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Abstract Daily and sub-daily weather data are often required
for hydrological and environmental modeling. Various weath-
er generator programs have been used to generate synthetic
climate data where observed climate data are limited. In this
study, a weather data generator, ClimGen, was evaluated for
generating information on daily precipitation, temperature,
and wind speed at four tropical watersheds located in Hawai‘i,
USA. We also evaluated different daily to sub-daily weather
data disaggregationmethods for precipitation, air temperature,
dew point temperature, and wind speed at Mākaha watershed.
The hydrologic significance values of the different disaggre-
gation methods were evaluated using Distributed Hydrology
Soil Vegetation Model. MuDRain and diurnal method
performed well over uniform distribution in disaggregating
daily precipitation. However, the diurnal method is more
consistent if accurate estimates of hourly precipitation
intensities are desired. All of the air temperature disaggrega-
tion methods performed reasonably well, but goodness-of-fit
statistics were slightly better for sine curve model with 2 h lag.
Cosine model performed better than random model in
disaggregating daily wind speed. The largest differences in
annual water balance were related to wind speed followed by
precipitation and dew point temperature. Simulated hourly
streamflow, evapotranspiration, and groundwater recharge

were less sensitive to the method of disaggregating daily
air temperature. ClimGen performed well in generating
the minimum and maximum temperature and wind speed.
However, for precipitation, it clearly underestimated the
number of extreme rainfall events with an intensity of >100
mm/day in all four locations. ClimGen was unable to replicate
the distribution of observed precipitation at three locations
(Honolulu, Kahului, and Hilo). ClimGen was able to
reproduce the distributions of observed minimum temperature
at Kahului and wind speed at Kahului and Hilo. Although the
weather data generation and disaggregation methods were
concentrated in a few Hawaiian watersheds, the results
presented can be used to similar mountainous location
settings, as well as any specific locations aimed at furthering
the site-specific performance evaluation of these tested
models.

1 Introduction

Hydrological and environmental models have become
important tools for natural resource and environmental
management. However, these models require different
input data (i.e., solar radiation, wind speed, maximum
and minimum temperature, precipitation, soil water
content, streamflow, and sediment concentration) at
variable time intervals (e.g. daily, hourly) which are
often limited. Daily temperature and precipitation are
readily available climate forcing data in mountainous
watersheds (Waichler and Wigmosta 2003). Solar radia-
tion, relative humidity, and wind speed are often not
available at the sites of interest. Many climate monitoring
stations have very short periods of record and often carry
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missing data in the time series. Therefore, hydrological
models often require generating synthetic climate data
derived from short-term observations using different
statistical distributions. Weather generators, e.g., ClimGen
(Stockle et al. 1999), CLIGEN (Nicks and Gander 1994),
USCLIMATE (Johnson et al. 1996), CLIMAK (Danuso
and Della 1997), and WGEN (Richardson and Wright
1984), have automated the synthetic data generation
process with the help of computers. These weather
generators use statistical properties of existing short-term
historical weather datasets to generate long-term synthetic
daily weather data. Previous studies (McKague et al. 2005;
Stockle et al. 1998) have shown that ClimGen allows
greater flexibility in location-specific statistical parame-
terization and produces reasonable daily weather data.
Castellvi and Stockle (2002) reported that WGEN gen-
erates better monthly weather data means, whereas
ClimGen was better in reproducing daily variability. The
performance of ClimGen has been evaluated under
different environments (Acutis et al. 1999; Castellvi and
Stockle 2002; Stockle et al. 1998); however, it has not
been evaluated under mountainous tropical watershed
conditions

Weather data at a finer time scale (i.e., sub-daily) are vital
for making hydrologic predictions, especially in mountainous
tropical watersheds such as Hawaiian watersheds where there
is strong spatial and temporal variability. As a result of short-
duration but intense rainfall events, streamflow in Hawai‘i can
change by a factor of 60 in only 15 min, thus producing
dangerous flash floods (Sahoo et al. 2006). Many distributed
hydrological models (e.g., DHSVM, HSPF) are designed to
perform better with sub-daily weather input parameters (e.g.,
rainfall, temperature, etc.).

Several studies have focused on generating (Debele
et al. 2007; Running et al. 1987) and/or disaggregating
(Debele et al. 2007; Waichler and Wigmosta 2003) daily
weather data into sub-daily data for use with hydrological
models. The distribution of daily available weather data
to sub-daily data, assuming uniform distribution, is the
most common approach (Gutierrez-Magness and
McCuen 2004), which can be far from the accurate
representation of reality. Efforts have been made in
molding the diurnal patter of weather data using daily
observations. Sub-daily weather data have been generat-
ed from daily data using several disaggregation utilities
(e.g., MuDRain, Hyetos) (Debele et al. 2007; Socolofsky
et al. 2001), generalized linear model (Segond et al.
2006), and using gauge information and artificial neural
networks (Burian et al. 2000; Zhang et al. 2008). Sine,
cosine, and linear air temperature models have been
developed and used in many parts of the world (Bilbao et
al. 2002; de Wit 1978; Ephrath et al. 1996; Parton and
Logan 1981; Waichler and Wigmosta 2003). Daily wind

speed has been disaggregated using cosine and random
functions (Debele et al. 2007). The performance of the
above models varied spatially depending on the diurnal
distribution of weather data. For example, Debele et al.
(2007) found MuDRain model to perform better than
Hyetos and the uniform method in disaggregating daily
precipitation in Cedar Creek watershed, TX, USA. For
air temperature, cosine model performed better in Cedar
Creek watersheds, whereas in the Mediterranean Belt
climate Erbs model (Erbs 1984) outperformed cosine model
(Bilbao et al. 2002).

There are numerous techniques that can be used to
generate long-term synthetic data and also disaggregate
daily weather data into sub-daily time scale. However, a
site-specific evaluation of different alternatives can help
narrow down the choice of an appropriate model. This
study aimed to evaluate the few selected models on the
basis of model complexity, necessary input variables, and
diurnal pattern in Hawaiian weather data. The specific
objectives of this paper were to evaluate the performance of
the (1) long-term weather generator ClimGen and (2) daily
weather data disaggregation techniques under tropical
watershed conditions in Hawai‘i.

2 Materials and methods

2.1 Study area and data

An evaluation of ClimGen model was performed using
measured weather data from four stations with the most
comprehensive records operated by National Climatic
Data Center (NCDC, http://www.ncdc.noaa.gov) in the
state of Hawai‘i. These stations are located at Honolulu,
Lihue, Kahului, and Hilo airports on the island of O’ahu,
Kauai, Maui, and Hawai‘i, respectively (Fig. 1). For the
evaluation of the disaggregation techniques, hourly
weather data were collected from six different weather
stations operated mainly by NCDC, United States Geo-
logical Survey, and University of Hawai‘i, located in the
west part of O’ahu with elevation ranging from 82 to
1,227 m. A summary of data sources, types, their
geographic location, and duration of records are presented
in Table 1.

