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Abstract The measuring stations of a geophysical net-
work are often spatially distributed in an inhomoge-
neous manner. The areal inhomogeneity can be well
characterized by the fractal dimension DH of the net-
work, which is usually smaller than the euclidean di-
mension of the surface, this latter equal to 2. The
resulting dimensional deficit, (2 − DH), is a measure of
precipitating events which cannot be detected by the
network. The aim of the present study is to estimate
the fractal dimension of a rain-gauge network in Tus-
cany (Central Italy) and to relate its dimension to the
dimensions of daily rainfall events detected by a mixed
satellite/radar methodology. We find that DH � 1.85,
while typical summer precipitations are characterized
by a dimension much greater than the dimensional
deficit 0.15.
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1 Introduction

The distribution of a geophysical network is a multi-
stage decision process which mainly relies on economic
and demographic interests and on access problems in
remote areas. Although an ideal network of stations
should be spatially homogeneous and sufficiently dense
to discriminate the minimum wave-length of the in-
vestigated geophysical phenomena, the irregularity and
sparsity of observation points imply interpolation er-
rors when reporting data on a regular grid. The areal
clustering of point-sets can be measured by statistical
indices as pointed out by Ouchi and Uekawa (1986) or,
when the inter-station distances are scale-invariant, it
can be well characterized thanks to a fractal analysis
(Mandelbrot 1982).

If the point-set is self-similar, i.e. any small part of
it is the magnified version of the whole set, the set
is a fractal and it can be characterized by its fractal
dimension DH , which is a real number with DH <

DE, where DE is the standard euclidean dimension
of the embedding space (in our case, DE = 2). In lit-
erature several works (Korvin et al. 1990; Lovejoy et
al. 1986; Mazzarella and Tranfaglia 2000; Olsson and
Niemczynowicz 1996; Tessier et al. 1994) deal with
the fractal characterization of a single-point observa-
tion network and sometimes this analysis is used as a
method to drive an optimal enlargement of the net-
work (Mazzarella and Tranfaglia 2000). Lovejoy et al.
(1986) state that any sufficiently sparsely distributed
phenomena having a fractal dimension smaller than the
dimensional deficit δ = 2 − DH of the observing net-
work cannot be detected by the network itself. Since the
sparse precipitating phenomena are the most intense
and potentially severe, they are of prominent interest,
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particularly when the network of measuring stations
are constantly used for civil protection purposes. The
aim of this study was to compute the fractal dimension
DH of the rain-gauge network belonging to the Centro
Funzionale Regionale in Tuscany (Central Italy) and
to compare DH with the fractal dimension d of daily
rainfall events occurring in the same area, using an
independent network for rainfall, for the month of
July 2010. We find that DH � 1.85, therefore giving a
dimensional deficit δ � 0.15. On the other hand, all rain
patterns give a fractal dimension d > 0.6, well above δ.
A rough extrapolation of data for d as a function of 24-
h rain thresholds suggests that our rain-gauge networks
might fail to record precipitation events whose intensity
is about 75 mm/day or more.

The paper is organized as follows. In Section 2 we
detail the data used in this study and the methodology
adopted to evaluate DH . In Section 3 the computation
of the fractal dimension of the rain-gauge network is
presented and compared to those obtained for rainy
days. Finally in Section 4 results are discussed with
reference to the potentiality and limits of the applied
methodology.

2 Data sources and methods

2.1 Data sources

The location of the rain-gauges belonging to the Cen-
tro Funzionale Regionale (CFR) in Tuscany (Central
Italy) is shown in Fig. 1. Its establishment has been
a long-term decision process involving several local
institutions over more than 20 years. The network
comprises 377 stations and encloses several basins over
an area of about 23,000 km2 (yielding a density of

about one station every 60 km2). More than 90% of
the stations are located below 810 m. The biggest inter-
station distance (in other words the size or diameter of
the point-set) is about 250 km. These data make the
geography of our network similar to that studied by
Mazzarella and Tranfaglia (2000).

