002) is the WG engine of CLIMATICA
(http://www.dpvta.uniud.it/~Danuso/docs/Climatica/
Climatica_Home.html), a software for exploring, validat-
ing, rebuilding and managing climatic data. Climak proved
its reliability under a variety of conditions, also in
comparative studies (e.g. Acutis et al. 1998).

The occurrence of rain events is estimated stochastically
by using a first-order Markov chain, with the state of each
day (rainy or not) obtained from the state of the previous
day and from the monthly based transition probabilities dry
to dry, rainy to dry, dry to rainy and rainy to rainy.
Precipitation amount is generated by sampling the values
from a two-parameter (alpha, beta) gamma distribution.
alpha and beta are estimated for each month by using the
method of the moments. Maximum and minimum air daily
temperatures are estimated separately, using different
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parameters for rainy and dry days. Sinusoidal trends are
calculated using a second-order Fourier series for average
daily minimum temperature for the dry (Tnd) and rainy
(Tnr) days and for average daily maximum temperature
(Txd for dry days, Txr for rainy ones). For Tn, the
parameter of the Fourier series are annual average mini-
mum temperature of the dry days (A; degree Celsius), semi-
amplitude of the first and second terms (B and D,
respectively; degree Celsius) and phase shift for the first
and second terms (C and E, respectively; days; constants
for a location). A, B and D are sampled from the normal
distributions N(μX, σX), N(μX, σX), N(μX, σX), with X
representing A, B and D, to derive the trend for each year.
The same procedure, with specific values for A, B, C, D
and E is carried out for Tnr, Txd and Txr. Once the four
trends are calculated, random residuals—sampled from
bivariate normal distributions—are calculated on a monthly
base for maximum and minimum temperatures and added
to the trends. Maximum daily radiation is calculated as a
linear function of daily astronomical photoperiod, with the

latter derived from latitude and day of the year according to
Keisling (1982). Daily global solar radiation is then
derived from the ratio between daily and maximum
radiation, calculated from the daily thermal excursion
using a beta probability density function. Daily reference
evapotranspiration is obtained as a linear function of
daily solar radiation (Doorembos and Pruitt 1977). If
radiation is not available, reference evapotranspiration is
derived as a linear function of TP (maximum air
temperature multiplied by the square of photoperiod and
divided by 1,000). In both cases, reference evapotranspi-
ration values are then adjusted by additive residuals
sampled from a normal distribution.

2.3 The crop model

CropSyst (Stöckle et al. 2003) is a cropping systems
simulation model, implementing a generic approach for
crop growth. It has been successfully used worldwide for
many crops (e.g. maize, Jara and Stöckle 1999; cotton,

Fig. 1 Flow chart of the meth-
odology used to estimating crop
model sensitivity to weather
variables
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Table 1 Parameters of the weather generator and statistical settings used for the sensitivity analysis