2.2 Description of ClimGen

ClimGen generates daily data for precipitation, maxi-
mum and minimum temperature, solar radiation, relative
humidity, and wind speed and can be parameterized for
each station. ClimGen uses the Weibull distribution
(Weibull 1951) to represent daily precipitation and its
spline approach is an improvement over the one-term

322 M. Safeeq, A. Fares

http://www.ncdc.noaa.gov


Fourier series used by many other weather generators
(e.g., CLIGEM) to simulate seasonal variation in climate
data. Two-state Markov chain model (Richardson and
Nicks 1990) is used to generate the number and

distribution of events. The combination of conditional
probabilities for a two-state (α, wet day following a dry
day, and β: dry day following a wet day) Markov chain is
calculated for each station individually on a monthly basis

Table 1 Geographic locations and corresponding elevations of the weather stations used in this study

ID Purpose Island Latitude (N)/longitude (W) Elevation (m) Weather data Duration

844 Disaggregation O’ahu 21°30′28″/158°08′33″ 1,227 Hourly R 1965–2007

842.1a Disaggregation O’ahu 21°30′06″/158°10′49″ 286 Daily R 1959–2007

800.3b Disaggregation O’ahu 21°28′42″/158°11′47″ 82 Hourly R 1966–2007

847 Disaggregation O’ahu 21°34′25″/158°07′14″ 5 Hourly R 1949–2007

1 Disaggregation O’ahu 21°30′23″/158°10′36″ 344 Hourly R, WS, T, SR, and RH 2005–2007

6 Disaggregation O’ahu 21°30′22″/158°09′22″ 731 Hourly R, WS, T, SR, and RH 2005–2007

Honolulu ClimGen O’ahu 21°19′30″/157°54′42″ 2.1 Daily R, WS, T, and SR 1950–2008

Hilo ClimGen Hawai‘i 19°43′24″/155°03′36″ 11.6 Daily R, WS, T, and SR 1950–2008

Lihue ClimGen Kauai 21°58′48″/159°20′36″ 30.5 Daily R, WS, T, and SR 1950–2008

Kahului ClimGen Maui 20°53′42″/156°26′18″ 15.5 Daily R, WS, T, and SR 1954–2008

a The station also has hourly data for the period 1993–1996 and 1999 up to present
b The station was relocated from 800.1 and 800.2

R rainfall, T temperature, SR solar radiation, WS wind speed, RH relative humidity

Fig. 1 Study area showing the
Mākaha watershed and locations
of weather data disaggregation
and ClimGen evaluation sites
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using historical observed data as follows (Nicks et al.
1990):

P W jDð Þ ¼ a
P DjDð Þ ¼ 1� a
P DjWð Þ ¼ b
P W jWð Þ ¼ 1� b

ð1Þ

where

P(W|D) is the probability of a wet day given a previous
dry day.

P(D|D) is the probability of a dry day given a previous
dry day.

P(D|W) is the probability of a dry day given a previous
wet day.

P(W|W) is the probability of a wet day given a previous
wet day.

ClimGen uses a two-parameter Weibull distribution to
calculate the magnitude of wet day precipitation. Weibull
distribution has proven to be superior to other probability
distribution functions in representing daily precipitation
(Selker and Haith 1990). The cumulative probability
distribution of the precipitation amount can be given by:

FðPÞ ¼ 1� exp � P

l

� �k� �
ð2Þ

where F(P) is cumulative probability distribution, κ >0
and λ>0 are the shape and scale parameters calculated
from observed precipitation data on monthly basis.
Precipitation magnitudes (P) are sampled from the inverse
cumulative distribution and using uniform random vari-
able between 0 and 1(X) as follows:

P ¼ l � ln ðX Þð Þ1=k ð3Þ
Quadratic spline functions are used for the daily

interpolation of monthly values of Weibull distribution
shape (κ) and scale (λ) parameters as well as Markov chain
conditional probabilities of a wet day given a previous wet
day and a wet day given a previous dry day. ClimGen also
uses the method of Arnold and Williams (1989) to generate
the peak 30-min storm intensity and duration. However,
this approach requires the parameterization of storm
intensity at each station using historical storm records.

Similar to wet day precipitation, ClimGen uses the two-
parameter Weibull distribution in computing the daily wind
speed after calculating the shape and scale parameter of the
distribution from observed wind data. Daily maximum and
minimum air temperature details are generated using an
approach similar to WGEN, considering temperature as a
continuous multivariate process with the daily mean and
standard deviation conditioned by the precipitation status
(Stockle et al. 1999). ClimGen, however, uses a spline-

fitting procedure to adjust for variations in season means
and standard deviations compared to Fourier series used in
WGEN and CLIGEN.

2.3 Disaggregation techniques

2.3.1 Precipitation

Daily precipitation was disaggregated into hourly values
based on a uniform distribution, a combination of normal ratio
and diurnal distribution, and a multivariate-based distribution
technique. For uniform distribution, daily precipitation values
were uniformly distributed over the day. Diurnal distribution
was performed in two steps: first, the daily precipitation
amounts at 842.1 were disaggregated into hourly amounts
based on the diurnal precipitation patterns at 800.3, 844, and
847 using the following equation:

Pm
d;h ¼

Pn
d;h

Pn
d

� Pm
d ð4Þ

where P is the precipitation amount (mm), and superscripts m
and n represent the stations with daily and hourly precipita-
tion, respectively; subscripts d and h represent day and hour,
respectively. The selection of hourly stations were based on
the correlation coefficient values derived from their daily
precipitation data at corresponding stations and at 842.1; and
second, for the days where no other station recorded rain
except 842.1, daily precipitation values were disaggregated
based on the probability of precipitation occurrence during
each hour of the day. The probability of precipitation
occurrence during each hour of the day was calculated from
844, 847, and 800.3 on monthly basis to maintain seasonality.

The multivariate disaggregation method was based on
Multivariate Disaggregation of Rainfall (MuDRain) model.
MuDRain disaggregates daily rainfall at a single site or at
multiple sites based on the temporal and spatial relation-
ships between available daily and hourly rainfall data at two
or more sites. A detailed description of MuDRain model
can be found in Koutsoyiannis et al. (2003). Model input
parameters were prepared based on the following steps as
described by Debele et al. (2007):

1. Cross-correlations between hourly rainfall (rij,h) data at
844, 847, and 800.3 were established on a month-to-
month basis to maintain seasonality.

