
ORIGINAL PAPER

Statistical downscaling in the arid central Andes:
uncertainty analysis of multi-model simulated temperature
and precipitation

Maxime Souvignet & Jürgen Heinrich

Received: 15 June 2010 /Accepted: 3 March 2011 /Published online: 6 April 2011
# Springer-Verlag 2011

Abstract Statistical downscaling is a technique widely
used to overcome the spatial resolution problem of General
Circulation Models (GCMs). Nevertheless, the evaluation
of uncertainties linked with downscaled temperature and
precipitation variables is essential to climate impact studies.
This paper shows the potential of a statistical downscaling
technique (in this case SDSM) using predictors from three
different GCMs (GCGM3, GFDL and MRI) over a highly
heterogeneous area in the central Andes. Biases in median
and variance are estimated for downscaled temperature and
precipitation using robust statistical tests, respectively
Mann–Whitney and Brown–Forsythe's tests. In addition,
the ability of the downscaled variables to reproduce
extreme events is tested using a frequency analysis. Results
show that uncertainties in downscaled precipitations are
high and that simulated precipitation variables failed to
reproduce extreme events accurately. Nevertheless, a
greater confidence remains in downscaled temperatures
variables for the area. GCMs performed differently for
temperature and precipitation as well as for the different
test. In general, this study shows that statistical downscaling is
able to simulate with accuracy temperature variables. More
inhomogeneities are detected for precipitation variables. This
first attempt to test uncertainties of statistical downscaling

techniques in the heterogeneous arid central Andes
contributes therefore to an improvement of the quality
of predictions of climate impact studies in this area.

1 Introduction

General Circulation Models (GCMs) are the principal
instrument for making projections of future climatic
conditions. They are designed to propose a large-scale
vision of the evolution of climate in responses to natural
and anthropogenic forcing. Because of the current limita-
tions in computing resources, their spatial resolution is still
limited. As a consequence, raw GCMs' outputs do not meet
the needs of regional impact studies (Wilby et al. 2004).
Another issue is that different GCMs return different
climate projections for both the present day and future
periods. As a consequence, using outputs from a range of
GCMs is recommended for impacts studies (IPCC 2007).
Multi-model approach has been therefore developed recent-
ly at the global scale using a Bayesian approach (Lopez et
al. 2006), at the regional scale with a linear Bayesian linear
model (Greene et al. 2006) or using more classic weighting
methods (Giorgi and Mearns 2002).

Another issue is that projections in complex topographic
areas, such as mountainous regions, cannot be rendered
with enough accuracy (Hostetler 1994; IPCC 2007).
Regional climate is also often affected by circulations that
occur at smaller scales (e.g. Giorgi and Mearns 1991).
Accordingly, recognising these needs for small scale
projections, the scientific community developed during the
last decade several so-called downscaling techniques.
Among these, statistical downscaling is appreciated for its
advantages of being simple and easy to implement when
compared to other techniques (Wilby et al. 2004). Another
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advantage lies in the fact that spatial and temporal
variability are conserved by involving historical records
for the determination of the model's parameters. The
Statistical Downscaling Model (SDSM) developed by
Wilby et al. (2002) is a widely used linear regression
model, especially in the field of the analysis of climate
change impacts on water resources.

The interaction between the atmospheric circulation and
the complex topography of the Andes mountain range has a
strong influence on the regional climate. It makes also this
region especially vulnerable to climate variability. Such
mountainous arid regions, in their majority characterized by
nival regimes, are highly dependent on precipitations but
are as well strongly influenced by temperatures (Singh et al.
2006). If downscaling techniques, including statistical
downscaling, have been mainly tested and applied in
Northern America and Europe (e.g. Dibike et al. 2008;
Diaz-Nieto and Wilby 2005; Boe et al. 2007), fewer
contributions exist in Southern America. Solman and
Nunez (1999) reported about one of the first attempts of
statistical downscaling of temperature in central Argentina.
In their conclusions, the authors estimated that if the
interannual variability is not always well captured, the
statistical downscaled data show a good agreement with
observations. In a more recent work, Labraga (2010)
proposed recently one of the few applications of a statistical
downscaling model in western Argentina. The author
concludes that significant useful relationships between
precipitation and atmospheric patterns could be found.
However, the scarcity of observational stations on the
spatial and temporal levels adds up to the challenges of
downscaling in mountainous areas (Labraga 2010). Recently,
a preliminary investigation carried out in the arid Northern
Chile by Souvignet et al. (2010) proposed a successful
application of statistical downscaling for the projection of
future precipitation and temperature scenarios. However,
the authors concluded that uncertainties linked with the
technique should be addressed.

In southern central Chile, Rojas (2006) first reported in
a recent benchmark study about the application of
downscaling. Even if dynamical and not statistical
downscaling was involved, her conclusions indicate that
biases were highly correlated with the station's elevation
and the terrain representation in her model. More recently,
Marengo et al. (2009) used the PRECIS regional climate
modelling system to investigate the distribution of extreme
temperature and precipitation in South America over the
recent past as well as under future climate forcing. In their
analysis, the authors note significant biases in the central
Andes between observed and simulated values.

Uncertainties in downscaling techniques are manifold. A
part of it could be associated with those intrinsic to the
GCMs (Mearns et al. 2001). In addition, the downscaling

model structure contributes to the overall downscaling
uncertainty. Nevertheless, several solutions exist in order
to address the issue of uncertainty with statistical
downscaling:

First, the use of multiple climate models is expected to
reduce the uncertainty linked with GCMs (e.g. Doblas-
Reyes et al. 2003). It provides a measure of uncertainties as
well as a better mean estimate, which is expected to
mitigate possible biases of the different GCMs. Therefore, a
multi-model approach should be used while implementing
statistical downscaling techniques for impact studies. In the
case of SDSM, climate model predictors are made available
courtesy of the Canadian Institute for Climate Studies.
However, predictors for South America and most of the
world are available from only one GCM. As a consequence,
most impact studies using SDSM rely only on the outcomes
of one sole GCM (e.g. Chu et al. 2010).

Second, the quantification of the uncertainty linked with
the downscaling model structure is made possible by
several statistical methods. The most commonly used
statistical techniques for assessing model uncertainty
include the analysis of statistical properties of the model
errors.