Variable of interest Parameter Distribution

PD1a PD2a PD3a

Rain Markov Chain: PDD

PDD Jan Normal 0.788 0.005

PDD Feb Normal 0.837 0.004

PDD Mar Normal 0.811 0.004

PDD Apr Normal 0.757 0.004

PDD May Normal 0.764 0.004

PDD Jun Normal 0.752 0.004

PDD Jul Normal 0.788 0.003

PDD Aug Normal 0.767 0.003

PDD Sep Normal 0.818 0.004

PDD Oct Normal 0.768 0.005

PDD Nov Normal 0.773 0.005

PDD Dec Normal 0.790 0.005

Markov Chain: PRD

PRD Jan Log-normal −0.803 0.014

PRD Feb Normal 0.473 0.008

PRD Mar Normal 0.463 0.006

PRD Apr Normal 0.359 0.007

PRD May Normal 0.359 0.005

PRD Jun Normal 0.494 0.006

PRD Jul Log-normal −0.661 0.019

PRD Aug Log-normal −0.597 0.012

PRD Sep Normal 0.466 0.009

PRD Oct Normal 0.403 0.006

PRD Nov Normal 0.394 0.006

PRD Dec Normal 0.424 0.006

Rainfall amount: parameter alpha of the gamma distribution

alpha Jan Log-normal −1.022 0.027

alpha Feb Log-normal −0.879 0.028

alpha Mar Log-normal −0.778 0.028

alpha Apr Log-normal −0.776 0.017

alpha May Log-normal −0.868 0.023

alpha Jun Log-normal −0.971 0.037

alpha Jul Normal 0.329 0.011

alpha Aug Log-normal −0.952 0.027

alpha Sep Log-normal −0.973 0.030

alpha Oct Normal 0.465 0.012

alpha Nov Log-normal −0.839 0.028

alpha Dec Normal 0.348 0.009

Rainfall amount: parameter beta of the gamma distribution

beta Jan Log-normal 2.574 0.018

beta Feb Log-normal 2.487 0.018

beta Mar Triangular 12.615 14.506 14.983

beta Apr Log-normal 2.465 0.023

beta May Log-normal 2.889 0.011

beta Jun Log-normal 2.780 0.061

beta Jul Log-normal 3.005 0.045
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Table 1 (continued)

Variable of interest Parameter Distribution

PD1a PD2a PD3a

beta Aug Log-normal 3.079 0.028

beta Sep Triangular 21.571 27.518 30.881

beta Oct Log-normal 3.060 0.027

beta Nov Log-normal 2.863 0.030

beta Dec Log-normal 2.648 0.039

Temperature Tnd=A+B·sin[(doy-C)·6.28/365]+D·sin[(doy-E)·6.28/182.5]

Tnd mean A Log-normal 2.125 0.006

Txd mean A Normal 18.986 0.025

Tnr mean A Normal 9.562 0.041

Txr mean A Normal 16.509 0.034

Tnd mean B Normal 9.750 0.023

Txd mean B Normal 11.112 0.030

Tnr mean B Normal 8.782 0.024

Txr mean B Normal 10.830 0.032

Tnd mean D Normal 0.737 0.023

Txd mean D Normal 1.357 0.029

Tnr mean D Normal 0.740 0.030

Txr mean D Normal 1.016 0.032

Tnd mean C Normal 111.281 0.135

Txd mean C Normal 104.437 0.131

Tnr mean C Normal 115.200 0.116

Txr mean C Normal 110.159 0.121

Tnd mean E Normal 9.843 0.708

Txd mean E Normal 22.612 0.393

Tnr mean E Normal 19.491 0.924

Txr mean E Normal 3.545 0.898

Tnd st.dev. A Log-normal 0.284 0.016

Txd st.dev. A Log-normal −0.316 0.021

Tnr st.dev. A Log-normal 0.175 0.016

Txr st.dev. A Log-normal −0.056 0.021

Tnd st.dev. B Triangular 0.604 0.677 0.711

Txd st.dev. B Log-normal −0.142 0.024

Tnr st.dev. B Log-normal −0.382 0.020

Txr st.dev. B Triangular 0.863 0.948 0.978

Tnd st.dev. D Triangular 0.623 0.676 0.688

Txd st.dev. D Triangular 0.756 0.835 0.870

Tnr st.dev. D Log-normal −0.175 0.020

Txr st.dev. D Triangular 0.820 0.940 0.986

SRn

SRn Jan Log-normal 1.102 0.011

SRn Feb Triangular 2.458 2.642 2.746

SRn Mar Log-normal 0.940 0.009

SRn Apr Normal 2.519 0.023

SRn May Normal 2.199 0.017

SRn Jun Normal 2.471 0.020

SRn Jul Normal 2.153 0.019

SRn Aug Normal 2.105 0.018
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Table 1 (continued)