Satellite imagery acquired by the Meteosat Second
Generation (MSG-2) satellite in the infrared (IR) chan-
nel centered at 10.8 μm was used in this study as a proxy
to detect and monitor cold clouds systems. The study
period is July 2010 while the spatial and temporal data
resolutions are 4.5 × 4.5 km2 and 15 min, respectively.
A brightness temperature (TB) threshold was used to
identify cold cloud systems that are most likely to be
associated with convective activity. Kolios and Feidas
(2007, 2010) used a TB of 228 K to best identify con-
vective systems in the Mediterranean area based on a
set of lighting data. The same temperature threshold
of 228 K was used by Morel and Senesi (2002) for
assessing the climatology of the European MCSs, this
value being very close to that of 221 K used by Garcia-
Herera et al. (2005) for Spain. This low-temperature
threshold allows to investigate mostly anvil regions
and embedded areas of active deep convection
(Johnson et al. 1990). In this study, a 228 K TB thresh-
old value was chosen for identifying very deep convec-
tive events over Tuscany. Furthermore, discrimination
between precipitating and non-precipitating cold cloud
systems, previously subjected to TB threshold test, was
performed using RADAR data provided by the DPCN
(National Civil Protection Department) radar network.
The data consist of a mosaic of instantaneous surface
rainfall intensities (SRI) with a spatial and temporal
resolution of 1 km and 15 min, respectively. Several
daily precipitation amounts were tested; thresholds val-
ues of 1, 2, 5, 10, 15, 20, 25, 30, 35 mm per day were

Fig. 1 Location of rain
gauges (right side of the
picture)—belonging to the
Centro Funzionale Regionale
network in Tuscany (Central
Italy, on left side of the
picture)
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used to analyze the different phenomenology linked to
precipitation, from weak to moderate regimes.

2.2 Methodology

While euclidean geometry deals with ideal geometric
forms and assigns dimension 0 to points, 1 to lines and
so on, fractal geometry deals with non-integer dimen-
sions. The fractal, or Hausdorff, dimension DH has
been the most common used measure of the strange-
ness of attractors of dissipative dynamical systems that
exhibit chaotic behavior (Grassberger and Procaccia
1983b). Since for experimental data the value of DH is
difficult to determine using the box-counting algorithm
(Strogatz 1994), we computed the fractal dimension D2

of point-set using the method proposed in Grassberger
and Procaccia (1983a, b), as also found in the literature
(Korvin et al. 1990; Lovejoy et al. 1986; Mazzarella
and Tranfaglia 2000; Olsson and Niemczynowicz 1996).
In the case under examination we choose to use D2

as a good approximation of DH , since as stated in
Grassberger and Procaccia (1983b), D2 ≤ DH and in-
equalities are rather tight in most cases.

In the present study we compute the correlation di-
mension in a 2-dimensional space but in general, to ob-
tain D2 given a point-set {Xi}N

i=1 with Xi ∈ Rn, we have
to consider the correlation integral C(R) that counts
the number of pairs

{
Xi, X j

}
such that ‖ Xi − X j ‖ is

smaller than a given threshold R > 0, with ‖ · ‖ being
the standard euclidean distance in Rn. In formulas:

C(R) = 2

N(N − 1)

N∑

i=1

N∑

j=1
j�=i

�(R− ‖ Xi − X j ‖), (1)

where � is the Heaviside function and where 2
N(N−1)

is
the normalization factor so that C(R) tends to 1 for R
tending to infinite.

If the rain-gauge network is a fractal then C(R)

grows like a power:

C(R) ∝ RD2 , (2)

that is

log(C(R)) ∝ D2 log(R). (3)

Therefore, one can derive D2 from the regression
coefficient of relationship (3).

In order to determine the correlation dimension D2

of the rain-gauge network described previously, we
computed the correlation function defined in Eq. 1, as
described in Lovejoy et al. (1986), i.e. we determined

the cumulative frequency distribution of the inter-
station distances for the total number of 377 stations.
The distances were determined by spherical trigonom-
etry, using geographic coordinates and ignoring ele-
vations owing to the smallness of the elevation with
respect to the two horizontal dimensions.