Hence, this paper aims at providing a comprehensive
comparison of uncertainties linked with different GCMs
using the SDSM in an arid mountainous watershed of the
central Andes. The uncertainty assessment will include the
deviations in terms of median and variance between
downscaled variables and their corresponding observations
using boundary data of three GCMs, which were never
tested with SDSM in this region. In addition, and given the
regional high climatic variability, the ability of SDSM to
reproduce extreme events will be tested. Hence, with the
quantification of biases linked with three GCMs, to the best
of our knowledge never tested for SDSM in the central
Andes, this work is expected to contribute to a reduction of
uncertainties linked with impact studies in the region and in
other similar areas in the world. In the case of the central
Andes, it is expected that a better knowledge of uncertain-
ties at stake will enhance the decision capacity of national
and local water managers as well as provide decision
makers with sound estimates of potential impacts of climate
change in the region.

This paper is structured in four main sections. First, the
study area and the data based used for this study will be
presented. The next section will describe the methodology
used in this work. After a description of the linear
regression downscaling technique, the statistical tests and
analysis used in the uncertainty analysis will be presented.
Thereafter, results for the performance and associated
uncertainties of downscaled variables will be explored.
Eventually, general concluding remarks are presented in the
last section.
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2 Study area and database

2.1 Study area

This work focuses on the span between 29º20′ and 32º17′
S, the so-called Coquimbo Region (see Fig. 1). Located just
south of the arid diagonal (Messerli et al. 1992), its climate
ranges from arid to semi-arid from the north to the south
(Miller 1976). The main reasons for the choice of the
Coquimbo Region for an uncertainty analysis are described
below.

A strong future climate change signal in the western side
of the Andes is suggested by most climate models (Mata
and Campos 2001). This makes this region a meaningful
candidate for impact studies in arid mountainous regions
(e.g. investigating the influence of climate variability on
water resources).

As other arid and semi-arid areas, which cover more than
30% of the inland earth's land surface (Dregne 1985), the
region has climatic, physiographic and ecological features
of high vulnerability to climate variations (Downing et al.
1994; Holmgren et al. 2006). The annual precipitation
shows a strong orographic dependence, going from ca. 80
to 300 mm a−1 from the coastal area to the Andes (Favier et
al. 2009). An increase in precipitation from north to south is
also observed in the same amounts.

Moreover, precipitation is strongly influence by several
natural large-scale phenomena such as El Nino Southern
Oscillation (ENSO) and the Pacific Decadal Oscillation
(PDO) (Aceituno 1988; Garreaud et al. 2009; Verbist et al.
2010). Temperature, also influenced by these phenomena,
reaches its minimum in winter (June–August), which
coincides with precipitation maximum.

In addition, hydrological processes are expected to be
strongly affected. Snowfall covers large areas, up to 50% of
total surface in certain watersheds at high altitude (Favier et
al. 2009). With a relatively low glacier coverage (ca. 7 km2

between 29–32° S; see Garin 1987), river discharge is then
mainly driven by the melting process of winter-
accumulated snowpack. Therefore, a better understanding
of uncertainties linked with downscaled temperature and
precipitation for future scenarios will give more confidence
in the outcomes of future impacts studies.

Last but not the least, this region, as other areas in
developing countries, has been given very little attention
with regard to climate change. Most downscaling technique
comparative studies and impact assessment investigations
concentrate on areas within Western Europe and Northern
America (Kundzewicz et al. 2008).

2.2 Predictands

The database used in this study is threefold. It includes (1) a
set of observed daily data records, (2) daily variables based
on the National Center for Environmental Prediction
(NCEP) re-analysis data set and (3) daily variables based
on three GCMs data set.

The predictands, i.e. observed data, were provided by the
Dirección General de Agua (DGA) for height stations and
are presented in Table 1. Daily maximum temperatures
(referred to as Tmax), daily minimum temperature (referred
to as Tmin), and daily precipitation for a 22-year period
(1979–2000) were considered. Because of data relative
scarcity and quality constraints, a longer time period was
not available.

Data quality assessment is an important preliminary step
in uncertainty analysis. Because the failure of the input data
to meet certain quality standards enhances the biases
introduced into the simulation, a special emphasize was
given to data quality control. The homogenous data series
used in this study were provided by Souvignet et al. (2011)
for a trend analysis of temperature and precipitation records
in central–northern Chile.

2.3 Predictors

In statistical downscaling, the relevance of the relation-
ship between large-scale predictors (i.e. variables from
NCEP re-analysis and GCMs datasets) and the smallFig. 1 Location of the meteorological stations within the study area
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scale predictands (i.e. precipitations, Tmax, Tmin at the
stations' scale) will determine the model ability to produce
good climate projections for the research area. This is
based on the assumption that the predictor–predictand
relationships under the current conditions remain valid
under future climate conditions. This assumption allows
the statistical downscaling of global future climate
projections. Therefore, the choice of predictors is of
particular importance to linear regression downscaling
techniques.

The NCEP re-analysis dataset (Kalnay et al. 1996;
Kistler et al. 2001) was re-gridded to the same coordinate
system as the selected GCMs (listed in Table 2) and
normalized with respect to their respective 1961–1990
mean. This modified dataset will be referred to here as
NCEP.

When the best fit between predictands and predictors is
validated for observed climate, a simulated control signal is
introduced by substituting observed large-scale predictors
from the NCEP dataset with the corresponding simulated
GCMs predictors.

CGMs predictors were obtained from the World Climate
Research Programme Coupled Model Inter-comparison
Project Phase 3 (CMIP3) dataset for the climate of the
twentieth century experiment (20C3M) scenario. This
scenario corresponds to a change in greenhouse gases as
observed until 2000. Thereafter, variables were standard-
ized according to their 1961–1990 variance and mean
values. The modified datasets for GCMs predictor variables
will be referred to as to using GCMs short names described
in Table 2.

Among all predictors available from the CMIP3 data-
base, only 16 were available at the daily resolution for
NCEP and the three GCMs considered in this study.
Subsequently, re-gridding and standardization of data of
NCEP and the GCMs were processed using the PostScript-

based language of the International Research Institute for
Climate and Society (IRI) Data Library (http://iridl.ldeo.
columbia.edu/SOURCES/.WCRP/.CMIP3/). The 16 pre-
dictors considered for the calibration exercise are displayed
in Table 3.

