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Abstract A computational framework to generate dai-
ly temperature maps using time-series of publicly
available MODIS MOD11A2 product Land Surface
Temperature (LST) images (1 km resolution; 8-day
composites) is illustrated using temperature measure-
ments from the national network of meteorological
stations (159) in Croatia. The input data set contains
57,282 ground measurements of daily temperature for
the year 2008. Temperature was modeled as a function
of latitude, longitude, distance from the sea, eleva-
tion, time, insolation, and the MODIS LST images.
The original rasters were first converted to principal
components to reduce noise and filter missing pixels
in the LST images. The residual were next analyzed
for spatio-temporal auto-correlation; sum-metric sepa-
rable variograms were fitted to account for zonal and
geometric space-time anisotropy. The final predictions
were generated for time-slices of a 3D space-time cube,
constructed in the R environment for statistical com-
puting. The results show that the space-time regression
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model can explain a significant part of the variation
in station-data (84%). MODIS LST 8-day (cloud-free)
images are unbiased estimator of the daily temperature,
but with relatively low precision (±4.1◦C); however
their added value is that they systematically improve
detection of local changes in land surface temperature
due to local meteorological conditions and/or active
heat sources (urban areas, land cover classes). The
results of 10–fold cross-validation show that use of
spatio-temporal regression-kriging and incorporation
of time-series of remote sensing images leads to sig-
nificantly more accurate maps of temperature than
if plain spatial techniques were used. The average
(global) accuracy of mapping temperature was ±2.4◦C.
The regression-kriging explained 91% of variability in
daily temperatures, compared to 44% for ordinary krig-
ing. Further software advancement—interactive space-
time variogram exploration and automated retrieval,
resampling and filtering of MODIS images—are
anticipated.

Keywords Land surface temperature ·
Regression-kriging · Space-time variogram · MODIS ·
Noise filtering · Principal component analysis

1 Introduction

A recurring problem within climatology and meteo-
rology is the optimization of interpolation techniques
to generate maps of meteorological and climatic pa-
rameters using point measurements from climatic sta-
tions. A variety of interpolation techniques, ranging
from splines, regression and kriging to neural networks
and machine learning techniques have been suggested
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and evaluated (Antonić et al. 2001; Jarvis and Stuart
2001; Boer et al. 2001; Hartkamp et al. 1999). Most
of these techniques perform better if auxiliary gridded
maps, i.e. information on topography (Digital Eleva-
tion Model), exposition, distance from the coast-line
and similar, are used for interpolation. Jeffrey et al.
(2001), for example, produced an archive of climatic
variables for Australia using thin plate splines and
elevation as auxiliary predictor. Hijmans et al. (2005)
use latitude, longitude, and elevation as auxiliary vari-
ables to produce global maps of a variety of climatic
variables by thin plate smoothing splines: monthly total
precipitation, monthly mean, minimum and maximum
temperature, and 19 derived bioclimatic variables. Ex-
tending this idea, the PRISM group of the Oregon State
University used weighted regression with an extended
list of predictors—elevation, coastal proximity, verti-
cal layer, topographic facet, effective terrain weights
etc.—to produce (retrospective) daily precipitation and
temperature data sets for the conterminous USA (Daly
et al. 2008).

Although techniques such as smoothing splines have
been well accepted by the climatic modeling commu-
nity, they may be criticized by geostatisticians for al-
lowing users to set the model parameters subjectively.
Also, the quantification of interpolation error is less so-
phisticated than with geostatistical interpolation tech-
niques (Boer et al. 2001). On the other hand, splines are
more efficient in dealing with noisy (weather station)
data as they do not need to go through the measured
values. Unlike the kriging methods that often ignore
measurement error and force predictions to go through
actual measured values.

In recent years, there has been a shift in the discipline
to improve two important aspects of climatic mapping:
(1) statistical robustness—by using uni- or multivari-
ate (dynamic) spatio-temporal prediction models; (2)
temporal coverage—by extending the list of auxiliary
variables to time series of remote-sensing based mete-
orological images. A geostatistical interpolation tech-
nique known as “Kriging with External Drift” (KED),
“Universal kriging” (UK) and “regression-kriging”
(RK) is now largely recognized as a flexible and
well-performing technique for unbiased estimation of
spatially continuous features (fields), and is also in-
creasingly used for interpolation of meteorological and
climatic variables (Hudson and Wackernagel 1994;
Pebesma 2006; Hengl 2009).

Geostatistical methods used in meteorology are now
also increasingly 3-D (2-D plus time) and 4-D (3-D
plus time). Gelfand et al. (2005) proposed a Bayesian
inference framework for predicting temperature and
extended it to multivariate dynamic spatial models.

Schuurmans et al. (2007) further propose an auto-
mated framework for prediction of rainfall fields using
spatio-temporal data and KED. Carrera-Hernández
and Gaskin (2007) compare KED and KED in a local
window for spatio-temporal interpolation of tempera-
tures and rainfall over the Basin of Mexico. Kebaili
Bargaoui and Chebbi (2009) show that 3-D kriging
leads to significantly lower prediction errors than classi-
cal 2-D kriging. Inclusion of temporal auto-correlation
has in general shown to increase information content in
the generated maps (Spadavecchia and Williams 2009).
The remaining issue is how to combine time series of
meteorological images with ground observations.