For what concerns the values of the parameter R, as
done in Mazzarella and Tranfaglia (2000), we started
in computing the inter-station distances defined in
Eq. 1 from 1 km. This value was gradually increased
by a factor of 1.1 up to 250 km since, as expected
by definition of C(R) given in Eq. 1, for all R ≥
size (area of interest) the correlation integral C(R) sat-
urates to 1 and log(C(R)) saturates to 0.

For experimental data the linear behavior of
log(C(R)) on log(R) is limited to a scaling region SR, i.e.
only for R belonging to the interval SR = [Rmin, Rmax]
(Strogatz 1994). This happens because C(R) is under-
estimated from those points near the edge of the set so
that the criteria to determine the bounds of SR need to
be analyzed in each singular case (Liebovitch and Toth
1989). According to the literature (Forrest and Witten
1979; Grassberger and Procaccia 1983a; Korvin et al.
1990), the upper limit Rmax is chosen equal to one third
of the diameter of the area (about 80 km). In order
to choose the lower limit Rmin, we didn’t perform any
statistical significance computation, since in our case
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Fig. 2 Distribution of nearest neighbor’s distances for each sta-
tion in the point-set. Average value is 4.2 km which is taken as
Rmin, the lower limit for the regression of log(C(R)) on log(R)
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the correlation coefficients are statistically significant
at 99% confident level for all R ≥ 1 km. Rather, for
each station we computed the distance of the nearest
neighbor and took the average of this distribution as
the meaningful index of the points separation.

In Fig. 2 we plot this distribution; the average of
nearest neighbor’s distances is about 4.2 km and this
value is considered as the lower limit Rmin meaningful
for the regression.

3 Results

The linear fitting between log(C(R)) and log(R) within
the scaling region SR bounded by Rmin = 4.2 km and
Rmax = 80.2 km yields a slope, and thus a correlation
dimension value D2 of 1.85. Figure 3 shows the results
of this regression. The dimensional deficit δ of the net-
work, defined as the difference between the dimension
of the embedded space and D2, is (2 − D2) = 0.15.

The value of δ should be related to the dimen-
sion d of rainfall phenomena. From a climatological
point of view, the area of interest (central Italy) is
mainly affected by convective storms or frontal systems,
depending on the seasonality. Convective storms are
of uppermost interest for our analysis since they are
smaller, more or less separate rainfall areas displaying
a considerable spatial variability and thus suitable for
fractal analysis. They are typical of the warm season
(from June to September roughly). The frontal storms
are characterized by continuous rainfall areas of large

Fig. 3 Log-log plot of correlation integral C(R) on R with scaling
region delimited by Rmin = 4.2 km and Rmax = 80.2 km. The
corresponding slope of the regression line which determines the
correlation dimension D2 is equal to 1.85

spatial extensions and are typical in autumn and winter
seasons.

Using remote sensing and ground instruments de-
scribed in Section 2 we collect data for every day in
July 2010. First step is to select all the pixel in the
MSG-2 15-min dataset having a brightness tempera-
ture below 228 K so that we can obtain a point-set
(i.e. pixel-set) of potential precipitation cells (Kolios
and Feidas 2010; Morel and Senesi 2002). Secondly,
to assign a rain amount to the selected pixels we use
the radar data. For each selected pixel in the MSG 15-
min dataset we retrieve the surface rainfall intensities
(SRI) as estimated by the RADAR data provided by
the DPCN (National Civil Protection Department).
Finally for each day of July 2010 we add all the 96 daily
images (for each day we have one image every 15 min)
and obtain a daily estimate of precipitation amount.
Rain estimates were processed in order to compute
the correlation dimension using the method detailed in
Section 2. In Fig. 4 we plot the correlation dimensions
of rainfall events registered in the month of July 2010 in
Tuscany. Daily rainfall events were divided on the basis
of prescribed thresholds, chosen equal to 1, 2, 5, 10, 15,
20, 30, and 35 mm. For each threshold, Fig. 4 shows the
average and standard deviation values of correlation
dimension of the rainy pixel-set for those days having a
significant number of points that registered an amount
of precipitation above the threshold.
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Fig. 4 Correlation dimensions of rainfall events (average values
and standard deviations) registered in Tuscany in the month of
July 2010 for different thresholds. Horizontal gray line is δ, the
dimensional deficit of rain-gauge network
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4 Discussion

The present study achieved the issue to estimate the
areal sparseness of the monitoring rain-gauge network
belonging to the CFR owned by Tuscany Administra-
tion by means of the fractal (correlation) dimension
D2. In Table 1, we compare this value with dimension
D2 found in other, similar studies in the literature.
Except the cases of Australia and Canada, where the
dominance of inhabited areas along the coast lowers the
value of the fractal dimension, our D2 value is in good
agreement with the others.