3 Methodology

3.1 Statistical downscaling technique

The Statistical Downscaling Model was developed by
Wilby et al. (2002). As Wilby et al. (2002) already propose
a complete and detailed description of SDSM, the model
will be depicted hereafter only briefly. Additional details
could be found in the literature cited in this section. SDSM
is designed to produce high-resolution daily climate
information from coarse-resolution GCM simulations. It is
best described as a hybrid of the stochastic weather
generator and multiple linear regression methods. The
underlying idea of the model is that large-scale circulation
patterns and atmospheric moisture variables (e.g. observed
measures of vorticity or relative humidity) are used to
condition local-scale weather generator parameters (e.g.
precipitation occurrence and intensity; Penlap et al. 2004).
It is then assumed that this relationship remains constant
under climatic change. This allows the generation of future
local climate scenarios.

Among statistical downscaling techniques, SDSM has
become increasingly used, mostly because it proposes a set
of pre-processed predictors (NCEP and GCCMs) available
for most regions of the world. Although this model has
been used in several countries, uncertainties linked with its
downscaled variables appear to be highly dependent on the
local climate regimes.

Lately, Chu et al. (2010) tested SDSM in semi-arid
China. Their results suggest that temperature data are well
simulated, whereas downscaled precipitation introduced
systematic errors in extreme events.

In a recent study, Dibike et al. (2008) investigated the
uncertainties linked with SDSM downscaled precipitation
and temperature regimes in Northern Canada. Their
approach is based on the systematic analysis of uncertain-
ties related to hypothesis test of median and variance along
with their corresponding confidence intervals. The authors
concluded that biases introduced by the sole SDSM
technique were acceptable for impact studies in the region.
In central Sweden, Wetterhall et al. (2007) investigated four
statistical downscaling methods in terms of their ability to
capture statistical properties of daily precipitation in
different seasons. Their conclusions showed that although
SDSM outperformed the other analogue models, it was
unable to capture well differences between wet and dry

Table 1 Location of meteorological stations used in the uncertainty
analysis

Altitude
(m a.s.l).

Lat (S) Lon (W) Gauge

La Serena 15 29°54 71°15 P

Illapel DGA 290 31°38 71°11 T

Limahuida 295 31°45 71°10 P

La Paloma Embalse 320 30°41 71°02 P, T

Rivadavia 820 29°58 70°34 P, T

La Tranquilla 975 31°54 70°40 P, T

Hurtado 1,100 30°17 70°41 P, T

La Laguna 3,160 30°12 70°02 P, T

P precipitation, T temperature
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summers. Khan et al. (2006) compared three different
downscaling techniques in northern Canada using a similar
approach later used by Dibike et al. (2008). They concluded
that SDSM was one of the best performers in simulating
temperatures and precipitation in this region. In addition,
Wetterhall et al. (2006) investigated the ability of four
statistical downscaling methods to simulated rainfall in
southern eastern and central China. The authors conclude
that the annual cycle was well captured with SDSM.

3.2 Screening predictor variables

In order to define the statistical downscaling model
parameters, a screening of available predictors is necessary.
To ensure a proper calibration, NCEP predictor variable (re-
gridded for the different GCMs) were selected according to
their robust statistical significance, i.e. significant partial
correlation (r) at the 95% confidence level with the local
predictand (i.e. precipitation and temperature). This statis-
tical measure helps in identifying the amount of explana-
tory power of each predictor once the influence of other
predictors have been removed.

In order to allow a comparison among the three GCMs,
the whole set of predictors listed in Table 3 is tested for
each GCMs against observed values. Predictors with non-
significant correlations are discarded until a set of pre-
dictors with the highest partial correlation is chosen (from

two up to six, depending on the predictand). This
procedure, although compromising between the three grid
box outputs, allows a sound comparison between the
different GCMs, attributing them the same set of statisti-
cally significant predictand–predictors relationships. In
addition, based on the data statistical characteristics, a lag
1-day auto-regression was introduced in the model for
temperature simulation. The outcome of the predictor
screening for precipitation, maximum and minimum tem-
perature are displayed in Table 4.

Predictor variables such as sea level pressure (mslp) as
well as specific humidity at different level pressure (sh85
and sh50) return indeed high partial correlation values for
precipitation. Nevertheless, at high altitude (e.g. La
Laguna), mslp does not play a prevailing role anymore,
ceding to a greater influence of winds (p5_u). As shown by
Kalthoff et al. (2002), westerly winds prevail at high
altitude (4,000 ma.s.l.) while below this height, winds flow
southward along the Andes. These winds appears to have
an influence on both precipitation and temperature with
meridional and zonal velocity at appropriate pressure levels
(surface, 850 hPa, 500 hPa) returning relative high partial
correlations. However, few predictor variables, with the
above-mentioned regional physical characteristics, returned
satisfactory partial correlation values for precipitation. In
contrast, a larger set of physically based predictors were
found correlated with Tmin and Tmax.

Table 2 GCMs used for uncertainty analysis

Official name Short name Institution Country Resolution Grid box centroid Reference

(Lon×Lat) Lon (W) Lat (S)

CGCM3_1 CGCM3 Canadian Centre for Climate
Modelling and Analysis

Canada 3.75°×3.75° 71.25° 31.54° (Flato and Boer 2001)

GFDL_CM2_1 GFDL NOAA/Geophysical Fluid
Dynamics Laboratory

USA 2.5 °×2° 71.25° 31.35° (Delworth et al. 2006)

MRI_CGCM2 MRI Meteorological Research Institute Japan 2.81°×2.81° 70.31° 29.30° (Yukimoto et al. 2001)
70.31° 32.09°

Coordinates selected for the study area are displayed along with institution, country and reference. In this study, GCMs will be referred to as using
their short names

Predictor Code Predictor Code

Mean sea level pressure mslp 500 hPa meridional velocity p5_v

Latent heat flux lhflx 850 hPa zonal velocity p8_u

Sensible heat flux shflx 850 hPa meridional velocity p8_v

Near surface specific/relative humidity shum 1,000 hPa zonal velocity 10_u

Mean temperature at 2 m temp 1,000 hPa meridional velocity 10_v

Surface zonal velocity p__u 500 hPa specific/relative humidity sh50

Surface meridional velocity p__v 850 hPa specific/relative humidity sh85

500 hPa zonal velocity p5_u 1,000 hPa specific/relative humidity sh10

Table 3 Available predictor
variables considered for NCEP,
CGCM3, GFDL and MRI
models

Statistical downscaling in the arid central Andes 233
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In conclusion, among the predictors considered for
SDSM calibration in Table 3, sea level pressure plays a
major role in the prediction of precipitation with high
partial correlations. If this predictor is also significant for
temperature (especially for Tmin), its influence is lower in
the region. Meridional and zonal velocity appears to
influence both precipitation and temperature in the region,
with graduated pressure levels correlated with the station's
altitude. Equally, relative humidity predictors at higher
pressure levels return significant partial correlations for
both precipitation and temperature. On the other hand,
surface relative humidity and high pressure winds (10_u
and 10_v) do not prove to be predictors appropriate for the
region.