In this article we present a procedure to interpolate
daily mean temperature over a whole year period by
using time series of auxiliary predictors. We first build
a spatio-temporal regression model using the complete
point data and covariate data, then estimate the de-
terministic part of variation, analyze residuals for spa-
tial and temporal auto-correlation, and finally generate
gridded maps by spatio-temporal regression-kriging.
Our objective is to promote space-time prediction tech-
niques for operational mapping versus purely spatial
methods, and motivate meteorological agencies to uti-
lize publicly available time series of remote sensing
products (MODIS) for production of meteorological
and climatic maps.

2 Theoretical concepts

Spatial and temporal variation in temperature are gov-
erned by physical processes. For example, land sur-
face temperature at some ‘location’ in space and time
(s0, t0|s ∈ S, t ∈ T) is a function of incoming solar ra-
diation, cooling factor by wind, coastal effects, land
cover, temperature inversion and other effects. The
temperature patterns differ between day and night time
also: during the night temperature patterns are mainly
determined by land cover, air humidity and proximity
to water bodies and/or soil moisture (van Leeuwen
et al. 2011). In urban and industrial areas, temperature
is often locally somewhat higher due to heat emissions
from industrial activities or heating (see e.g. Cheval and
Dumitrescu 2009). Therefore, it can be said that surface
temperature is a function of:

T(s0, t0) = f

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Incoming solar radiation : q1

Wind/rain cooling effects : q2

Coastal effects : q3

Temperature Inversions : q4

Local thermal radiation sources : q5

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1)
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where each fraction can be modeled separately:

q1 = f (latitude, longitude, elevation, exposition, date)

q2 = f (wind exposition, cold air flow,precipitation, clouds)

q3 = f (distance from coast line, orography)

q4 = f (depth to sink, exposition, land cover)

q5 = f (land cover, industrial activities)

A physical-deterministic model would in theory do
the best job in explaining the spatio-temporal patterns
of temperature, but this is in practice far from trivial,
for several reasons. Number one, there are many para-
meters that need to be included in the model. This is
not a big problem for factors such as the incoming solar
radiation, which can be globally derived as a function
of latitude, longitude, elevation, exposition and day of
the year, and coastal effects which can be modeled by
using the distance from the sea and exposition of ter-
rain. Both models are inexpensive considering that the
geomorphology of the Earth is well sampled through
e.g. the SRTM mission. On the other hand, factors such
as wind, temperature inversions and local radiation are
more difficult to represent because their temporal vari-
ability is high. It would become even more expensive
to collect field data on wind intensity and direction and
cloud status, than to measure air temperature over a
dense network. Number two, the model in Eq. 1 is fairly
complex and model inputs, initial and boundary condi-
tions, are poorly known, so that deterministic modeling
becomes close to impossible (at least at the current
level of technology).

Historically, temperature, precipitation and other
crucial meteorological variables have been observed lo-
cally at meteorological stations, and subsequently in-
terpolated over large areas to produce complete maps.
Modern meteorology is enriched with remote sens-
ing imagery. A range of meteorological images at
different wavelengths (visible, infrared, thermal and
microwaves), in passive and active modes (microwave
radiometers and precipitation radar), and from low and
geostationary orbits are now available to the meteo-
rological monitoring community and are increasingly
used to produce direct (and global) estimates of mete-
orological variables (Baum and Platnick 2006; Prigent
2010). One popular source of remote-sensing based
estimates of Land Surface Temperature are the Moder-
ate Resolution Imaging Spectroradiometer (MODIS)
Land Surface Temperature (LST) images, derived from
the MODIS thermal bands. According to Wan et al.
(2004), the accuracy of MODIS LST images is cca
±1◦K, which is more than satisfactory considering that
MODIS products are available on near-to-daily basis

and distributed freely via the Level 1 and Atmosphere
Archive and Distribution System (LAADS FTP).

The MODIS LST images can be used to improve
spatial prediction of ground measured values. In other
words: ground measurements of temperature can be
used to calibrate the RS-estimated climatic products
through spatio-temporal regression-kriging. The statis-
tical model to predict temperatures at an unobserved
locations (s0, t0) is thus (Hengl 2009, p.45):

T̂(s0, t0) = q0×β̂ + C−1×c0×
(

T − q×β̂
)

(2)

where T̂ is the predicted temperature, T is a vector
of measured values of the target variable at ground
stations (n · m measurements in space and time; s ∈
((x1, y1), (x2, y2), . . . , (xn, yn)); t ∈ (t1, t2, . . . , tm)), q0

and q are a vector and matrix of the auxiliary variables
at the target and observation locations, C is the covari-
ance matrix of the n · m residuals at sampling locations,
c0 is the vector of covariances between residuals at the
observation and target locations, and β̂ is a vector of
regression coefficients.

The prediction system in Eq. 2 basically follows the
universal kriging model for spatio-temporal data de-
scribed in more detail in e.g. Kyriakidis and Journel
(1999) and/or Heuvelink and Griffith (2010):

T(s, t) = m(s, t) + ε(s, t) (3)

where m(s, t) is the deterministic part of the variation
(i.e. a linear function of the auxiliary variables), ε(s, t) is
the residual for every (s, t). To ease statistical inference
it is commonly assumed that the zero-mean residual
part is multivariate normally distributed. Note also that
the prediction locations are typically nodes of a fine
space-time grid.