Variable of interest Parameter Distribution

PD1a PD2a PD3a

SRn Sep Normal 2.598 0.020

SRn Oct Normal 2.781 0.019

SRn Nov Normal 2.801 0.021

SRn Dec Log-normal 0.993 0.007

SRx

SRx Jan Log-normal 1.100 0.009

SRx Feb Normal 3.297 0.027

SRx Mar Log-normal 1.106 0.008

SRx Apr Normal 2.987 0.022

SRx May Normal 2.815 0.025

SRx Jun Log-normal 1.022 0.007

SRx Jul Normal 2.257 0.018

SRx Aug Normal 2.341 0.012

SRx Sep Log-normal 0.940 0.010

SRx Oct Normal 2.613 0.020

SRx Nov Log-normal 0.984 0.008

SRx Dec Log-normal 1.092 0.009

RRnn

RRnn Jan Log-normal −0.303 0.008

RRnn Feb Log-normal −0.371 0.012

RRnn Mar Normal 0.629 0.006

RRnn Apr Normal 0.686 0.006

RRnn May Normal 0.686 0.006

RRnn Jun Normal 0.742 0.004

RRnn Jul Normal 0.730 0.005

RRnn Aug Normal 0.723 0.004

RRnn Sep Normal 0.737 0.004

RRnn Oct Normal 0.674 0.004

RRnn Nov Normal 0.654 0.005

RRnn Dec Normal 0.667 0.005

RRnx

RRnx Jan Log-normal −0.700 0.018

RRnx Feb Log-normal −0.796 0.024

RRnx Mar Log-normal −0.855 0.019

RRnx Apr Log-normal −0.921 0.020

RRnx May Normal 0.509 0.007

RRnx Jun Normal 0.633 0.006

RRnx Jul Normal 0.610 0.005

RRnx Aug Normal 0.572 0.007

RRnx Sep Log-normal −0.666 0.018

RRnx Oct Normal 0.394 0.008

RRnx Nov Normal 0.433 0.008

RRnx Dec Normal 0.522 0.006

Radiation Radiation=Rmax·Rr; Rmax=b1·photoperiod+b0; Rr from a beta distribution (alpha, beta) alpha1 and alpha2: 1st and 2nd
parameter of the best fit exponential function beta1 and beta2: 1st and 2nd parameter of the best fit hyperbolic function

b1 Log-normal 1.235 0.002

b0 Triangular −23.167 −22.611 −22.579
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Sommer et al. 2008) under a variety of agroclimatic
conditions.

Crop development is simulated as a function of thermal
time accumulated between base and maximum temperature,
optionally corrected to account for photoperiod, vernaliza-
tion and water stress. Daily biomass accumulation is
simulated using a net photosynthesis approach, with
potential accumulation calculated both on intercepted
photosynthetically active radiation (radiation use efficiency
(RUE) approach) and on potentially transpired water
(vapour pressure deficit-corrected transpiration use efficien-
cy). Each day, the minimum between the two daily biomass
rates is selected. Thermal limitation is explicitly accounted
for only in the RUE-based approach. Water and nitrogen
limitations are then applied to get actual daily biomass

accumulation. Leaf area development is calculated from
daily accumulated biomass using a constant specific leaf
area and an empiric parameter. Crop yield is derived by
multiplying the total biomass at harvest by a harvest index
(i.e. yield to biomass ratio, HI), with the latter varying
according to the specific sensitivity to water stress of the
simulated crop or variety. Root depth is simulated as a
function of leaf area development and was set to reach its
maximum at flowering in this study. Leaf senescence is
calculated by subtracting the dead leaf area index to the
total one, with each daily emitted green leaf unit dying once
a threshold amount of degree days is accumulated. Soil
water redistribution can be simulated using a numerical
solution (finite difference) of the Richards soil flow
equation, or with a simple cascading approach.

Table 1 (continued)

Variable of interest Parameter Distribution

PD1a PD2a PD3a

alpha1 Normal 0.051 0.026

alpha2 Normal 0.524 0.002

beta1 Normal −1.719 0.008

beta2 Normal −1.539 0.029

Evapotranspiration ET0=a0+a1·Radiation+N(0, Setr); N(0, Setr); Setr (= d1·photoperiod+d0) is the standard deviation of ET0 residuals; if
radiation is not available: ET0=c0+c1·Tmax·photoperiod2/1,000+N(0, Setr)

a1 Log-normal −1.539 0.001

a0 Normal −0.613 0.008

Setr Log-normal −0.463 0.005

c1 Log-normal −7.183 0.001

c0 Normal −0.147 0.005

d1 Normal 0.023 0.001

d0 Normal 0.075 0.005

aWeather generator parameter distributions: mean and standard deviation for normal and log-normal distributions; lower limit, mode and upper
limit for triangular distributions