2. Hourly data from 844, 847, and 800.3 were aggregated
into daily values (rij,h) and cross-correlations were re-
calculated using daily rainfall values on a monthly basis.

3. The cross-correlation values determined in steps one
and two were fitted into the equation rij;h ¼ ðrij;dÞm
(Koutsoyiannis et al. 2003) and values of m were
determined for each month separately. Subscripts i
and j represent the two stations i and j between which
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a cross-correlation was established. Alternatively, if
hourly rainfall data are not available for the study area,
coefficient m, which explains the relationship between
daily and hourly cross-correlation coefficients between
two stations, can be approximated in the range of 2–3
(Fytilas 2002).

4. A cross-correlation was determined between daily
rainfall data at 842.1 and at 844, 847, and 800.3.

5. The cross-correlation values calculated in step 4 using
daily data were converted into hourly cross-correlations
between all four stations based on the value of m as
determined in step 3.

2.3.2 Temperature

Daily average temperature values were disaggregated into
hourly values using four different models. The models were
selected based on the diurnal analysis of measured data
which show sinusoidal patterns, especially the daytime

temperature, and their performance as reported in the
literature. Following is a brief description of these models
and their input data requirements:

1. Modified sine curve model (Waichler and Wigmosta
2003)

This method is a modified form of the model
proposed by Running et al. (1987) and Parton and
Logan (1981) and uses daily minimum (Tmin) and
maximum (Tmax) temperature data. Hourly air temper-
ature was modeled based on three quadrant sine wave
(−π/2 to π) with minimum values at sunrise, maximum
values at solar noon (π/2), and mean values at sunset
(π). Daytime temperature was fitted to a sinusoidal
function and nighttime temperature was linearly
interpolated between midnight and sunrise, and mid-
night and sunset. Sunrise and sunset times were
calculated using the method described by Burman
and Pochap (1994). The modified sine curve model is
expressed as follows:

Tt ¼ ðTmax � TminÞ sin
pðt � ð12� Y

2 � bÞÞ
Y þ 2a

� �
sunrise � t � sunset

Tt ¼ Tstart þ 0:5tΔam 24 � t< sunrise

Tt ¼ Tave þ 0:5tΔpm sunset <t< 24

ð5Þ

where Tt is the temperature (°C) at time t (h); Y is the day
light hour (h); Tmax, Tmin, and Tave are the maximum,
minimum, and average daily temperature (°C), respectively.
Tstart is the temperature at the start of the day (j) which is
calculated as: Tj

start ¼ ðTj�1
ave þ Tj

minÞ=2. Δam and Δpm are the
rate by which temperature increases and decreases from
midnight to sunrise and sunrise to sunset, respectively.
Constants a and b are the time lags in maximum temperature
after noon and in minimum temperature after sunrise,
respectively. The values of a and b were calculated by
comparing observed and simulated hourly air temperature.
The optimized values of a and b were 1 and −2 h,
respectively.
2. Cosine model (de Wit 1978)

Diurnal variation in daily mean air temperature was
fitted using the daily maximum and minimum temper-
ature dataset. Debele et al. (2007) evaluated this model
with data from Cedar Creek watershed, TX, USA, and
have shown prominent results in explaining the diurnal
variation using daily surface air temperature data. The
cosine function has the following form:

Tt ¼ Tmax � Tmin

2
cos

pðt � aÞ
12

� �
þ Tmax þ Tmin

2
ð6Þ

where Tt is the temperature (°C) at time t (h); Tmax and
Tmin are the maximum and minimum daily air temper-
atures (°C), respectively; a is a coefficient that was
fitted using least squares optimization in Microsoft
Excel (Microsoft Office 2007). The optimized value of
a was 14 as compared to 13 which was reported by
Debele et al. (2007).

3. Double cosine model (ESRA 2000)
The double cosine model uses three sinusoidal

segments determined based on the occurrence time
of daily minimum and maximum temperature as
follows:

Tt ¼

Tmax þ Tmin

2
� cos

pðtTmin � tÞ
24þ tTmin � tTmax

� �
AT

2
0 <t � tTmin

Tmax þ Tmin

2
þ cos

pðtTmax � tÞ
tTmax � tTmin

� �
AT

2
tTmin < t � tTmax

Tmax þ Tmin

2
� cos

pð24þ tTmin � tÞ
24þ tTmin � tTmax

� �
AT

2
tTmax < t � 24

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

where Tt is the temperature (°C) at time t (h); Tmax and
Tmin are the maximum and minimum daily air temper-
atures (°C), respectively; tTmax and tTmin are the times
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of day at which daily maximum and minimum
temperatures occur; and AT is the daily thermal
amplitude (°C) calculated as the difference between
minimum and maximum air temperatures.

4. Erbs model (Erbs 1984)
Location- and month-independent Erbs model was

used to explain the diurnal variation in daily
temperature data. Erbs model uses the following
expressions:

Tt ¼ Tm þ ATm
0:4632 cosða � 3:805Þ þ 0:0984 cosð2a � 0:36Þ þ
0:0168 cosð3a � 0:822Þ þ 0:0138 cosð4a � 3:513Þ

" #

ð8Þ

wherea ¼ 2pðt � 1Þ=24; Tt is the temperature (°C) at
time t (h); Tm and ATm are the monthly mean daily air
temperature and the thermal amplitude (°C), respec-
tively. In this study, daily average temperature and
thermal amplitude were used instead of their
corresponding monthly values since they were avail-
able.

2.3.3 Wind speed

Hourly wind speed data collected at stations 1 and 6 were
fitted using two different models (sinusoidal and random
function). The sinusoidal form of the model uses the daily
average wind speed data to generate hourly values
considering that maximum wind speed occurs around noon.
The model is expressed as follows:

Wt ¼ aWday cos
pðt � 13Þ

12

� �
þ bWday ð9aÞ

a ¼ 0:9 1� 13� tj j
14

� �
for 6 <t< 20;

0:3 otherwise

8>>><
>>>:

ð9bÞ

where Wt is the wind speed (ms−1) at hour t (h); Wday is the
daily average wind speed (ms−1); and a and b are the
empirical constants.