The regression kriging Eq. 2 is basically the same
for purely spatial and for space-time data, hence the
extension from space-based geostatistics to space-time
seems to be trivial. It is not. There are two large
differences between purely spatial and spatio-temporal
prediction models. First, the auxiliary variables (i.e.
predictors) need to be exhaustively available and thus
must be known for all locations and all time steps
for which predictions must be made. In other words,
the predictors need to be available as a time series of
images (or copies of the same values if these are static).
Second, estimation of the space-time semivariance,

γ (si, ti; s j, t j) = 0.5 · E
[(

ε(si, ti) − ε(s j, t j)
)2

]
(4)

is inherently difficult because the time and space do-
mains do not have similar properties (different scales,
different causality principles). Likewise, predicting in
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time domain is different than predicting in space: pre-
dictions for the right side of the time axis are basically
forecasts, i.e. extrapolations; using values from future
events to explain the past is conceptually awkward (re-
versed causality) and can lead to artifacts (Snepvangers
et al. 2003). All these problems do not exist if we deal
with purely spatial models.

If we ignore the causality problem in the time do-
main, we are still left with a problem of representing the
space-time autocorrelation accurately because space
and time have different variability patterns. In practice,
when dealing with real-world data, space-time vari-
ograms are fitted by introducing simplifying statistical
assumptions. Basically, two main groups of approaches
exist: (a) separable (purely spatial and purely temporal
models) and (b) non-separable (space-time) approach
(Ma 2005; Huang et al. 2007).

Separable models suffer from unrealistic assump-
tions and properties. An attractive inseparable model
to space-time variogram modeling, also used in this
paper, is the so-called “sum-metric” model. This as-
sumes that the residuals (ε) consist of three stationary
and independent components (Heuvelink and Griffith
2010):

ε(s, t) = εs(s) + εt(t) + εs,t(s, t) (5)

where εs(s) is a purely spatial process (with constant re-
alizations over time), εt(t) is a purely temporal process,
and εs,t(s, t) is a space-time process for which distance
in space is made comparable to distance in time by
introducing a space-time anisotropy ratio. Thus, the
covariance can be represented by (Snepvangers et al.
2003):

C(h, u) = Cs(h) + Ct(u) + Cs,t

(√
h2 + (α · u)2

)
(6)

where C(h, u) is the covariance at distance h in space,
and time-distance u, Cs(h) + Ct(u) allow the pres-
ence of zonal anisotropies (different variogram sills
in different directions), and Cs,t(

√
h2 + (α · u)2) allows

the presence of geometric anisotropy represented with
the ratio α. After parameterizing the three covariance
functions to a common structure such as the expo-
nential model, the entire sum-metric covariance model
consists of ten parameters: three times a nugget, sill and
range parameter (C0, C1, R) for the marginal temporal,
marginal spatial and space-time covariance functions,
and the anisotropy ratio (α).

Another methodological difficulty that must be tack-
led is the problem of missing pixels in the MODIS
LST images. MODIS images can contain up to 100%
missing pixels in an area, which can be due to clouds
and other unfavorable atmospheric conditions (Neteler

2010). In addition, MODIS images, especially the mo-
saicked MODIS scenes, are known to contain artifacts
and noisy features. Hence, a MODIS LST image can be
represented as a composite of three components:

LSTMODIS(s, t) = LST∗(s, t) · �(s, t) + ξ(s, t) (7)

where LST∗ is the temperature estimated under perfect
atmospheric conditions, �(s, t) is the masking function
(�(s, t) ∈ [0, 1]) and ξ is the noise component. This
means that, although MODIS LST is potentially an
accurate estimator of temperature, the missing pixels
(�(s, t)) and noise (ξ(s, t)) represent a problem for
geostatistical mapping because they will deteriorate the
predictive power of the MODIS data.

One way to reduce the noise and artifacts in the
MODIS images is to also exploit information in other
inexpensive static predictors that are typically avail-
able at all locations and contain much less noise, e.g.
latitude (LAT), longitude (LON), distance from the
coast line (DSEA), Digital Elevation Model (DEM),
Topographic Wetness Index (TWI) and incoming solar
radiation (INSOL). In order to use these predictors in
the regression kriging model we first transform these to
uncorrelated principal components:
{
PC1(s, t), . . . , PCp(s, t)

}

= 	
{
qLAT(s), qLON(s), qDEM(s), qDSEA(s), qTWI(s),

qINSOL(s, t), qLST(s, t)
}

(8)

where 	{} is the principal component transformation
function and p is the number of inputs to the principal
component analysis.