A 16-year calibration period (1979–1994) was chosen
for temperature. The statistical model's parameters were
then validated during a 6-year period (1995–2000). Be-
cause rainy days are very scarce in the region, a longer
validation period was necessary for precipitation. There-
fore, a 10-year (1979–1988) period for calibration was
chosen, along with a 12-year (1989–2000) validation period
for precipitation. As a result of these data availability
constraints, the calibration period is relatively short for both
precipitation and temperature variables. However, as the
region's climate is strongly affected by phenomena such as
ENSO and the PDO, it should be verified that the
calibration phase is representative of the regional climate
variability. Figure 2 compares the calibration and validation
period for precipitation and temperature against the Oceanic
Nino Index (ONI) from 1950 to 2000. The PDO phenom-
enon is not represented on this graph because, as shown by
Biondi et al. (2001), after 1977, the PDO entered a so-
called warm phase which is homogenous over the calibra-
tion and validation period presented here. Nevertheless, it
should be noted that the “cold phase” of the PDO is
consequently not taken into consideration. Concerning the

ENSO phenomena, the ONI is represented by a dark grey
shaded area from 1950 to 2000. Standardized regional
averaged annual precipitations (for all stations considered
in this study) are represented by a black line. The dashed
line shows standardized regional average mean temperature
for the region of interest. For both temperature and
precipitation, medium and extreme warm/cold phases of
the ENSO phenomenon are included within the calibration
period. Hence, although the calibration period is relatively
short, the regional climate variability is well captured by the
calibration period.

3.3 Uncertainty analysis

The conservation of the mean value and variability of
observed events, for a baseline period, into the simulation
of future events is necessary in order to enable a reasonable
confidence into the statistical model outputs. Therefore, the
uncertainty analysis aims at quantifying the model's ability
to reproduce the current state of precipitation and temper-
ature. This is a prerequisite for the simulation of future
climate based on the outputs of GCMs.

The methodology to identify uncertainties of downscaled
variables was first proposed by Khan et al. (2006). Given
the regional climate characteristics of the central Andes, a
modified approach is used for the region and an analysis of
biases linked with the reproduction of extreme events was
introduced.

Hence, the uncertainty linked with the statistical down-
scaling of daily temperatures (Tmax and Tmin) and
precipitation is determined in terms of (1) model's biases
in the estimates of median, (2) model's biases in the
estimates of variance and (3) model's ability in the
simulation of extreme events.

The uncertainty analysis is carried out in three steps. The
first step describes the analysis of the data basic statistical
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characteristics. This step, commonly called the exploratory
data analysis (EDA) is recommended while handling
statistical tests in natural sciences (Helsel and Hirsch
2002). A hypothesis test requires the population's distribu-
tion to be characterized by certain parameters. For example,
many tests rely on the assumption that the population
follows a normal distribution, is outlier free and is not auto-
correlated when values were collected at regular time
intervals. Non-parametric tests, for instance, do not make
these assumptions, so they are useful for data not meeting
the above-mentioned characteristics. The EDA helps in
determining the statistical characteristics of the data.
Therefore, it is useful in order to identify what tests are
best suited. The outcomes of the EDA, not detailed here,
showed that temperature data (Tmax and Tmin) return a
normal distribution, with few outliers, whereas precipitation
data is heavily right skewed (i.e. returns a strong asymmet-
rical probability distribution, with the mass of the distribu-
tion concentrated on the left tail of the figure), with many
outliers (as this is a arid area, outliers are in fact records of
precipitation, most records being zeros). In addition, the
EDA shows the presence of autocorrelation for temperature,
which disappears after a few lags. However, no evidence of
autocorrelation was found for precipitation records. Hence,
the outcomes of the EDA suggest that specific statistical
tests should be used.

In a second step, hypothesis tests of median and
variance explored the model's ability to reproduce daily
observed data (Tmax, Tmin and precipitation) for three
different GCMs during the 1979–2000 baseline period.
SDSM is able to produce for a single run several
simulations (in this case, 20) with the same probability
of appearance. One set of 20 simulations is called an
ensemble. The hypothesis tests were based on the
ensemble means. Analyses were performed on a seasonal
and an annual basis. Seasons are defined as follows:
summer (December–February), fall (March–May), winter
(June–August) and spring (September–November). A
complementary technique, namely frequency analysis,
was used in a third step to analyse the models ability to
accurately simulate extreme events. The next sections will
shortly address the theory related to the steps mentioned
above.

3.3.1 Test of equality of median

The Mann–Whitney test is one of the most powerful non-
parametric hypothesis tests of the equality of medians of
two populations (Mann and Whitney 1947). This test is also
known as the two-sample rank test or the two-sample
Wilcoxon rank sum test. The Mann–Whitney test is based
on the idea that the sum of the ranks for the samples above
and below the median should be similar. In this study, a

significance level of 5% (p<0.05) is used. As other non-
parametric statistics, the Mann–Whitney test uses the ranks
of the sample data, instead of their specific values, to
detect the p value. This allows this test to be particularly
robust against outliers, non-normal distributed, and auto-
correlated data.

3.3.2 Test of equality of variance

The Levene's test is usually used to test the equality of two
populations' variance. This test is based on an analysis of
variance of the absolute difference from the mean and is
most appropriate in cases where data are normally
distributed (Levene 1960). However, in this study, as
precipitation series displayed a strong skewness in the
preliminary EDA, the more robust Brown–Forsythe's test is
used (Brown and Forsythe 1974). This is a modification of
the Levene's test in which the absolute mean difference is
replaced with the absolute median difference. This test
appears to be more robust and powerful for skewed data.
Using the sample median rather than the sample mean
makes also the test more robust for smaller samples
(Conover et al. 1981).