Optionally, we can also distribute the daily average wind
speed (Wday) into hourly (Wt) using the random function.
Many of the existing hydrologic models with disaggrega-
tion method, i.e., Soil and Water Assessment Tool, use this
method to generate hourly wind speed. These sinusoidal
and random function models have been proven to produce
reasonable results (Debele et al. 2007). The hourly values

of wind speed using the random function (rnd) are
computed as follows:

Wt ¼ Wday � lnðrnd½0; 1�Þ½ �0:3 ð10Þ

2.3.4 Relative humidity

In this study, inverse estimation of dew point temperature
was performed using observed relative humidity. Hourly
values of actual (ea) and saturated (es) vapor pressure were
calculated using a dry bulb (average daily air temperature,
Tave) and a corresponding wet bulb temperature (Tdp),
respectively. Relative humidity at any given time (t) is
calculated as follows:

RHt ¼ es
ea

where : es ¼ 0:6108 expð 17:27Tdp
Tdp þ 237:3

Þ

and ea ¼ 0:6108 expð 17:27Tave
Tave þ 237:3

Þ

ð11Þ

Daily dew point temperature (Tj
dp) was disaggregated

following the method of Meteotest (2003) assuming that it
varies linearly between consecutive days and its daily
average value occurs right before sunrise. The hourly value
of dew point temperature (Ti

dp) is given by:

Ti
dp ¼ Tj

dp þ
i

24
½Tj

dp � Tjþ1
dp � þ Ti

Δdp ð12Þ

where i is the hour of day (1–24) and j is the day count;
Ti
Δdpis the hourly fluctuation in dew point temperature

within a day, which is determined as follows:

Ti
Δdp ¼ 0:5 sin iþ 1ð Þ p

kr
� 3p

4

� �
ð13Þ

where kr is a constant that depends on the monthly average
solar radiation. If the monthly average solar radiation is
higher than 8.64 MJ m−2 day−1, then kr=6; else, kr=12
(Debele et al. 2007). We used kr=6 since the average
monthly solar radiation for all 12 months was higher than
the threshold value of 8.64 MJ m−2 day−1.

2.4 Model accuracy assessment

The coefficient of determination or Pearson’s correlation
coefficient, which only quantifies the dispersion, is one of the
most commonly used measures for model performance
assessment. For accurate mode assessment, it is often
recommended to use a combination of graphical techniques,
dimensionless and error index statistics (Moriasi et al. 2007),
and different efficiency criteria complemented by the
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assessment of the absolute or relative volume error (Krause
et al. 2005). Gutierrez-Magness and McCuen (2004)
reported that the disaggregated time series does not perform
well when compared to the measured data on an hourly basis
because of the uncertainty in identifying the actual hour in
the disaggregated time series at which storm is supposed to
begin. Socolofsky et al. (2001) identified four important
measures for evaluating the model performance that should
be matched by the disaggregated time series: conservation of
mass, probability of zero rainfall, variance of hourly rainfall,
and lag 1-h serial correlation coefficient. In this study, the
accuracy of model performance was evaluated by comparing
the statistical measures, scatter plots, and frequency distri-
bution of measured and generated/disaggregated data. The
proportion of dryness, cross-correlation, and lag −1 autocor-
relation were also computed and compared between the
measured and hourly disaggregated precipitation. In addition
to the mean and standard deviation of observed and
simulated variables, goodness-of-fit statistics (Gutierrez-
Magness and McCuen 2004; McCuen 2003) were used to
assess model accuracy. These statistics include mean
absolute error (MAE), bias (ē), standard error of the estimate
(Se), relative bias (Rb), relative standard error (Rs), relative
difference between observed and predicted standard devia-
tions (ΔS), and significance of difference test. Correlation
coefficient (R), Se, Rs, ē, and Rb are some of the important
indicators used to evaluate model reliability and are
commonly computed as part of model development
(McCuen 2003). A detailed description of some model
performance statistics is given in the “Appendix” section.

A further test of the model applicability was performed
using the nonparametric Wilcoxon rank-sum test. Wilcoxon
rank-sum test has been used for checking the significant
difference between two independent random samples. If
probability, p, is less than 0.05, then the test rejects the null
hypothesis of independent, identical continuous distribu-
tions with equal medians.

2.5 Significance to hydrologic modeling

The hydrologic significance of different weather data disag-
gregation methods was evaluated using distributed hydrology
soil vegetationmodel (DHSVM) (Wigmosta et al. 1994) in the
setting of Mākaha watershed (Fig. 1). The performance of the
model in simulating streamflow was also evaluated at the
study domain and DHSVM reproduced the daily streamflow
reasonably well (Safeeq 2010). The Nash–Sutcliffe efficiency
was 0.68 during calibration and 0.54 during the validation
period. A detailed description on the model parameterization
and evaluation can be found in Safeeq (2010).

All of the simulations in this study were performed for
water years (WY) 2006 and 2007 at 30-m spatial resolution
and 1-h time step. DHSVM input data were prepared and

used by Safeeq (2010); for the purpose of this study, we
only changed the required climate forcing. In an effort to
reduce the simulation time, we also increased the spatial
resolution from 10 to 30 m. Since only hourly measured
precipitation was available at 842.1, we used the hourly
temperature, wind speed, and relative humidity from station
1 (Fig. 1). The daily observed and simulated streamflow for
WY 2006 and 2007 were compared to confirm that there
was no significant change in model performance after the
above changes in the model input. A set of 11 meteorolog-
ical scenarios (Table 7) was generated based on different
disaggregation methods. Simulated hourly streamflow,
evapotranspiration (ET), and groundwater recharge under
different meteorological scenarios (S1–S10) were compared
with those obtained from observed hourly climate data (B).

3 Results and discussion

3.1 Disaggregation

3.1.1 Precipitation

Station 844 has the highest total frequency of precipitation
events (n=30,298), followed by 847 (n=12,844) and 800.3
(n=9,963), between May 1965 and December 2008
(Fig. 2). Data of the three stations showed similar patterns
with two distinct minima and maxima; however, the percent
contribution of precipitation for each hour to the total
rainfall varied spatially. Chen and Nash (1994) attributed
the early morning maximum to the katabatic winds
converging near the surface with trade winds on windward
slopes, while the afternoon maximum is related to the
daytime heating of the land and onshore anabatic sea
breezes that cause near-surface convergence. Mair and
Fares (2010) reported a similar bimodal diurnal pattern with
one maximum in the predawn period around 0400 h, a
minimum at 1000 h, a primary maximum at 1600 h, and a
second minimum at 2200 h from a relatively small sample
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Fig. 2 Diurnal rainfall patterns at 844, 847, and 800.3
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of data (2006–2008). Roy and Balling (2004) reported
similar patterns for precipitation in Hawaiian watersheds
using data from 133 weather stations across the state
between 1965 and 1998. The diurnal precipitation distribu-
tion in this study clearly shows that the precipitation in
Hawai‘i is not concentrated during a certain period of the
day but instead is almost equally distributed over the 24
h of a day.