However, we have to point out that the computed
correlation dimension D2 must be handled with care
because, according to the Tsonis criterion (Tsonis et al.
1994), the minimum number Nmin of points required to
produce a correlation integral with no more than an
error Err (normally Err = 0.05DE) is approximately

Nmin ∝ 102+0.4D2

which, in our case, means Nmin � 600 whereas we have
377 stations.

In order to analyze the dimensional deficit δ = 0.15,
we need to compare it with the fractal dimension of
rainfall events, as done in the previous section. As for
the precipitations fallen in July 2010, even the more
intense ones were characterized by a fractal dimension
d > 0.6, much greater than the dimensional deficit δ =
0.15. We stress that the used rain data (see Fig. 4)
are independent from the rain-gauge network used to
determine the fractal dimension DH = 1.85. Therefore,
these preliminary results allow us to state with a good
confidence that our rain-gauge network was precise
enough to record all precipitation events occurred in
July 2010. Empirically we can suppose that the fractal
dimension goes to zero as the threshold increases; this

Table 1 Comparison of D2 computed in the present study with
other correlation dimensions found in literature

Reference # of points Area coverage D2

Lovejoy et al. (1986) 9,563 Global land 1.75
3,593 France �1.8
414 Canada �1.5

Korvin et al. (1990) �65,000 Australia 1.42
Tessier et al. (1994) 7,983 Global land 1.79
Olsson and 230 �10,000 km2 �2

Niemczynowicz (1996)
Mazzarella and 215 �38,000 km2 1.84

Tranfaglia (2000)
300 �38,000 km2 1.89

Present study 377 �23,000 km2 1.85

It is also reported the bibliography references, the number of
points taken into account and the extent of geographical area

because intense precipitation events (at least thermo-
convective ones) are more scattered. On the other hand
light rains are more homogeneous and then associated
to a (decreasing) linear trend for small thresholds. We
then choose to fit the values plotted in Fig. 4 with
an exponential model which is almost linear for small
values of x and decreases to zero as x tends to infinity.
We can then suppose that

y = Ae−x/x0

where the independent variable x on the x-axis repre-
sents the daily amount of rain, y represents the fractal
dimensions and the parameters are A = 1.657 and x0 =
31.133. The model is calibrated using the first values
of x (thresholds from 1 mm/day up to 15 mm/day,
continuous line in Fig. 4), since above we don’t have any
significant statistics (just two days registering at least 20
pixels with a precipitation above 20 mm and one day
registering at least 20 pixels with a precipitation above
25 mm).

The exponential regression intersects δ = 0.15 for

xδ = −x0 ln

(
δ

A

)

that is x0.15 � 75 mm/day. In other words our data sug-
gests that rainfalls with daily amount equal or above 75
mm/day might correspond to a fractal dimension d < δ,
so that these events could not be detected. This value
is based, by construction, on the remote sensed data
and ground instruments and on the phenomenology
of rainfall events. Ongoing efforts are directed toward
the improvements of the accuracy of instruments and
toward the calibration of the algorithms.

Further studies are required to investigate the re-
lationship between correlation dimension D2 of the
observing network (but we are rather interested in the
dimensional deficit δ) and the dimensions d of rain-
fall events. Firstly the most important improvement of
the research is to expand the statistics of precipitating
events considering several months for, at least, a couple
of years. Moreover it would be interesting to take into
consideration the fall/winter precipitations, which are
mainly associated with cold and warm fronts, to evalu-
ate the different behavior of dimension d and check if,
for some thresholds, it drops below δ.
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