In this study, the equality of variances between observed
and downscaled Tmin will be tested for four different
GCMs and a significance level of 5% (p<0.05) is used.

3.3.3 Frequency analysis

Frequency analysis allows fitting a statistical distribution
to observed and downscaled data. It can be used in order
to interpret extreme events. Different statistical distribu-
tions can be fitted to the selected data. In this case, as the
distribution of extreme events (Tmax, Tmin and precipi-
tation) is of interest, a generalised extreme value (GEV)
distribution was used. The data are fitted a GEV distribution
of the form:

FðxÞ ¼ exp �exp
� x� xð Þ

b

� �1
k

( )
;

Where x is the random variable, ξ, β and k are respectively,
location, scale and shape parameters estimated from the
sample.

This allows interpreting the ability of the statistical
downscaling model to simulate the extreme events with
regard to observed data sets at various return periods. When
plotting extreme value distributions for modelled data with
a number of ensembles, it is possible to plot confidence
limits (lower and upper percentiles) around the fitted line.
In this study, 20 ensembles were simulated for the 1979–
2000 period and the 95% confidence interval boundary is
chosen.
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4 Calibration and validation

Before beginning with the uncertainty analysis per se, the
performance of the model shall be explored through
classical statistics indicators for the calibration and valida-
tion phases.

The analysis of the model's performance is twofold: first,
its ability to reproduce observed data by simulations based
on the NCEP predictors is investigated. Second, its ability
to reproduce observed data by simulation based on the three
GCMs predictor variables is analysed. The overall perfor-
mance of SDSM at investigated stations is summarized in
Table 5.

It is clear that Tmax and Tmin are simulated more
accurately than precipitation for both NCEP and GCMs
variables. Nevertheless, the calibration process returns
similar statistics for both temperature and precipitation,
with only slightly better values for Tmax and Tmin.
However, when the coefficients of determination (R2) of

precipitation and temperature are compared for the valida-
tion period (NCEP and all GCMs), the superior accuracy of
simulation for temperature is obvious. In contrast, R2 values
for simulation of precipitation with NCEP and GCMs
variables are rather low. Likewise, a decrease (increase) of
the standard error values for temperature (precipitation) is
observed at most stations.

These general observations fit the conclusions of most
works about SDSM and statistical downscaling in a broader
sense: the model tends to underestimate precipitation
simulations, while reproducing accurately temperatures.

Using yet another perspective of analysis, the perfor-
mance of the model could be assessed based on which
predictor dataset is used. This is possible for the validation
period only, the model being calibrated with the NCEP
dataset. First, concerning R2 values for temperature, no
significant difference is observed between NCEP-based and
GCMs-based simulations. The parameters, derived from the
NCEP predictor variables, seem to be well reproduced by

Table 5 Performance indicators for calibration and validation of the model for precipitation, Tmax and Tmin

Predictands Altitude Calibration Validation

NCEP CGCM3 GFDL MRI

m a.s.l. R2 SE R2 SE R2 SE R2 SE R2 SE

Precipitation

La Serena 15 0.44 0.43 0.33 0.63 0.34 0.30 0.28 0.23 0.15 2.60

Limahuida 295 0.45 0.38 0.49 1.08 0.31 1.02 0.33 1.22 0.42 1.51

Paloma Embalse 320 0.56 0.44 0.52 0.90 0.40 1.13 0.29 1.02 0.41 1.23

Rivadavia 820 0.47 0.42 0.48 0.75 0.42 0.93 0.26 0.82 0.29 1.21

La Tranquilla 975 0.44 0.48 0.51 1.76 0.36 0.51 0.25 0.54 0.44 0.64

Hurtado 1,100 0.48 0.40 0.43 0.91 0.35 1.12 0.30 0.37 0.30 0.47

La Laguna 3,160 0.19 0.35 0.15 1.93 0.24 2.03 0.27 0.55 0.28 0.73

Tmax

Illapel DGA 290 0.33 2.51 0.85 1.48 0.87 1.32 0.77 2.02 0.88 1.34

Paloma Embalse 320 0.28 2.64 0.85 1.47 0.89 1.24 0.82 1.88 0.89 1.30

Rivadavia 820 0.41 2.62 0.81 1.28 0.72 1.50 0.70 1.30 0.59 1.42

La Tranquilla 975 0.53 2.74 0.66 2.34 0.82 1.65 0.82 1.92 0.77 1.53

Hurtado 1,100 0.46 2.51 0.64 2.00 0.77 1.64 0.79 1.63 0.62 1.64

La Laguna 3,160 0.65 2.29 0.58 3.20 0.84 1.98 0.85 2.47 0.85 2.42

Tmin

Illapel DGA 290 0.46 1.67 0.80 1.22 0.83 1.06 0.86 0.96 0.81 1.03

Paloma Embalse 320 0.49 1.38 0.90 0.81 0.81 1.05 0.87 0.94 0.80 1.17

Rivadavia 820 0.39 1.82 0.76 1.08 0.71 1.10 0.73 0.98 0.71 1.25

La Tranquilla 975 0.52 1.73 0.62 1.61 0.71 1.25 0.76 1.40 0.52 1.26

Hurtado 1,100 0.46 1.87 0.68 1.50 0.72 1.35 0.72 1.77 0.74 1.48

La Laguna 3,160 0.66 1.64 0.59 2.50 0.86 1.34 0.87 1.79 0.88 1.86

Calibration, 16 years (1979–1994) for temperature and 10-year (1979–1988) period for calibration; validation, year period (1995–2000) for
temperatures and 12-year (1989–2000) validation period for precipitation

R2 coefficient of determination, SE standard error
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the GCMs predictors. In the same way, no major difference
could be determined between the different GCMs. In
contrast, precipitation simulations based on the NCEP
dataset return greater R2 and lesser SE values than those
based on the GCMs predictor variables. This indicates that
parameters estimated during the calibration process do not
fit entirely for the different GCMs predictor variables. Now,
it seems important to scrutinize whether the model reports
different accuracy with regards to which station was used
for the simulation. Comparison studies tend to rely on one
or two stations for their analysis.