Principal component transformation helps reducing
the noise and artifacts in remote sensing images be-
cause impurities and uncorrelated features are typi-
cally moved to higher order components (Liszka 2004),
which are not used in the regression kriging (i.e. the
number of predictors used in regression kriging is
smaller than p). By combining principal component
analysis with step-wise regression, one can filter out
such noisy components from the regression analysis and
in this way make better use of the LST∗ component
(Eq. 7). Hence the regression model from Eq. 2 is in
fact:

T∗(s, t) = b 0 + b 1 · cos

(

[t − φ] · 2π

365

)

+ βT× {
PC1(s, t), . . . , PCp(s, t)

} + ε(s, t) (9)

where t is the date (cumulative days), φ is the time
delay from the coldest day and a trigonometric func-
tion is assumed to model seasonal fluctuation of daily
temperature. Note that some predictors that define the
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Fig. 1 Computational procedure for spatio-temporal prediction of meteorological variables using time series of predictors. TheR script
and data needed to reproduce the analysis are available from the contact author’s website

PCi in Eq. 9 are temporally constant or static (e.g.
DEM), while INSOL and MODIS LST are available
as time series. The residual term (ε) is assumed to
be normally distributed with zero mean (E {ε(s, t)} =
0), and is modeled using the sum-metric covariance
function explained in Eq. 5.

The remaining issue is the missing pixels in the
MODIS LST images which are due to clouds and simi-
lar atmospheric disturbances (see further Fig. 4). These
missing pixels can be iteratively filtered by interpolat-
ing the neighboring values of PCs using some mechani-
cal interpolator such as splines. By combining these two
processes—PCA and filling of missing pixels—one can
generate predictors that are: (a) uncorrelated and (b)
available for the whole area of interest. The complete
procedure used in this paper to generate time series of
temperature images is explained in the Methods section
(see also Fig. 1).

3 Methods and materials

3.1 Study area

We use the meteorological data from the Croatian
National Meteorological Service to demonstrate the
method and assess the accuracy of predictions. Croa-

tia is a relatively small country but it comprises sev-
eral different climatic regions, which is a result of its
specific position near the Adriatic Sea and its fairly
diverse topography, ranging from plains in the East,
through a hilly central part to the mountains in the
West separating the continental from the maritime part
of the country. Weather systems originating or cross-
ing over Croatian territory are strongly influenced by
this topography, thus the influence that these have on
weather and climate is highly dependent on the region
(Hiebl et al. 2009; Perčec Tadić 2010). This diversity of
climate and terrain at relatively short distances makes
this region of special interest for testing more complex
climatic models (Antonić et al. 2001).

Some previous results of climatic modeling for a
wider (Alpe-Adria) region can be followed in the work
of Hiebl et al. (2009). 1 km resolution grids of main
climatic parameters for the wider region can also be
obtained from the web site of the Central Institute for
Meteorology and Geodynamics in Vienna.

3.2 Ground data

The data set contains 57,282 measurements of daily
average temperature for the year 2008. The location
of the 159 meteorological stations is shown in Fig. 2.
Temperature was measured with mercury-in-glass
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Fig. 2 Location of climatic stations in Croatia and static topo-
graphic predictors: Digital Elevation Model (DEM, in meters),
total annual Incoming solar radiation (INSOL, expressed in

Joules), topographically weighted distance from the coast line
(DSEA, in km) and Topographic Wetness Index (TWI)

thermometers that are situated inside a wooden shel-
ter, the so called “Stevenson” screen, which allows air
circulation while sheltering the sensors from direct sun
exposure. The precision of the temperature readings is
tenth of ◦C. The number of observations that can be
used for model building is about 5% smaller than the
maximum possible number (159 · 365) due to missing
observations.

On most climatological stations temperature is mea-
sured three times a day, at 7 am, 1 pm and 9 pm. The
mean day-time temperature (�T = 1 day) is calculated
as a weighted average (Hiebl et al. 2009):

�T = T(7 am) + T(1 pm) + 2 · T(9 pm)

4
(10)

The spatial distribution of stations in Croatia is not
ideal for mapping purposes (Fig. 2). There is a certain
under-sampling at higher elevations and in areas with
lower population density. For practical reasons, areas
of higher population density have been given a priority
(Perčec Tadić 2010).

Figure 3 shows temporal dynamics of daily temper-
atures at three representative meteorological stations.
In general the daily temperature varies smoothly over
time and differs systematically with elevation. Plots in
Fig. 3 also indicate that even daily temperature can
differ largely between consecutive days. This variability
is primarily caused by the local meteorological condi-
tions, which can differ substantially from day to day.

3.3 Auxiliary gridded predictors

We used five topographic predictors (see also Hiebl
et al. 2009) and a time series of MODIS images to
aid the interpolation of daily temperature. The sta-
tic predictors are latitude (LAT), longitude (LON),
SRTM Digital Elevation Model (DEM), topographi-
cally weighted distance from the coast line (DSEA),
and topographic wetness index (TWI), which is also
often used to describe cold air accumulation potential.
Dynamic predictors are DEM-derived total insolation
(INSOL) and MODIS LST images.

The SAGA GIS TWI was first computed using a
100 m SRTM DEM (Conrad 2007), then aggregated
to 1 km resolution (Fig. 2). Total incoming solar radi-
ation i.e. insolation (expressed in Joules per grid cell)
was derived for each day using the SAGA GIS light-
ning module. This follows the algorithm developed by
Böhner & Trachinow and described in detail in Böhner
and Antonić (2008). Inputs to the derivation of total
(sum of direct and diffuse) insolation is a DEM, latitude
and longitude grids of the study area, the solar constant,
and day of year.