After fitting the monthly cross-correlation coefficients,
values of m were estimated for each month (Table 2). The
values of the coefficient m in this study range between 5.32
in February and 1.75 in September. Debele et al. (2007)
reported m values in a range of 2–6 which is in agreement
with our findings, whereas Koutsoyiannis et al. (2003)
reported m values between 2 and 3. The cross-correlations
between daily and hourly precipitation for January, a wet
month, were almost similar for the four stations (Table 3).
The highest correlation was between 847 and 800.3, which
could be attributed to their similar elevations. Cross-
correlations between stations were low during summer
months compared to those during winter months. This can
be attributed to pronounced orographic summer precipita-
tions on windward slopes of mountains (Chu and Chen
2005), which exerts strong spatial variability in summer
compared to that in winter precipitation.

The monthly distribution of percent wet hours from each
disaggregation method and values of m at 800.3 are
presented in Table 2. The uniform distribution of daily
precipitation clearly over-predicted the actual number of
wet hours. This is because of the fact that the daily total
precipitation, which could have resulted from short-
duration storm that occurred only in a few hours of the
day, was distributed equally over 24 h. The number of wet
hours predicted by the diurnal and MuDRain methods were
comparable to the observed data. MuDRain method slightly
over-predicted the actual number of wet hours during wet
months and under-predicted it during dry months, whereas
the diurnal method consistently over-predicted the actual
number of wet hours throughout the year. Two-sample,
paired t-test result showed no significant difference (95%
confidence) in percent wet hours between the measured and
calculated values with the diurnal and MuDRain methods.

The hourly precipitation frequencies of the observed
data and the three disaggregation methods for 800.3 and
842.1 are presented in Fig. 3. A uniform precipitation
distribution had no hourly precipitation rate higher than 15
mm. The diurnal method data best fitted the actual data at
842.1, whereas the MuDRain method data best fitted the
actual data at 800.3. This could be due to the cross-
correlation between these datasets since actual hourly
precipitation data at 800.3 were used as input for
MuDRain model. A similar pattern was also observed
with the percent wet hours at 842.1. MuDRain model
significantly over-predicted the actual percent wet hours
(result not shown), indicating that MuDRain performs
better when hourly data from nearby station were used as
input for the model. For low-intensity precipitation events,
a uniform distribution produces better results at both
locations (Fig. 3). The diurnal patterns of monthly
precipitation clearly indicate that the diurnal method
performed relatively better than the other two methods
(Fig. 4). However, there was a lag between observed and
generated data using the diurnal distribution.

MuDRain and diurnal methods outperformed the uni-
form distribution method at 842.1 (Table 4). MuDRain
fitted better the observed data than the diurnal method
based on the correlation coefficients and Se. However, the
diurnal method has a slightly lower MAE and index of
agreements (d2 and d1) as compared to the uniform and
MuDRain methods. A standard deviation for diurnal method
data was close to that of the measured data (ΔS =0.095),
indicating that the diurnal model was good in explaining the
variance in observed precipitation, which can also be
confirmed from Fig. 3. The results of the F-test show a
significant difference in variance of observed and disaggre-
gated data using MuDRain and uniform methods. Lag-1
autocorrelation coefficient is often used to assess the degree
of non-randomness in time series data. All of the weather
parameters have high values of lag-1 autocorrelation
(minimum for precipitation and highest for dew point
temperature), indicating that adjacent values separated by
1 h are strongly correlated. Among the three disaggregation
methods, the diurnal method was good in explaining the
non-randomness of precipitation data.

Table 2 Monthly distribution of percent wet hours (%W) and hourly cross-correlation determination coefficient, m, at 800.3

Jan Feb Mar April May Jun Jul Aug Sep Oct Nov Dec Ave

%W Measured 5.03 3.13 2.86 2.12 2.07 1.84 1.15 1.40 3.46 2.01 3.61 3.94 2.71

Diurnal 8.42 6.44 5.88 5.25 3.70 2.64 2.66 2.41 4.23 4.26 5.72 6.98 4.86

Uniform 24.31 19.69 18.89 17.94 12.90 8.65 9.29 11.83 14.68 14.82 20.79 20.81 16.18

MuDRain 4.81 3.26 2.93 2.13 1.99 1.71 0.95 1.03 3.16 2.13 3.71 4.05 2.65

m 2.56 5.32 1.98 2.41 1.77 2.72 2.12 1.82 1.75 3.78 2.78 2.28 2.61
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3.1.2 Temperature

All of the four temperature disaggregation methods tested
in this study performed reasonably well in reproducing the
hourly temperature data at both locations (1 and 6)
(Table 4). The sine curve model showed a 2-h lag; thus, a
2-h early shift yielded the best fit. At station 1, the sine
curve model had higher Se values, under-predicted temper-
ature, and showed a large scattering in higher temperatures.
A similar scattering was observed at a lower temperature
range (Fig. 5) with the other two models. At station 6, the
sine curve model had better results than the cosine and Erbs

model (Table 4). A scattered data plot for station 6 clearly
showed that the cosine model and Erbs model slightly over-
predicted the high temperature values and showed a larger
scattering in the low temperature range as compared to the
sine curve model (Fig. 6).

The cumulative frequency distribution of the sine curve
model was similar to that of the measured data at stations 1
and 6 (Fig. 7a, b). The sine curve model with a 2-h lag
performed better than the cosine and Erbs models; thus, it
can be used as a dependable temperature disaggregation
model. It also has low values of ē, MAE, and Rs, and there
was a statistically non-significant difference (test <1.0)
between observed and model-generated data at both
locations.

3.1.3 Wind speed

The cosine and random function models produced
reasonable hourly wind speed data compared with the
observed data (Table 4); however, the former model
relatively outperformed the latter as it is shown by their
correlation coefficients and low MAE, ē, and Rs. Data
generated by the cosine model have a higher correlation as
compared to the random model at both locations. There
was no statistically significant difference (test <1.0)
between observed values and data generated by the cosine
model at both locations. As expected, disaggregated wind
speed using the random function model was the least
autocorrelated (lag-1). In addition, although the cosine
model performed consistently well, it clearly failed to
reproduce high wind speed data (Fig. 8), which can cause
significant errors in calculating ET using wind speed-
based models (e.g., Penman–Monteith).