PDD dry–dry transition probability, PRD rainy–dry transition probability, Tnd daily minimum temperature for the dry days, Tnr minimum
temperatures for rainy days, Txd maximum temperatures for dry days, Txr maximum temperature for rainy days, SRn standard deviation of
minimum temperature residuals, SRx standard deviation of maximum temperature residuals, RRnn autocorrelation coefficients of minimum
temperature residuals, RRnx correlation coefficients between maximum and minimum temperatures residuals

Table 2 Synthetic agroclimatic indicators used to estimate the relevance of the weather generator parameters on the output of the generator itself

Climatic indicator Equation Units Reference

ADD ADD ¼ P
Tavg� Tcð Þfor Tavg > Tc °C

SAM SAM ¼
P

Rain�
P

ET0P
Rainþ

P
ET0

– Confalonieri et al. 2010b

Bud Q ¼
P

Rad

l�
P

Rain

kg mm−1 Budyko (1974)

CumRad RadCum ¼ P
Rad MJ m−2

ADD accumulated degree days, SAM synthetic agrometeorological indicator, Bud Budyko aridity index, CumRad cumulated radiation, Tavg
average air daily temperature (degree Celsius), Tc critical air temperature (default=0°C) (degree Celsius), Rain daily rainfall (millimetres), ET0
daily reference evapotranspiration (millimetres), Rad daily global solar radiation (megajoules per square metre), λ latent heat of vaporization
(megajoules per square kilogram)
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The algorithms of the CropSyst model (version 3.02.23,
last release of CropSyst 3) were implemented in a high-
granularity, component-based environment (http://agsys.
cra-cin.it/tools/bioma/help/). This allowed (a) to use the
CropSyst algorithms for potential and water limited crop
growth and development and for soil hydrology and (b) to
feed the model with exogenous variables, like reference
evapotranspiration (generated by Climak).

2.4 The sensitivity analysis method

The high computational requirements due to the high
number of parameters of the WG (i.e. 141) suggested to
carry out the SA using the Morris method (Morris 1991).
The Morris method calculates elementary effects due to
each input by calculating an array of incremental ratios
(Δoutput/Δparameter) in different points of the inputs hyper-
space, explored over different trajectories (r), composed by
individual one-factor-at-a-time experiments. Assuming each
input xi belonging to the k-dimensional vector X=(x1,…, xk)
of the model inputs and after having rescaled all the
variables in the 0–1 range, xi is forced to assume only
p discrete values (i.e. levels) in the set {0, 1/(p−1), 1/
(p−2),…,1}. The inputs hyperspace is thus sampled
through a k-dimensional p-level grid. Average (μ) and
standard deviation (σ) of the incremental ratios distribution
are then calculated, with μ representing the overall
influence (total effect) of the parameter and σ identifying
(when it assumes high values) nonlinearities in model
response or interactions with other parameters. In this
study, the evolution of the Morris method proposed by
Campolongo et al. (2007) was used, in light of its improved
sampling strategy (better scan of the inputs hyperspace
without increasing the number of model evaluation
required). The Campolongo et al. (2007) approach also
allows using μ* (instead of μ), representing the mean of the
distribution of the absolute values of the elementary effects,
thus preventing effects of opposite signs (with effects
cancelling each other out) which occur when the model is
non-monotonic. In spite of the low number of simulations
required, i.e. r·(k+1), the Morris method proved its
reliability in ranking the parameters according to their
relevance in different studies where it was compared with
other methods more demanding in terms of model
executions (e.g. Confalonieri et al. 2010a; Yang 2011).

2.5 The simulation experiment

The scenario identified for the simulations refers to spring
barley sown on March 2 in the 45,057 50×50-km cell of
the EC-Joint Research Centre MARS database (latitude
45°04′ N; longitude 8°41′ E, altitude 100 m a.s.l.; data refer
to cell centroid). The climate of the area belongs to the

mesoclimate of the Po Valley, with a discrete level of
continentality mitigated by the relative closeness of the
Mediterranean. Precipitation (about 850 mm year−1) is
relatively well distributed with two maxima in autumn and
spring. Mean annual temperature is about 13.5°C, with
thermal maximum and minimum usually in July–August
and January–February, respectively. The soil chosen is clay
loam (well represented in the study area), with average
values for sand and clay of 38.8% and 36.8%, respectively,
in the first 100 cm.