We prepared a time series of 46 day–time and night–
time 8-day composite LST images (MOD11A2 product
bands #1 and #5) that we obtained from the NASA’s
FTP server.1 The 8-day composite images were created
by patching together images from a period of ±4 days,

1ftp://e4ftl01u.ecs.nasa.gov

ftp://e4ftl01u.ecs.nasa.gov
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Fig. 3 Temporal dynamics of daily temperatures at three se-
lected meteorological stations in Croatia (for year 2008): island
Hvar station (20 m) representing the Mediterranean climate
region, station Pleso airport (106 m) representing the continental

part, and station Zavižan (1594 m) located in the mountainous
part of Croatia. The numbers on the axis represent the cumula-
tive days since 1970-01-01 (Unix epoch)

so that the proportion of clouds can be reduced to
a minimum. We decided to use the 8-day composite
images because the proportion of missing pixels in the
daily LST images will often be so high so that such im-
ages would be of very limited use for mapping purposes
(Neteler 2005, 2010; van Leeuwen et al. 2011). Even
these patched images can contain a large proportion
of clouds and atmospheric disturbances (up to 100%;
see also white patches in Fig. 4). The SRTM DEM and
its derivatives are, on the other hand, complete and
consistent maps, and can be used to compensate for the
areas where MODIS images are of variable quality and
contain missing pixels.

To prevent the generation of incomplete maps, we
filtered the missing pixels in the MODIS LST images
first by taking the average of values between two neigh-
boring dates. The remaining empty pixels are filtered
using the close gap function in SAGA GIS available
via the module grid_tools. This function iteratively

filters all missing pixels from its neighbors by using a
spline interpolation (Conrad 2007).

3.4 Data processing steps

For analysis of data and spatio-temporal prediction
we use the R environment for statistical computing in
combination with GIS packages SAGA GIS and GDAL
utilities (Bivand et al. 2008; Hengl 2009). First, we
import the point data and time series of images to R
using the GDAL translation library, next overlay and
reorganize the data into a space-time matrix where
each grid node is represented as a 3D point with x, y, t
coordinates (as illustrated in Fig. 1).

For spatio-temporal prediction we used the spatio-
temporal regression-kriging framework as imple-
mented in the gstat package via 3D kriging (Pebesma
et al. 2007; Heuvelink and Griffith 2010), i.e. the time
dimension is simply modeled as a third dimension

Fig. 4 Sample of 12 time series of 1–km MODIS Land Surface Temperature (LST in ◦C) 8-day images. Notice the missing pixels
(especially in the winter months), which are due to clouds and other atmospheric disturbances
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(Huerta et al. 2004; Jost et al. 2005). The regression and
residual kriging parts are dealt with separately: we first
produced predictions for the regression part of Eq. 9
on a fine grid, next extract residuals for all observations
and fit a global sum-metric variogram model. The resid-
uals were then interpolated to the same grid and added
to the predicted trend.

The sum-metric covariance model (Eq. 6) was fitted
by using the optim function available in the stats
package. We first determined initial numbers for: (1)
the nugget of the marginal temporal variogram, (2) sill
of marginal temporal variogram, (3) temporal range
parameter, (4) nugget of marginal spatial variogram,
(5) sill of marginal spatial variogram, (6) spatial range
parameter and (7) total sill, visually by plotting the
marginal experimental variograms. Next, the adjusted
parameters were determined using the optim function
until a satisfactory fit was achieved (see further Fig. 7).
The procedure to estimate a sum-metric space-time
variogram is explained in more detail in Heuvelink and
Griffith (2010).

Precise estimation of the space-time covariance mo-
del is important if a search radius is used to speed up
kriging, which is common practice and indeed neces-
sary in case of many observations (recall that there
are 57,282 observations in this case). Ideally, the al-
gorithm must use only those observations that have
the strongest correlation with the variable at the pre-
diction location. This is not only affected by their dis-
tance in space and time, but also by the temporal and
spatial ranges and sills. By selecting the right space-
time covariance model (especially the right geometric
anisotropy ratio), we can prevent generating artifacts.
For example, in this case point measurements are based
on station data—the observations are stacked at top
of each other in the space-time cube—which can lead
to near-singularity problems if inappropriate variogram
parameters are used.

Principal components were extracted using the
prcomp method, as implemented in the basic R pack-
age stats (Venables and Ripley 2002). This method
allows setting of unit variance for diverse predictors
(DEM, TWI, DSEA, MODIS LST, Latitude, Longi-
tude). Note that we build a global Principal Compo-
nent Analysis (PCA) model (	) that is fitted using
values of auxiliary predictors at all sampling locations.
This global model can then be used to predict PC
components for each new time step j, at any given
location where auxiliary predictors are available. After
fitting a global regression model for all n · m obser-
vation pairs (T, t, PC1, PC2, . . . , PCp), spatio-temporal
auto-correlation in the residuals can be represented by
fitting the variograms as described before. Once all

the parameters of the model have been estimated—
principal component transformation coefficients, re-
gression coefficients, variogram model parameters—
the model in Eq. 9 is used to make predictions for any
location in the space-time cube (see also Fig. 1).