3.1.4 Relative humidity

Hourly dew point temperatures were calculated from
measured relative humidity at stations 1 and 6 using the
established procedure described by Allen et al. (1994).
Calculated hourly dew point temperature was compared
with disaggregated data using the method of Meteotest
(2003). A high value of correlation coefficients (Fig. 9) and
low values of MAE, Rb, Rs, and ē (Table 4) confirm that the
model-generated dew point temperatures closely match the

A

B

Fig. 3 Frequency distribution of hourly observed and generated
precipitation data using different disaggregation methods (diurnal,
MuDRain, and uniform) at 842.1 (a) and 800.3 (b)

Jan Jul

844 847 800.3 842.1 844 847 800.3 842.1

844 1.000 1.000

847 0.452 1.000 0.321 1.000

800.3 0.544 0.685 1.000 0.255 0.257 1.000

842.1 0.599 0.490 0.666 1.000 0.349 0.209 0.312 1.000

Table 3 Cross-correlation coef-
ficients in hourly precipitation
derived from daily cross-
correlation coefficients between
the four stations for the month
of January (representing wet
season) and July (representing
dry season)
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measured data. However, under-prediction of hourly dew
point temperature was observed during daytime.

3.1.5 Hydrologic significance

Simulated streamflow using DHSVM was slightly lower
(Rb=2%) compared to the observed streamflow using
current climate input from 842.1 and station 1 and at 30-
m spatial resolution. The Nash–Sutcliffe efficiency for WY
2006 and 2007 was optimal (0.66). These results indicate
that the increase in spatial resolution and using temperature,
wind speed, and relative humidity from station 1 did not
have any significant impact on model performance during
WY 2006 and 2007.

The hydrologic results from different meteorological
scenarios were different compared to the baseline scenario
(Fig. 10). Streamflow was the most sensitive compared to

ET and groundwater recharge across the different meteoro-
logical inputs. Among the precipitation disaggregation
scenarios, S2 resulted in the smallest error in streamflow
compared to S1 and S3. Disaggregating daily precipitation
using uniform and MuDRain methods resulted in a decrease
in streamflow. Although the diurnal precipitation disaggre-
gation was based on the observed hourly precipitation at
locations close to 842.1, there was a decline in streamflow
by an average of 7%, with a slight increase in groundwater
recharge. The main reason for higher ET and lower
streamflow as well as groundwater recharge under S1 and
S3 was the under-prediction of the frequency of high
rainfall intensities during these disaggregation methods
(Fig. 3a).

Air temperature-based disaggregation scenarios had
the least influence on streamflow, ET, and groundwater
recharge. Meteorological input S5–S7 showed a similar
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response on water balance, causing a slight increase in
ET and a decrease in streamflow and groundwater
recharge. Scenario S4 had no influence on streamflow

but resulted in a noticeable increase in groundwater
recharge and a decrease in ET. All of the four
disaggregation methods were able to capture the diurnal

Fig. 5 Correlation between observed and calculated (using different disaggregation methods) hourly air temperature at station 1

Fig. 6 Correlation between observed and calculated (using different disaggregation methods) hourly air temperature at station 6
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pattern and showed very little hydrologic sensitivity. The
relative bias in average annual streamflow was 19.5%
with S8 and 20% with S9, caused by a much lower ET.
Both the cosine and random models resulted in a decline
of ET by nearly 8% and can be attributed to the under-
prediction of high wind speed values. Additionally, the
average diurnal pattern of observed and disaggregated
wind speed showed that both the cosine and random
models under-predicted the daytime wind speed. Hourly
humidity input generated using hourly dew point tem-
perature from S10 resulted to an increase in ET by 5%.
Although the hourly observed and disaggregated dew
point temperatures were in close agreement (Fig. 9), the
average hourly RH values calculated using the disaggre-
gated dew point temperatures were significantly lower
during the day compared to the observed RH. In Hawai’i,
RH is inversely related to air temperature at lower

elevation and increases at higher elevation due to the
upslope moist air flow (Giambelluca and Nullet 1991).
This lowering of low-elevation RH during the daytime
was rapid and greater in the disaggregated data compared
to the observed RH.

3.2 Performance of ClimGen

3.2.1 Precipitation

The mean monthly and daily observed and simulated
precipitations and goodness-of-fit statistics at Lihue, Kahului,
Hilo, and Honolulu were compared using the data for the
period 1961–2008. Similarly, observed and simulated month-
ly proportions of wet days were also compared for the period
1961–2008. Relative frequency distributions of precipitation
amounts were plotted with the following intervals: 0–0.1, 0.1–

Fig. 7 a Cumulative probability
distributions for measured and
estimated hourly temperature
data at station 1. b Cumulative
probability distributions for
measured and estimated hourly
temperature data at station 6
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0.5, 0.5–1, 1–2, 2–5, 5–10, 10–15, 15–30, 30–50, 50–100,
100–150, and >150mm. Daily means and standard deviations
for each station were compared at 5% level of significance
using paired t-test.

The observed daily precipitation was in good agreement
with that generated by ClimGen. The maximum differences
between observed and ClimGen generated precipitations
were 0.66, 0.38, −1.08, and 0.51 mm at Lihue, Kahului,
Hilo, and Honolulu, respectively (Table 5). ClimGen
underestimated the precipitation at Hilo (slope>1.0) and
overestimated it at Lihue, Kahului, and Honolulu (slope<
1.0). There was no significant difference between the
observed and simulated mean daily precipitation at Lihue
and Honolulu based on a paired t-test. However, the
differences in mean daily observed and simulated precipi-
tation were significant for Kahului and Hilo. Model
performance varied by location and the maximum differ-
ences in SD of observed and simulated precipitation were
7.46, 2.8, 5.53, and 3.63 mm at Lihue, Kahului, Hilo, and
Honolulu, respectively. Irrespective of the location and the
month, the standard deviation of simulated precipitation
was lower than that of the observed precipitation (Table 5),
indicating that ClimGen did not fully reproduce the
variability of the observed data. This was confirmed by
the results of the paired t-test (p<0.001) which showed a
highly significant difference between the standard deviation
of the observed and simulated precipitation at all locations.

Abraha and Savage (2006) reported similar results and
recommended that extra care is needed while interpreting
the climate change impact assessment results obtained from
using such weather data due to uncertainties pertaining to
the above statistics.