Barley is not irrigated in the region, and no nitrogen
effect on crop growth was simulated. The simulations were
therefore carried out only under water-limiting conditions.
The CropSyst parameters for spring barley proposed by
Donatelli et al. (1997) were used, and soil water redistri-
bution was simulated using the approach based on the
Richards’ equation. Local experience suggested a slight/
moderate HI sensitivity to water stress for spring barley:
Related model parameters were thus set to 0.3 (like in
Donatelli et al. 1997), with 0 and 1 corresponding to no
sensitivity and maximum sensitivity, respectively. Output
variables considered are physiological maturity date
(MatDate; day of the year), yield (tons per hectare),
cumulated drainage (CumDrain; millimetres) and actual
evapotranspiration (CumActET; millimetres).

The Morris method was parameterized with seven
trajectories and six levels, since these values allowed
obtaining stable results in previous studies performed with
similar models (Confalonieri et al. 2010a) and in prelimi-
nary tests carried out within this study (data not shown).
This led to a total of 994 30-year simulations (seven
trajectories multiplied by the number of Climak parameters
plus one).

3 Results and discussion

3.1 Distributions of the weather generator parameters

For each of the WG parameters, the obtained distribution
(see Section 2.1) is shown in Table 1. The parameters
resulted normally distributed in 84 out of 141 cases,
whereas log-normal distributions were adopted for 49
parameters; triangular distributions were used for the
remaining ones. For parameters involved with rainfall
generation, transition probabilities followed almost always
a normal distribution, whereas other distributions were
generally adopted for the alpha and beta parameters of the
gamma distribution used for rainfall amount. Concerning
the parameters directly involved with temperature data
generation, non-normality was detected for the standard
deviation of the parameters of the Fourier series (A, B, D)
and for about half of the parameters involved with
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temperature residuals. Also the radiation and evapotranspi-
ration parameters resulted non-normally distributed in about
half of the cases.

3.2 Sensitivity analysis results

The CropSyst output variables simulated for the 994
combinations of WG parameters were averaged for the
30 years simulated for each combination. Mean simulated
yield and maturity date were 4.57 tha−1 and June 24, in
both cases coherent with what is usually observed for fully
fertilized spring barley in the region. Simulated maturity
dates presented a low variability (standard deviation=
0.4 days), whereas yield data were more spread (with a
coefficient of variation (CV) of 3.1%), like CumActET ones
(CV=2.3%), although the highest variability was observed
for CumDrain (CV=13.9%). In any case, all the output
variables resulted to come from normal distributions, with p
values of 0.117, 0.452, 0.669 and 0.507 for MatDate, yield,
CumDrain and CumActET, respectively.

Looking at the overall influence of parameters (μ*), crop
development (Fig. 2a) was, to a large extent, influenced by
b1 (slope of the linear regression equation to derive
maximum radiation from photoperiod) and PRD Feb
(rainy–dry transition probability for February), with a
secondary, although important, role played by three
temperature-related parameters (Tnd mean A, Tnr mean
C, Txd mean D, all involved with the Fourier series used to
calculate the yearly sinusoidal trends) and by a another
radiation-related parameter (alpha2). The importance of
temperature-related parameters is explained by the driving
role of this variable for the accumulation of thermal time,
whereas the relevance of PRD Feb is probably related to the
availability of sufficient water to avoid water stress in case
of dry springs. Water stress, indeed, accelerates develop-
ment because of the assumption that low transpiration leads
to a warmer plant (Stöckle et al. 2003), thus increasing the
temperature perceived by the plant. The relevance of b1 and
alpha2 is due to their effect on evapotranspiration, in turn
involved in the computation of water stress too. The effect
of b1 and PRD Feb in modulating the plant response to
temperature (via the impact on water stress) was confirmed
by the high values they achieved for Morris σ, suggesting
interactions with other parameters (i.e. those related with
temperature generation).