3D kriging can be implemented in gstat both in the
Kriging with External Drift (KED) or in the regression-
kriging (RK) version via the krige or krige0 func-
tion that allows parsing of any type of covariance
model2 (Bivand et al. 2008; Pebesma 2010). In ideal
situations both KED and RK algorithms should pro-
duce the same results, but there can be differences in
processing speed and modeling possibilities. Regres-
sion kriging implies that the trend and residual part
of the model are fitted and estimated separately. The
maps of interpolated residuals produced using ordinary
kriging and predictions of the linear model are at the
end added together to produce final predictions. In
the case of Kriging with External Drift (or universal
kriging), both regression and kriging are implemented
in a single (matrix) operation (Hengl 2009). We use the
regression kriging approach for two main reasons: first,
gstat accepts only linear trend models and separation
of regression and kriging allows more possibilities to in-
clude non-linear regression models; and second, by sep-
arating regression from kriging the complexity of the
analysis is reduced and the processing can be speeded
up by limiting the search radius for kriging predictions,
while still being able to model the regression part of the
model globally.

Most of the data processing steps including import,
reorganization of the data, model fitting and predic-
tions in R are explained in detail in Hengl (2009,
ch.11) and Pebesma (2010). GIS operations and statis-
tical operations in R can be combined with the help
of R packages RSAGA, sp, rgdal and similar, so that
the complete process can be put in a single script
(this matches the computational procedure in Fig. 1).
The script, including the input data—MODIS images,
SRTM DEM, distance to coast line map, original point
measurements of temperature and precipitation—used
in this case study, can be freely downloaded from the
contact author’s website3 and adopted to similar case
studies.

A review of spatio-temporal models (dynamic linear
state-space models), and some practical suggestions
how to analyze such data and fit spatially varying
coefficients is given in Banerjee et al. (2004, ch.8),
Huang et al. (2007) and Heuvelink and Griffith (2010).

2The most recent snapshots of the gstat package can be obtained
from http://52north.org/svn/geostatistics/.
3http://spatial-analyst.net/book/

http://52north.org/svn/geostatistics/
http://spatial-analyst.net/book/
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3.5 Accuracy assessment

We compare the results of spatio-temporal predic-
tion versus plain 2D geostatistical prediction—ordinary
kriging (space domain only)—using 10-fold cross val-
idation as implemented in the gstat package (Bivand
et al. 2008, pp. 221–226). We focus on three measures
of accuracy: the mean error (ME), root mean squared
error (RMSE), and relative RMSEr:

RMSE =
√
√
√
√1

l
·

l∑

j=1

[
T̂(s j) − T(s j)

]2
(11)

where l is the number of validation points. In order to
see how much of the global variation budget has been
explained by the model we use:

RMSEr(%) = RMSE
sT

· 100 (12)

where sT is the sampled variation of the target vari-
able, and RMSEr(%) is a global estimate of the map
accuracy.

The comparison between ordinary kriging and
spatio-temporal kriging is done only to quantify the
added value of using time series of predictors. We do
not evaluate the quality of individual stations.

4 Results

The results of regression modeling show that the pre-
dictors explain 86% of the variability in daily temperature
values for the year 2008. In fact, just by knowing the
date, one can explain about 60% of the variation in the
measured temperatures. For a comparison, note that
the temperature from the day before explains 81% of
the variation. From the auxiliary maps, MODIS LST
images are the most significant estimators of the daily
temperatures: the correlation plot in Fig. 5 indicates
an average precision of ±4◦C, and a close to linear
relationship. The complete list of predictors achieves a
precision of ±3.4◦C.

The results of the principal component analysis
shows that the predictors are strongly correlated—for
example DEM and TWI, and INSOL and MODIS
LST. The existence of significant correlation between
the auxiliary predictors justifies the use of a principal
component analysis. The step-wise regression, as an-
ticipated, typically filters out the last few components
which visually show dominantly noisy features and ar-
tificial breaks in values. After the PCA, however, it is
more difficult to specify which original predictors are
more significant, what is their coefficient and sign etc.

Fig. 5 Scatter plots showing the general relationship between
daily temperature and MODIS LST images. Line indicates locally
fitted polynomial

The variogram models of the original temperature
measurements can be almost without exception fitted
using the linear variogram model (Fig. 6), the average
nugget variation is ±1.6◦C. This indicates that tem-
perature varies smoothly over large areas, which is
probably a reflection of smooth changes in topography.
The same is true in the time dimension, however, the
nugget variation in the time dimension is about twice
as large as in the geographical space. The semivariance
at short ‘distances’ in time ranges from 2.4 to 10.1
(Fig. 6, below); average short range standard deviation
is about 2.5◦C. Notice also that autocorrelation struc-
ture is more variable in space than in time domain.

Histograms show that both the target variable (ar-
ray of daily temperatures for the whole year) and
the residuals have close to normal distribution. The
marginal spatial and temporal variograms for residuals
are shown in Fig. 7. This indicates that temporal auto-
correlation exist up to a ‘distance’ of about 12 days.
Because much of the variation is explained by the
auxiliary predictors, the residual variogram now shows
a bounded (stable) sill at 10◦C2 in time domain and at
2.6◦C2 in space domain. The resulting sum-metric vari-
ogram, formatted as a vgm object in the gstat package
in R, is:

> vgm.st

model psill range ang1 ang2 ang3 anis1 anis2
1 Exp 0.4088 1.0e+12 0 90 0 1e-15 1e-15
2 Exp 1.8000 3.5e+12 0 90 0 1e-08 1e-08
3 Exp 1.1767 1.0e+12 0 0 0 1e+00 1e-15
4 Exp 10.063 5.0e+06 0 0 0 1e+00 1e-06
5 Exp 0.0001 1.0e-12 0 0 0 1e+00 1e+00
6 Exp 0.0001 1.5e+05 0 0 0 1e+00 1e-04