There was no significant correlation between observed
and simulated precipitation (Table 6). Lag-1 autocorrelation
between observed daily precipitations varied from 0.23, at
Lihue, to 0.39, at Hilo, indicating a higher probability of
having a wet day if the previous day was wet. However,
lag-1 autocorrelations between simulated daily precipita-
tions were weak (highest 0.09) for all the locations, which
indicates that ClimGen will most likely predict a dry day
following a wet day. The mean absolute error, ΔS, ē, and
Rb values were relatively low at all four locations. The first-
order index of agreement d1 was highest at Kahului (0.45)
and lowest at Hilo (0.35). The second-order index of
agreement d2 was highest at Hilo (0.25) and lowest at
Honolulu (0.12). As expected, the value of d1 was lower
than d2 for all stations. Stockle et al. (1998) suggested that a
model performance can be considered acceptable if d2 is in
the range of 0.90–0.95. However, on a daily time step,
values of the index of agreement were outside the range of
0.90–0.95. The indexes of agreements d1 and d2 on a
monthly basis range between 0.48–0.67 and 0.41–0.57,
respectively. The Wilcoxon rank-sum test of identical

Fig. 9 Cumulative probability distributions for measured and disag-
gregated hourly dew point temperature from the cosine model at
station 1 and station 6

Fig. 8 Cumulative probability distributions for measured and disag-
gregated hourly wind speed from the cosine and random function
models at station 1 and station 6
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distribution was rejected (p<0.05), except for Honolulu
station.

The correlation coefficients between mean monthly
observed and simulated precipitation for the period 1961–
2008 were 0.98, 0.99, 0.96, and 0.98 at Lihue, Kahului,
Hilo, and Honolulu stations, respectively (Fig. 11). There
was a significant difference between the monthly mean
observed and simulated precipitation at Lihue and Honolulu
stations. The proportions of wet days generated by
ClimGen were in good agreement with those of the
observed data (Fig. 12). The Q–Q plots of daily precipita-
tion at the four locations (Fig. 13) showed that ClimGen
underestimates the precipitation at a higher percentile. The
difference in Q–Q plot is more prominent at Hilo due to a
high frequency of extreme events along the eastern slopes
of Mauna Kea Mountain (Chu et al. 2009). ClimGen may

not be useful under these conditions if high-intensity daily
precipitation data are required (i.e., flood modeling). At
Honolulu station, which is located in the drier side of the
island associated with less frequent extreme events, Q–Q
plot showed a good agreement with the observed data.

The generated relative frequency distributions of precip-
itation amounts generally matched the observed data well,
but at all four weather stations the model underestimated
the frequency of precipitation of >100 mm (Fig. 14). Chu et
al. (2009) described the extreme rainfall in Hawaiian
Islands using a three-parameter generalized extreme value
distribution with the shape parameter close to zero (−0.1 to
0.1) and suggested that a simple Gumbel distribution is a
reasonable choice for explaining the extreme rainfall
events. We fitted the two-parameter Weibull distribution
to the daily precipitation amount >0 mm using maximum
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likelihood optimization. The shape parameter varied from
0.61 to 0.74 and the scale parameter ranged from 3.11 to
9.43 with the lowest value at Honolulu and the highest at
Hilo. The scale parameter at Hilo was three times higher
than the rest of the stations, exhibiting a much different

precipitation regime. Extra care is needed while using
ClimGen for climate change scenarios as extremes are more
likely to occur under a changing climate (Katz and Brown
1994).

3.2.2 Temperature

There was no significant difference (p>0.05) between the
observed and simulated mean minimum and maximum
temperatures and their corresponding standard deviations
(Table 5). The maximum temperature was slightly over-
predicted at Lihue and Hilo. The minimum temperature was
over-predicted at Lihue only. The percentage of days for
which ClimGen over-predicted the temperature by at least
2°C than the observed air temperature varied between 13%
and 22% for Tmax and between 16% and 26% for Tmin for
all of the four locations. This indicates that, at least 74% of
the time, the difference between the observed and simulated
temperatures was less than 2°C. On a monthly scale, the
difference between observed and simulated temperature
was less than 0.5°C at all stations. The average amplitude
for the observed (7.8°C) and simulated (7.6°C) air temper-
atures were within those reported by Safeeq (2010) for the
island of O’ahu. Values of Pearson’s correlation between
observed and simulated Tmax and Tmin were higher as
compared to those for precipitation (Table 6). Lag-1
autocorrelation, mean, and standard deviation of simulated
temperature were similar to those of the observed data.
ClimGen generates a reasonable daily Tmax and Tmin as
compared to the observed data given the high values of d1
and d2 and low values of MAE, ΔS, ē, Rb, and the
statistically non-significant differences (test<0.001). The
cumulative probability of measured and simulated temper-
ature showed a good agreement (result not shown).
However, the Wilcoxon rank-sum test results indicate a
statistically significant difference between the distribution
of observed and simulated air temperature data at all four
locations.

3.2.3 Wind speed

The daily simulated and observed wind speeds were in
good agreement at all four locations (Table 6). The daily
observed and simulated mean wind speed and their
corresponding standard deviations were very similar. In
addition, there was no significant difference between their
monthly means and standard deviations (Table 5). However,
ClimGen slightly over-predicted the monthly standard
deviation at all locations. The Wilcoxon rank-sum test
results for Kahului and Hilo indicate identical continuous
distributions of wind speed with equal medians at the 5%
significance level. The simulated data show an almost non-
significant lag-1 autocorrelation because ClimGen gener-

Table 5 Comparison of measured and simulated mean monthly
precipitation (P, mm day−1), maximum (Tmax) and minimum (Tmin)
temperatures (°C), and wind speed (ms−1) at Lihue, Kahului, Hilo, and
Honolulu

Parameter Statistics Intercept Slope R2 Maximum errora

Lihue

P Meanb 0.21 0.83 0.96 0.66

SDb 0.27 0.58 0.89 7.46

Tmax Mean −0.46 1.01 1.00 0.16

SD 0.12 0.94 0.95 0.11

Tmin Mean −0.61 1.02 1.00 0.34

SD 0.14 0.95 0.99 −0.13
Wind Mean 0.12 1.04 0.97 −0.47

SD −0.27 1.21 0.97 −0.23
Kahului

P Mean 0.05 0.90 0.99 0.38

SDb −0.21 0.75 0.96 2.8

Tmax Mean 0.83 0.97 1.00 0.33

SD 0.57 0.73 0.90 −0.26
Tmin Mean 0.22 0.99 1.00 −0.18

SD 0.19 0.90 0.98 0.09

Wind Mean −0.10 1.02 0.99 0.15

SD −0.44 1.12 0.86 0.4

Hilo

P Mean −1.20 1.15 0.93 −1.08
SDb −2.61 0.95 0.95 5.53

Tmax Mean −0.96 1.03 0.99 0.49

SD 0.14 0.93 0.98 −0.08
Tmin Mean 0.43 0.97 1.00 0.21

SD 0.18 0.86 0.89 0.12

Wind Mean 0.21 0.92 0.96 0.07

SD 0.01 1.13 0.97 −0.15
Honolulu

P Meanb −0.01 0.93 0.97 0.51

SDb −0.71 0.82 0.93 3.63

Tmax Mean 0.98 0.96 1.00 0.5

SD 0.63 0.63 0.84 −0.27
Tmin Mean 0.10 0.99 1.00 0.26

SD 0.17 0.88 0.98 0.19

Wind Mean −0.13 0.98 0.98 0.3

SD −0.18 1.05 0.98 0.16

a Calculated as the maximum difference between observed and simulated
monthly values
b There is a significant difference in the mean (two-sample paired t-test)
between observed and simulated data
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ates wind speed using randomly generated real numbers
between 0 and 1. This indicates that the magnitude of
ClimGen-generated wind speed between two subsequent
days is highly likely different.