Table 5 shows that certain stations return a R2 signifi-
cantly different from one another. In the case of La Laguna
(3,160 ma.s.l.), the R2 value during the calibration process
is distinctly smaller when compared to other stations,
especially those located at lower elevations. This variabil-
ity among stations is also observed for temperature, with
high elevation stations such as La Laguna performing
better (in term of R2) than the lower elevation stations
Illapel DGA (290 ma.s.l.), La Paloma Embalse (320 ma.s.l.)
and Rivadavia (820 ma.s.l.). This confirms a behaviour
observed for simulations of temperature and precipitation
with SDSM in the region (Rojas 2006; Souvignet et al.
2010). The important eastward slope in the region causing
important gradient in precipitation and temperature seems
to affect the calibration. Nevertheless, during the validation
period, the variability of performance between stations
disappears.

Hence, despite a careful screening of predictors variables,
the overall accuracy of downscaled precipitations remains
poor, whereas it returns good results for downscaled temper-
ature. The use of several stations at different elevations allows
drawing conclusion about the influence of slope gradient on
the accuracy of downscaled variable. Indeed, results show that
downscaled precipitations are influenced by the slope gradient.

5 Uncertainty analysis

To have confidence in simulations of future temperature and
precipitation, one should be convinced of the ability of the
downscaling model to simulate accurately observed data
based on GCMs derived parameters. This section will explore
how the downscaling results corresponding to the GCMs
predictors reproduce mean, median and extreme events of
daily observed records for the 1979–2000 period. The
selection of the hypothesis tests of equality was based on the
statistical characteristics of observed temperature and precip-
itation. These characteristics were determined according to the
EDA and the conclusions suggested that the uneven distribu-
tion of precipitation and possible outliers due to extreme
events, robust statistical tests should be used. The next section
presents the outcomes of the hypothesis tests of equality of

median and variance. Subsequently, a frequency analysis will
determine whether extreme events are accurately simulated
for downscaling results based on the GCMs predictors.

5.1 Equality of median

The uncertainty linked with the ability of downscaled data,
based on three different GCMs predictors, to reproduce
observed median values has been quantified by applying
the non-parametric Mann–Whitney test. This test was
applied to all stations on a seasonal basis at the 95%
confidence level for temperature and precipitation. The
results of the test of equality of median are presented for
respectively daily precipitation, Tmax and Tmin in
Fig. 3a–c. In this case, stations satisfying the hypothesis
of equality of median between observed and simulated
variables are represented by a black dot, which magni-
tudes correspond to their respective p values. Stations
which did not satisfy the hypothesis of equality are not
represented. In addition, the respective percentages of
rejected tests of equality of median for precipitation, Tmax
and Tmin, summarized in all stations, are displayed in
Fig. 4a–c. The results are discussed below.

In the case of precipitation, Fig. 3a shows that the
statistical downscaling model reproduces daily observed
data median values accurately for the investigated stations
at the annual level with the exception of the station La
Laguna. Nevertheless, the comparison of median values in
spring indicates that daily observed precipitations are not
well reproduced by the model in almost all stations (with
the exception of La Tranquilla and La Laguna). In addition,
lower p values in the northern part of the study area tend to
indicate less confidence in the simulation of median values
by downscaled precipitation. The graphical comparison in
Fig. 4a shows that no significant differences on how
median is reproduced by daily downscaled precipitations
exist between the three different GCMs. GCGM3, GFDL
and MRI return a 14% rejection rate at the annual level and
in fall, whereas all three models display a 71% rejection
rate in spring. Hence, the comparison of daily median value
indicates homogeneity among stations and GCMs with
respect to their ability to reproduce daily observed data.
This homogeneity exists also at the seasonal level, with the
exception of spring. In addition, with the exception of the
spring season, precipitation might not be reproduced
adequately at high elevations as indicated by the lower
performance of the La Laguna station.

In the case of daily Tmax, Fig. 3b shows that observed
daily temperature median values are accurately reproduced
in all stations by downscaled precipitations at the annual
and seasonal level. Comparatively to downscaled precipi-
tation, downscaled Tmax returns a better ability to
reproduce median values. Nevertheless, lesser confidence
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should be given to certain stations (La Paloma Embalse,
Rivadavia and Illapel DGA) which display non-significant
p values indicating that the hypothesis of equality of
variance should be rejected, especially in summer and fall.
The graphical comparison in Fig. 4b indicates that
disparities exist in how the different GCMs-based down-
scaled Tmax reproduce observed median. Where CGCM3
and MRI-based simulations return low rejection rates,
GFDL shows a rejection percentage of the hypothesis of
equality of median of 67% (50%) for summer (fall). This is
also confirmed by the lower p values displayed in Fig. 3b
for GFDL. Thus, the comparison of median values between

downscaled and observed Tmax shows that uncertainty
with SDSM downscaling exists both for stations, as well as
for the different GCM. Consequently, the choice of the
GCM and the station selected for analysis is expected to
influence the uncertainty linked with the downscaled
values.

In the case of Tmin, Fig. 3c shows that all p values are
significant, so that all downscaled Tmin median are
considered equal to their respective observed values. In
the same vein, Fig. 4c shows a rejection rate of zero for all
season and all models. In addition, p values are larger
relatively to those of Tmax and precipitation, which points

Fig. 3 a–c Results of the Mann–Whitney test for the difference of
median between observed and downscaled daily precipitation, Tmax
and Tmin. Black dots represent no significant difference at the 95%

confidence level. The magnitude of the dots is proportional to the test
p values for the different stations
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Fig. 4 Percentage of rejected tests for a–c the Mann–Whitney test (equality of median) and d–f the Brown–Forsythe test (equality of variance) for
daily precipitation, Tmax and Tmin. Note: summer is not displayed for the tests with precipitation
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out an excellent agreement between observed and down-
scaled values. This indicates that a high confidence level
exists in the ability of SDSM to simulate Tmin in the
region, and this independently of the season, the model or
the station selected.

Hence, results from the Mann–Whitney test show that
very high confidence could be given to the ability of
downscaled Tmin to reproduce the median of observed
data. This remains valid at the seasonal and annual levels
independently of the GCM used or to which stations it
applies. However, more uncertainties arise in the case of
downscaled Tmax and precipitation. If downscaled
precipitation returns a relative homogeneity among
stations and GCMs with regard to their ability to
reproduce variance, significant biases are observed in
spring and possibly for high elevations. In the case of
Tmax, the choice of the GCMs from which the predictor
variables are used for downscaling appears to have an
influence on the accuracy of the median simulation. In
this case CGCM3 and MRI return the best estimates.