Figure 2b shows that the nine top-ranked parameters
according to their relevance on yield were all related with
temperature. In six out of nine cases, they were involved
with the Fourier series for sinusoidal trends, with a
prevalence of parameters related with the generation of
temperature during dry days. The importance of tempera-
ture in influencing yield is explained by its effect both on
thermal limitation to photosynthesis and on development,

with the latter in turn influencing the simulation of
processes involved with biomass accumulation like, e.g.
leaf area evolution. Four out of six parameters involved
with the generation of radiation data were in the 17% of the
top-ranked parameters according to μ*. The lower impor-
tance of radiation-related parameters compared with that of
temperature-related ones is explained by the fact that
radiation-dependant biomass accumulation is used by
CropSyst only in the days when vapour pressure deficit
(VPD) is low; otherwise, the VPD-corrected transpiration
use efficiency approach (Tanner and Sinclair 1983) to
biomass accumulation is used. This consideration and the
relatively low year-to-year variability in cumulated radia-
tion during the spring barley growing period in the study
area explain the overall highest relevance of temperature-
related parameters, although radiation-related ones resulted
anyhow having a great importance in influencing yields, as
discussed by other authors (e.g. Rivington et al. 2002;
Weiss et al. 2001; White et al. 2011). Seven parameters
related with rainfall data generation were ranked among the
30 most relevant, with a slight prevalence of those
influencing winter rainfall, probably because of their role
in refilling the soil profile before the spring, when rainfall
in the region is normally able to guarantee a sufficient
amount of water to the crop.

SA results calculated on CumDrain are shown in Fig. 2c.
Although parameters involved with the generation of
temperature data were in the first six positions according
to the value of μ* and they represented the 80% of the 20
top-ranked parameter, all the radiation-related parameters
were among the 27% most relevant. Besides the impact of
radiation on crop growth and therefore on the plant
capability to uptake water from soil, the relevance of the
parameters involved with radiation generation is due to the
direct effect of this variable in driving evapotranspiration.
The second effect (on evapotranspiration) is probably more
important than that on crop water uptake because of the
relatively low values of σ for the radiation-related param-
eters, thus suggesting low interactions with other parame-
ters. On the contrary, the effect due to crop water uptake
would have led to high interaction with others (e.g.
temperature-related ones). Four rainfall-related parameters
were classified in the 30 top-ranked, with a clear prevalence
of parameters related with the generation of rainfall in
winter months, when the crop is not present in the field (no
crop water uptake).

Compared with the situation discussed for the other
output variables, results of SA calculated on CumActET
(Fig. 2d) show that, although temperature-related parame-
ters were again the most relevant, the parameters involved
with generation of radiation data presented a higher
importance. alpha2 and b1 were ranked 4th and 5th,
respectively, and other two radiation-related parameters
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were ranked among the 13% most relevant. This can be
explained considering also the impact of radiation data on
crop growth, therefore on how CropSyst calculates transpi-
ration. The relevance of Setr and a0 (ranked 3rd and 16th,
respectively) is explained by their effect in determining the
atmospheric evapotranspiration demand.

Although the methodology proposed (Fig. 1) is generic,
without site/crop/model-specific elements, the obtained
results obviously depend on the explored conditions and
cannot be generalized to spring barley grown under
different agroenvironmental conditions and/or simulated
by other models. For all the output variables analysed, the
μ* values achieved by the most relevant inputs (those
marked with Climak parameters names in Fig. 2) passed the
significance test proposed by Morris (1991), based on the
comparison between μ* values and the double of the
standard error of the mean.

3.3 Analysis of the relationships between the sensitivity
indices calculated on the outputs of the crop model
and on those of the weather generator

Figure 3 presents the relationships between (a) the ranks—
according to μ*—of the ten most relevant WG parameters
resulting from the SA on crop model outputs and (b) the
ranks obtained by the same parameters according to the SA
carried out on the synthetic climatic indicators. Black bars
indicate the rank obtained by each parameter for the four
crop model outputs analysed. A value of zero indicates that
the rank of the parameter (according to the SA carried out

on the climatic indicators) is higher than 10. With the
exception of MatDate (Fig. 3a), for which a certain
coherence between the rankings calculated for the crop
model output and for the accumulated degree days (base 0°
C) was expected, the rankings derived from model outputs
were always clearly different from those calculated on the
climatic indicators. For example, the three top-ranked
parameters for yield (RRnx Oct, SRx Feb, Txd st.dev. A)
were out of the first ten for all the climatic indicators, like
the 5th and those from the 7th to the 9th (Fig. 3b), whereas
SRx Dec, which was ranked 4th for yield was ranked 2nd
for Budyko aridity index and 6th for SAM. Another proof
of the incoherence between the rankings obtained from crop
model outputs and synthetic climatic indicators is that a
single parameter for CumRad (alpha2), ADD (Tnr mean C)
and Bud (SRn Dec) was present among the top ten
parameters for yield (Fig. 3b), CumDrain (Fig. 3c) and
CumActET (Fig. 3d), respectively. These considerations
demonstrate that the sensitivity of the crop model outputs to
the WG parameters is not affected by the sensitivity of the
WG to the same parameters.