274 T. Hengl et al.

Fig. 6 Daily spatial variograms (left) and temporal variogram (right) for the original target variable (temperatures). Lines fitted using
an automated fitting procedure in the gstat package

From Fig. 7 it is clear that the majority of vari-
ation in the residuals is accounted for by the time
component. This means that the regression model has
better success in explaining the spatial pattern of the
temperatures, while the temporal pattern is poorly
captured. The nugget variation (day-to-day variabil-
ity) is still relatively high, which indicates that it is
probably impossible to predict daily temperatures with
a precision better than ±2◦C (global average). The
space-time component of the variogram (Eq. 6) is least
significant, which indicates that the regression resid-
ual is nearly space-time separable. In other words,
if we know at a single station that a specific day is
colder than the long-term average, then it is likely
that this day will be proportionally colder at all sta-
tions and vice versa. This is not surprising because the
study area, in climatological terms, is relatively small

and the overall meteorological conditions are highly
correlated.

The results of 10-fold cross-validation confirm that
the prediction model is highly accurate. The spatio-
temporal regression-kriging explains 91% of the vari-
ation in the original values (daily average); compared
to 44% for plain ordinary kriging. The cross-validation
accuracy increases first if the DEM map is added to
the model (78%), and then grows up to 91% if both
MODIS LST images and time dimension are used as
input to prediction. The RMSE at 50,309 validation
points was 2.4◦C, which closely corresponds to the
estimated nugget variation. The kriging variance maps
for both ordinary and space-time regression-kriging in
general correspond to the values estimated by the cross-
validation. The average value for the ordinary kriging
error for the whole study area was, however, somewhat
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Fig. 7 The marginal experimental variograms for residuals and fitted models: (left) space-domain only, (right) time-domain only
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Fig. 8 Mean daily temperatures for four arbitrary dates pre-
dicted using spatio-temporal regression-kriging and actual ob-
served values. Because the prediction model is significant (84%

of variability explained by the model), it may be used to map
space-time patterns in the neighboring countries

lower than the actual prediction error (3.6◦C versus
4.0◦C).

It is important to emphasize that the results of cross-
validation are of limited value because the position
of meteorological stations is somewhat biased toward
populated regions and open land cover types. Visual
inspection of the output maps in Fig. 8 indicates that
auxiliary predictors are significant in predicting tem-
peratures including the areas with no ground stations
(neighboring countries, hill tops and unpopulated ar-
eas). It is also evident from Fig. 8 that spatial patterns in
the output maps reflect mainly patterns in the MODIS
images. Because the model is significant, it can also be
used to extrapolate outside the country borders. Never-
theless, projects where various national meteorological
data are combined to build global prediction models
would probably be more accurate.

5 Discussion and conclusions

The result of this case study indicate that MODIS time
series of LST images can be successfully combined
with ground measurements of temperatures to produce
more accurate and more detailed predictions of daily
temperature. The MODIS images used in this case
study almost always contained about 10–30% missing
pixels (Fig. 3), so that some filtering steps are highly
recommended. In addition, visual inspection showed
that these images can be fairly noisy with many strange

patterns (e.g. artificial line or polygon features, jumps
in values) which are obvious artifacts. The precision
of MODIS LST estimates is smaller than obtained in
the results of Wan et al. (2004) for the simple reason
that we used averaged (8-day) estimates rather than
daily estimates of LST. If we had used the daily LST
images we would have probably been able to predict
the values with a higher precision, but then we would
be constrained with meteorological conditions because
coverage of the daily MODIS LST is typically <50% of
the total area (Neteler 2010).

The advantage of using MODIS LST images, on the
other hand, is that they account for small differences
in temperature that are due to different land cover,
moisture content, and non-orographic effects, which
cannot be modeled with constant physical parameters
such as elevation, latitude, longitude and distance from
the coast line. The results of this case study also confirm
that the Zagreb urban heat island is 0.5–2◦C warmer
than the surrounding countryside, which would be
impossible to represent by using only topographic para-
meters. The resulting patterns in Fig. 8 clearly demon-
strate that our proposed combination of PCA and
filtering with neighbors leads to consistently ‘cleaner’
predictions i.e. maps that typically contain less artifacts
and noise than the original MODIS LST images.

An important issue for the success of the space-time
regression kriging is the quality of the parameter fitting
techniques. We have used a simple regression kriging
model so that both regression and residual components
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were dealt with separately. More realistic model para-
meters could have been estimated if we had used some
multivariate, Maximum Likelihood-based methods that
jointly model the deterministic and stochastic parts of
variation and possible non-stationarities (estimation in
a moving window). The problem is that the mixed
spatio-temporal processes (Gelfand et al. 2005) are still
rather experimental, and so is the software. For exam-
ple, fitting space-time variograms is still cumbersome.