5.2 Equality of variance

The uncertainty linked with the ability of downscaled
data to reproduce the variance of observed values has
been quantified by applying the Brown–Forsythe test.
The test was applied to all stations on a seasonal basis at
the 95% confidence level for temperature and precipita-
tion. The results of the test of equality of variance are
presented for respectively daily precipitation, Tmax and Tmin
in Fig. 5a–c. In this case, stations satisfying the hypothesis of
equality of variance between observed and simulated
variables are represented by a black dot, which magnitudes
correspond to their respective p values. Stations which did

not satisfy the hypothesis of equality are not represented. The
respective percentages of rejected tests of equality variance
for precipitation, Tmax and Tmin, summarized in all stations,
are displayed in Fig. 4d–f. The results are discussed below.

In the case of daily downscaled precipitation, Fig. 5a
shows that SDSM does not reproduce observed variance
values accurately for all investigated stations at the annual.
However, the variance is well reproduced by downscaled
precipitations in spring for the majority of stations.
Nevertheless, in some stations located in the southern part
of the region of interest (La Tranquilla and Limahuida),
there is no evidence that downscaled precipitations variance
is reproduced accurately. The graphical comparison in
Fig. 4d shows that differences between the three different
GCMs exist on how variance is reproduced by daily
downscaled precipitations. For instance, CGCM3 returns
the lowest rejection rate in fall (57%) and spring (29%). On
the other hand, with a 100% rejection rate, downscaled
precipitations from the same GCM seem unable to reflect
the variance of observed data at the annual level. In the
same way, GFDL has the highest rejection rate (86%) in
fall. Consequently, the histogram indicates that levels of
rejection for the test of equality of variance are high for all
GCMs and for all seasons. In addition, there are some
differences between the simulations of variance by the
GCMs. Hence, the variance of daily observed precipitation
is not accurately reproduced, independently of the GCMs
chosen. Slightly better figures exist for spring. However,
this season is of lesser importance for arid mountainous
region where precipitations occur mainly in winter.

In the case of daily Tmax, Fig. 5b shows that observed
variance is well reproduced in all stations. Nevertheless, in
Hurtado, p values are inferior to 0.05 for all GCMs in
summer and fall. In addition, comparatively to downscaled

Fig. 5 a–c Results of the Brown–Forsythe test (modified Levene's
test) for the difference of variance between observed and downscaled
daily precipitation, Tmax and Tmin. Black dots represent no

significant difference at the 95% confidence level. The magnitude of
the dots is proportional to the test p values for the different stations
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precipitation, there is a higher confidence in the ability of
downscaled Tmax to reproduce variance of observed daily
data. The graphical comparison in Fig. 4e shows that the
variance is well reproduced by downscaled Tmax for all
seasons. Nevertheless, the simulations based on CGCM3
return a high rejection rate (83%) of the test of equality of
variance in summer. Consequently, uncertainty linked with
the variance of downscaled Tmax is influenced by the
GCM choice. Overall, GFDL is the best suited model to
reproduce variance of observed data for Tmax in the region.

In the case of daily downscaled Tmin, Fig. 5c shows that
the test of hypothesis was less rejected in only three stations
(Hurtado, La Laguna and Illapel DGA). It indicates that
GCMs-based predictors permitted to reproduce well the
variance of observed data. Nevertheless, the lesser perfor-
mance with regard to the statistical test in other stations
suggests that downscaled Tmin are subject to an important
variability among stations. Fig. 4f shows that the higher
rejection rate is for summer with values ranging from 50%
to 83% respectively for GFDL and MRI. MRI-based
predictors appear to introduce the most biases in down-
scaled Tmin variance in all seasons. GFDL is the best
performer in terms of non-rejection of the hypothesis of the
equality of variance. Hence, these results indicate that a
moderate confidence could be place in the ability of
downscaled daily Tmin to reproduce variance of observed
data in the region. In addition, the GCMs from which
predictors are retrieved have an influence on the uncertainty
linked with variance simulation. Moreover, disparities
between seasons exist, with higher biases in summer for
all GCMs.

Hence, considering the outcomes of the Brown–Forsythe
test, downscaled precipitation failed to reproduce observed
data variance, independently on which GCM is chosen. On
the other hand, the choice of the GCM appears to introduce
biases for downscaled Tmax. In this case, GFDL was found
to return the best estimates for variables compared with
observed data. With regards to Tmin, a moderate confi-
dence could be place in the downscaled variances. A high
uncertainty exists in summer and the choice of the GCM
still has an influence, GFDL appearing again to be the best
choice for the region.

5.3 Simulation of extreme events

The following section focuses on the model's ability to
simulate extreme events. The results of the frequency
analysis, performed for the different GCMs for the 1979–
2000 time period, are displayed in Fig. 6a–f for precipita-
tion, in Fig. 6g–l for Tmax and in Fig. 3m–r for Tmin.
Because not all results for the 19 stations at three GCMs
could be intelligibly displayed, a selection of investigated
stations was made for the display of the frequency analysis.

As we have seen previously that the performance indicator
(R2) of simulations for stations located at different
elevations vary significantly, two stations were selected
according to their respective elevation: at high altitude (La
Laguna, 3,160 ma.s.l.) and low altitude (La Paloma
Embalse, 320 ma.s.l.) are investigated. Because the authors
understand that results of the frequency analysis for other
stations in the region could be of interest for comparison
purposes, outcomes for other stations could be delivered
upon request.

First, simulations of extreme events will be analysed
with regards to precipitation. Subsequently, an analysis of
extreme Tmax and Tmin will follow.