4 Conclusions

According to the author, this is the first time the sensitivity
of a cropping system model to weather variables is analysed
using standard SA techniques. The proposed procedure
proved to be feasible and able to identify quantitatively the
most relevant driving forces during the crop cycle. For

Fig. 2 Sensitivity analysis
results (Morris μ* and σ) for
different output variables of the
CropSyst model: a maturity
date, b yield, c cumulated
drainage and d cumulated actual
evapotranspiration. The different
symbols indicate parameters in-
volved with rain (white circles),
temperature (crosses), radiation
(black triangle) and reference
evapotranspiration (grey
squares). Labels indicate the
names of the most relevant
parameters
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rainfall, and minimum and maximum temperature, it was
even able to discriminate the relevance of the variable in the
different moments during the season.

In general, under the explored conditions, parameters
involved with the generation of temperature were the most
relevant, achieving the highest values for Morris μ* when
the output analysed was yield, cumulated drainage and
cumulated actual evapotranspiration. For maturity date,
they represented 16 out of the 22 top-ranked parameters.
For yield, and cumulated drainage and actual evapotrans-
piration, temperatures in the winter months achieved some
of the highest relevance values. Radiation-related parame-
ters played an important role in the simulation of cumulated
drainage and actual evapotranspiration. Parameters in-
volved with rainfall generation were generally high-
ranked, although usually not achieving the highest values
for none of the Morris metrics.

The procedure proposed was carried out under two
assumptions. The first is that crop model sensitivity to
weather variables can be analysed by quantifying the

outputs variability in response to variations in the
parameters of a WG, in turn assumed as synthetic
representations of the weather variables themselves. The
second assumption derives from the fact that the impact
of parameters variation was estimated on the outputs of a
‘chain’ of models, constituted by the WG (in a certain
way a model itself) and by a crop model. This leads to
realize that part of the effect of the variation in the WG
parameters surely affected the behaviour of both the
generator itself and, in a second moment, that of the crop
model. The procedure used to verify that the SA results
calculated on crop model outputs were not compromised
by the effect due to the WG led to conclude that, for all
the outputs analysed, there was no coherence between
the ranking of the most relevant parameters calculated on
the outputs of CropSyst and on those of the WG. This
allows concluding that the impact of WG parameter
variations on the crop model is in a certain way more
relevant than that on WG outputs, since the crop model
proved to react to the parameters variations in such a

Fig. 3 Comparison of sensitivi-
ty analysis results calculated on
the outputs of the crop model
and on climatic indicators
synthesizing the outputs of the
weather generator. Ranks of the
10 most relevant weather gener-
ator parameters according to μ*
for maturity date (MatDate; a),
yield (b), cumulated drainage
(CumDrain; c) and cumulated
actual evapotranspiration
(CumActET; d) are compared
with the ranks obtained by the
same parameters for the climatic
indicators accumulated degree
days (ADD), synthetic agrome-
teorological indicator (SAM),
Budyko aridity index (Bud) and
cumulated radiation (CumRad)
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way to hide the direct impact of parameters variation on
WG outputs.

The proposed procedure increases our knowledge on the
behaviour of crop and environmental models and could be
used to support their development. Moreover, it could find
application in refining the process of development of
agroclimatic databases, e.g. by identifying the variables
most impacting on operational models and thus the
variables on which to concentrate the efforts for improving
the approaches used for measuring, estimating, interpolat-
ing, downscaling etc. the variables themselves. Estimating
the sensitivity of impact models to weather variables in
different moments during the crop cycle could also support
the definition of adaptation strategies, e.g. by supporting
the identification of suitable sowing periods under climate
change scenarios.
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