A related issue is how to visually explore space-
time variograms. In our case (Fig. 6) we have de-
cided to fit parameters for the space and time domain
separately (for visualization purposes), and then build
the sum-metric model by adding the different compo-
nents one by one (which can then be visualized by
using the marginal variograms shown in Fig. 7). There
are many alternatives to represent the spatio-temporal
auto-correlation, these need to be tested on a variety
of climatic variables. Computational complexity is also
an issue: the methods used in this article are time
consuming and can take several hours to generate pre-
dictions. All this indicates that there is still opportunity
to improve the proposed data processing flow (Fig. 1).

Binding spatio-temporal data is also an open issue
(Bivand et al. 2008; Pebesma 2010). Although the work
on hybrid space-time classes and methods in R has al-
ready started (spacetime and spt packages available via
R-forge), it will take time until one will be able to use
wrapper functions that fit both space-time regression
models and allow visual (3D) exploration of space-time
correlograms.

It is also worth emphasizing that the proposed model
for daily temperatures (Eq. 9) makes use of a statistical
model and can lead to poor predictions depending on
the density and coverage of ground observations, and
the amount of artifacts in the meteorological images.
Hence the final quality of predictions is a product of
various factors: noise and quantity of missing pixels
in the predictors, quality and density of sampling, ac-
curacy of ground measured parameters and strength
of relationship between explanatory and dependent
variables. There is also the issue of the day-to-day
variability in temperatures that is highly random and
can be modeled only up to a certain level (Jarvis and
Stuart 2001).

Evolution of spatio-temporal analysis of climatic
station data is today largely driven by increasingly
powerful analysis tools and increasingly rich remote
sensing data—new generation meteorological satellites,
but also SRTM DEM-derived topo-climatic variables
and similar global layers. Many of these layers are now
available even at no cost, which is an additional motive
to replace purely geographical interpolation techniques

such as splines or ordinary kriging by methods such
as proposed here (Pebesma 2006). This method has
demonstrated an operational potential to produce land
surface temperature maps of higher quality than purely
station-based and purely remote sensing products. We
envisage that a single global space-time model could be
built using the method described in Fig. 1 to produce
calibrated maps of daily temperatures. Time series of
complete and calibrated LST images could then be
aggregated per pixels to depict local regional and global
trends and produce more accurate estimates of climatic
parameters.

We encourage researchers and/or project team lead-
ers to use freely publicly available time series of at-
mospheric and surface reflectance images (MODIS,
Meteosat, GOES, GMS) to generate detailed daily
maps of climatic variables, instead of using purely static
predictors. We encourage readers of this article to use
free and open source academic software such as R and
SAGA GIS to generate climatic maps, share code and
model outputs.
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Antonić O, J K, Marki A, Bukovec D (2001) Spatio-temporal in-
terpolation of climatic variables over large region of complex
terrain using neural networks. Ecol Model 138(1–3):255–263

Banerjee S, Carlin CP, Gelfand AE (eds) (2004) Hierarchical
modeling and analysis for spatial data. Monographs on sta-
tistics and applied probability, Chapman & Hall/CRC, Boca
Raton, FL

Baum B, Platnick S (2006) Introduction to MODIS cloud prod-
ucts. In: Earth science satellite remote sensing, pp 74–91

Bivand R, Pebesma E, Rubio V (2008) Applied spatial data
analysis with R. Use R Series, Springer, Heidelberg

Boer EPJ, de Beurs KM, Hartkamp AD (2001) Kriging and thin
plate splines for mapping climate variables. International
Journal of Applied Earth Observation and Geoinformation
3(2):146–154

Böhner J, Antonić O (2008) Land-surface parameters specific
to topo-climatology. In: Hengl T, Reuter HI (eds) Geomor-
phometry: concepts, software, applications, vol 33. Elsevier,
pp 195–226

Carrera-Hernández JJ, Gaskin SJ (2007) Spatio temporal analy-
sis of daily precipitation and temperature in the Basin of
Mexico. J Hydrol 336(3–4):231–249

http://meteo.hr
http://meteo.hr


Spatio-temporal prediction of daily temperatures 277

Cheval S, Dumitrescu A (2009) The July urban heat island of
Bucharest as derived from MODIS images. Theor Appl Cli-
matol 96(1):145–153

Conrad O (2007) SAGA—Entwurf, Funktionsumfang und An-
wendung eines Systems für Automatisierte Geowissen-
schaftliche Analysen. PhD thesis, University of Göttingen,
Göttingen

Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor
GH, Curtis J, Pasteris PP (2008) Physiographically sensi-
tive mapping of climatological temperature and precipita-
tion across the conterminous united states. Int J Climatol
28(15):2031–2064

Gelfand AE, Banerjee S, Gamerman D (2005) Spatial process
modelling for univariate and multivariate dynamic spatial
data. Environmetrics 16(5):465–479

Hartkamp AD, De Beurs K, Stein A, White JW (1999) Interpo-
lation techniques for climate variables, geographic informa-
tion systems, vol 99-01. CIMMYT Natural Resources Group,
Mexico

Hengl T (2009) A practical guide to geostatistical mapping. Uni-
versity of Amsterdam, Amsterdam

Heuvelink GBM, Griffith DA (2010) Space-time geostatistics for
geography: a case study of radiation monitoring across parts
of Germany. Geogr Anal 42:161–179

Hiebl J, Auer I, Böhm R, Schöner W, Maugeri M, Lentini G,
Spinoni J, Brunetti M, Nanni T, Perčec Tadić M, Bihari Z,
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