The extreme events prediction ability of SDSM for
precipitation is displayed for La Laguna in Fig. 6a–c and in
La Paloma Embalse in Fig. 6d–f. At both stations and for
all three GCMs, downscaled precipitations clearly underes-
timate historical records. Nevertheless, extreme events with
a return period inferior to 20 years are accurately simulated
in La Laguna. In contrast, downscaled precipitations in La
Paloma return underestimation for shorter return periods
(5 years). These results seem to indicate that extreme events
with large return period (>20 years) could not be simulated
with confidence in the upper part of the Andes, where the
largest rainfall amount occurs. Also, the systematic under-
estimation of rainfall amounts and the inability to simulate
short term extreme events (events with a 5-year return
period) at lower elevation is problematic with regard to the
ENSO phenomena. In addition, no evident difference is
observed between precipitations downscaled with the three
different models. This indicates that a multi-model ap-
proach to the simulation of future precipitations in the
region might not enhance the model response. Thus, lower
reliance levels should be set for extreme precipitation
values. This behaviour is explained by the inherent
characteristics of statistical downscaling procedures. In-
deed, as mentioned by Kim et al. (2000), this type of
method performs better “if two conditions are met: (1) there
are sufficient historical data for generating probability
distribution functions and (2) variables of interest have
well defined statistical patterns”. Thus, in the case of our
study, in an arid regime with rather few precipitation events
per year, it seems that the first condition is hardly met, i.e.
there are not enough values to allow for an accurate
regression with the NCEP and the CGM data. Second, the
occurrence within the validation data set of a particularly
strong El Niño event (1997) and a severe, La Niña-related,
drought period (1994–1996) is likely an additional source
of variability. This is supported by the studies of Barnston
et al. (1999), Kim et al. (2000) and Wood et al. (2002) that
show the effect of the 1997 El Niño event, one of the
strongest in the last century, on the performance of several
climate and downscaling models.
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The ability to simulate extreme downscaled maximum
temperature is displayed for La Laguna in Fig. 6g, i and La
Paloma Embalse in Fig. 6j, l. It appears that the extreme
events prediction ability, based on all ensembles, is not
equally well reproduced by the GCM models at the two
stations. In addition, it does not appear that the three GCMs
have the same ability to simulate downscaled values for
Tmax. Indeed, downscaled Tmax is overestimated in La
Laguna for the CGCM3 model and for the GFDL model in
La Paloma Embalse. In contrast, downscaled Tmax based
on MRI predictors performs well in both stations. This
indicates that the choice of the model might be of some
importance with regard to the ability of the model to
reproduce downscaled extreme Tmax.

Downscaled extreme minimum temperatures are plotted
against observed records in Fig. 6m–o for La Laguna and in
Fig. 6p–r for La Paloma Embalse. Results suggest that
extreme minimum temperatures are simulated accurately by
all models and in both stations. However, for different
return periods (<10 years for GCM3 and GFDL; <20 years
for MRI), downscaled Tmin are overestimated in La
Laguna. This does not appear in La Paloma Embalse,
where extreme events are simulated accurately for all return
periods. Hence, in the case of Tmin, the elevation of the
station seems to influence the model ability to simulated
extreme events.

Hence, outcomes from the frequency analysis show that
the ability of SDSM to simulated extreme events is not
always secured. In the case of precipitation, a systematic

underestimation of extreme events is observed. Therefore,
limited confidence should be placed on the ability of the
model to simulate future ENSO phenomena, and this is
independent of the model chosen. With regard to Tmax and
Tmin, higher confidence exists in the model ability to
simulate extreme events. Nevertheless, biases persist, with
an overestimation of Tmax, a dependency upon what GCM
predictors are used and biases introduced by altitude's
gradients. This has consequently important implications for
arid mountainous regions, where snow and glacier melting
are heavily influence by temperature changes (Pouyaud et
al. 2005; Singh et al. 2006).

6 Conclusions

The evaluation of uncertainties linked with downscaled
temperature and precipitation variables is crucial for
regional and local impact studies. This paper showed the
potential of statistical downscaling technique using predic-
tors from three different CGMs over the highly heteroge-
neous area of the central Andes in Chile. Biases in median
and variance were estimated for downscaled temperature
and precipitation. In addition, the ability of the downscaled
variables to reproduce extreme events was tested using a
frequency analysis.

Despite a careful screening of predictor variables, the
overall accuracy of downscaled precipitations remains poor
compared to downscaled temperatures, which return more
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Fig. 6 Frequency analysis for precipitation (a–f), maximum temper-
ature (g–l) and minimum temperature (m–r) in La Laguna (3,160 ma.
s.l.) and La Paloma Embalse (320 ma.s.l.) for CGCM3, GFDL and

MRI models (1979–2000). Note: all statistical ensembles (20) are
included for the GCMs simulations
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accurate simulations of observed records. Extreme events,
of particular relevance in the central Andes, where climate
is heavily influence by the ENSO phenomena, were
systematically underestimated for precipitation. Whereas a
higher confidence lies in the simulation of extreme
temperature conditions, the existence of biases due to
altitude gradients questions the accuracy of such predictions
in regions where snow and ice processes are strongly
influenced by temperature gradients. Besides, no evidence
was found that a particular GCM was best adapted to the
region. This underlines therefore the importance of a multi-
model approach for impact studies in the region and
generally in areas with heterogeneous surface conditions.
Such uncertainties in the downscaled results diminish the
confidence that one should have in simulation of future
climate scenario, and raise the question of whether local
climate impact studies based on the outcomes of SDSM in
the region (e.g. on water resources) are meaningful.

Nevertheless, in general, the simulations produced with
the statistical downscaling approach (viz. SDSM) still
outperformed raw GCMs outputs, unable to reproduce the
complexity of the central Andes and similar regions.

Testing the outcomes of downscaling is important and as
stated by Blöschl and Montanari (2010), climate impact
studies tend to be over-optimistic about their own reliability
and over-pessimistic concerning the potential impacts on
society. Therefore, evaluating the reliability and quantifying
uncertainties linked with statistical downscaling allows a
more serene approach to local climate impact studies. In
addition this study contributed to evaluate which predictors
are the most appropriate to the region. However, in this
case, further work is needed to develop predictors better
adapted to precipitation and temperature. Eventually, other
downscaling techniques should be explored. For instance, a
multi-site artificial neural network approach using a non-
linear transfer function might be introduced to map the
predictor–predictand relationships. Moreover, the multi-
objective fuzzy logic-based classification approach offers
the possibility to identify large-scale atmospheric or oceanic
patterns, which are responsible for wet and dry phenomena
in the research area. This method has already been
successfully used to identify droughty and wet weather
patterns in West Africa (Laux et al. 2009)
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