4 Summary and conclusions

The daily and sub-daily meteorological data are vital inputs
for hydrological and environmental modeling. The lack of

meteorological data at a finer time scale often limits the full
use of these models. In the current study, we evaluated the
applicability of one stochastic weather generator, ClimGen,
and the various approaches of disaggregating daily weather
data into an hourly data. Two of the three tested
disaggregation methods for daily precipitation are
MuDRain and diurnal methods, which performed reason-
ably well compared to the observed data. The third method
based on a 24-h uniform distribution failed to reproduce
most of the statistical parameters computed from observed
hourly data. MuDRain produced better results for wet hours
as compared with the other two models. However, the
diurnal method performed well over the other two models
in reproducing the observed variance in hourly precipita-
tion. Among the temperature disaggregation models, the
sine curve model with a 2-h lag performed better than the
cosine or Erbs model. The cosine model relatively out-
performed the random function model in disaggregating the
daily wind speed into an hourly data.

The diurnal method showed the least error in
simulating streamflow as compared to MuDrain and
uniform methods. There was a little difference in
hydrologic sensitivities between the uniform and
MuDRain methods. Disaggregating daily precipitation
had a significant hydrologic impact on water balance in
this mountainous watershed. The largest differences in
annual water balance were related to wind speed
followed by precipitation and relative humidity. Under-
prediction of hourly wind speed and dew point during
the daytime caused a decrease and an increase in ET,
respectively. Simulated hourly streamflow, evapotranspi-
ration, and groundwater recharge were less sensitive to
the method of disaggregating daily air temperature.
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The performance of ClimGen weather generator model
varied by location and by weather parameter (i.e., rain,
wind speed, temperature). Out of the four locations,
ClimGen was only able to reproduce the observed
precipitation distribution at Honolulu. We found that
ClimGen failed to reproduce the precipitation extremes at
two of the tested locations and it underestimated precipita-
tion at higher percentiles. However, it performed reasonably
well in generating the daily minimum and maximum
temperatures and wind speed. ClimGen was able to
reproduce the distribution of minimum temperature at
Kahului. The distributions of simulated wind speed at
Kahului and Hilo were similar to those of measured wind
speed. On a monthly basis, the ClimGen-generated precip-
itations were in agreement with the observed precipitations
at all four locations tested. Similar results were found for
the number of monthly wet days at all locations. This study
indicates that location-specific evaluation and parameteri-
zation of the ClimGen are needed before using it in
generating long-term weather data, especially for the
smaller time intervals (i.e., daily).
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Appendix

Model bias (ē) and standard error (Se) were calculated as
follows:

e ¼ 1

N

XN
i¼1

ðPi � OiÞ ð14Þ

Se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðPi � OiÞ2

N � 1

vuuut
ð15Þ

where Pi and Oi are the predicted and observed data at any
given time i, and N is the total number of data points.

If the model is reliable, then Se will be significantly
smaller than the standard deviation of measured data (So).
Thus, the ratio Se/So ,which is known as relative standard
error Rs, is a dimensionless measure of the improvement in
the accuracy of prediction (McCuen 2003). When Rs is near
zero, the model significantly improves the accuracy of
prediction over the mean; however, when Rs is near 1.0, the
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model provides no improvement in prediction compared to
the mean. Other dimensionless indices such as relative bias
(Rb), relative standard error (Rs), relative difference between
observed and predicted standard deviations (ΔS), and
significance of difference test (Test) were calculated as
follows:

Rb ¼ e

O
ð16Þ

ΔS ¼ Sp � So
So

ð17Þ

Test ¼ AbsðO� PÞ
2Se

ð18Þ

where O and P are the mean of observed and predicted
weather data, respectively, and Sp is the standard deviation
of predicted weather data. The closer the values of Rb, Rs,
and ΔS to zero, the better the models are. The significant
difference test was evaluated based on a two tailed z-test at
95% significance level. If the test values are greater than
1.0, then the difference between observed and predicted
data is significant.

The index of agreement (d2) proposed by Willmott
(1981, 1982) represents the ratio between mean square error
and the potential error. The d2 can detect additive and
proportional differences in the observed and simulated
means and variances. However, d2 is often criticized for its
over-sensitivity to extreme values due to squared differ-
ences. Legates and McCabe (1999) suggested a modified
version of index of agreement (d1) that is less sensitive to
extreme values. The index of agreement ranges between 0
and 1, where a value of 1 indicates a perfect agreement and
a value of 0 indicates no agreement at all. The index of
agreement (d2) and its modified form (d1) were estimated as
follows:

d2 ¼ 1�
PN
i¼1

ðOi � PiÞ2

PN
i¼1

ð Pi � O
�� ��þ ð Oi � O

�� ��Þ2 ð19Þ

and

d1 ¼ 1�
PN
i¼1

ð Oi � Pij jÞ
PN
i¼1

ð Pi � O
�� ��þ ð Oi � O

�� ��Þ ð20Þ

Table 7 Climate input scenarios to DHSVM

Input
scenario

Description Equation

B Baseline scenario using observed
precipitation
at 842.1 and temperature, wind speed,
relative
humidity, and solar radiation at station 1

–

S1 Daily precipitation at gauge 842.1 was
disaggregated using the uniform method

–

S2 Daily precipitation at gauge 842.1 was
disaggregated using the diurnal method

(4)

S3 Daily precipitation at gauge 842.1 was
disaggregated using MuDRain method

–

S4 Daily temperature disaggregated using the
sine
curve model

(5)

S5 Daily temperature disaggregated using the
cosine model

(6)

S6 Daily temperature disaggregated using the
double cosine model

(7)

S7 Daily temperature disaggregated using Erbs
model

(8)

S8 Daily wind speed disaggregated using the
cosine model

(9a, 9b)

S9 Daily wind speed disaggregated using the
random model

(10)

S10 Daily dew point temperature disaggregated
using Meteotest model

(12)
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