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Abstract Long climate records are scarce on the Tibetan
Plateau for understanding the climate variability on long-
term context. Here we presented an early summer (May–
June) temperature reconstruction since AD 1440 for Qamdo
area using tree rings of Sabina tibetica. The reconstruction
accounted for 64% of the variance in the instrumental
record. It showed warm periods during 1501–1514, 1528–
1538, 1598–1609, 1624–1636, 1650–1668, 1695–1705,
1752–1762, 1794–1804, 1878–1890, 1909–1921, 1938–
1949, and 1979–1991. Cool early summer occurred during
1440–1454, 1482–1500, 1515–1527, 1576–1597, 1610–

1621, 1669–1679, 1706–1716, 1782–1793, 1863–1873,
1894–1908, and 1922–1937. Comparison with other proxy
or meteorological records suggested that there is obvious
spatial variability in the May–June temperature variations
along the eastern margin of the Tibetan Plateau.

1 Introduction

The Tibetan Plateau (TP), with an area of about
2,300,000 km2, influences the large-scale circulation system,
such as the Asian Monsoon, through its thermal effect (He et
al. 1987; Li and Yanai 1996; Wu and Zhang 1998; Zhou et
al. 2009). It is important to understand the climate variability
over the TP. However, most meteorological records on the
TP are of short length (less than 60 years) and distributed
sparsely, limiting the study of the climate variability on long-
term timescale. An enhanced understanding of past climatic
variability on the TP must rely on climatic proxies.

Tree rings, as an annually resolved proxy record, have
been increasingly used to reconstruct past climate changes
on the TP (e.g., Bräuning and Mantwill 2004; Gou et al.
2008; Liang and Eckstein 2009; Liang et al. 2008; Liu et al.
2007; Liu et al. 2006; Shao et al. 2005; Shi et al. 2010;
Wang et al. 2009; Yang et al. 2009; Yin et al. 2008; Zhang
et al. 2003; Zhu et al. 2008). For example, Liu et al. (2007)
reconstructed winter temperature variations since AD 1000
for the middle Qilian Mountains using Sabina przewalskii.
Based on tree-ring samples from the same species, Gou et
al. (2008) presented a maximum temperature reconstruction
for the past 700 years in the Anymaqen Mountains area; On
the southeastern TP, a summer temperature reconstruction
since AD 1765 was established using tree-ring samples from
Abies georgei var. smithii timberlines (Liang et al. 2009).
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These climate reconstructions described climate history of
several areas of the TP. However, the number of available
tree-ring chronologies from the TP is still sparse.

Sabina tibetica, as one of the dominant species, has a wide
distribution on the eastern TP, such as in the area of Yushu,
Qamdo, and Linzhi. Tree-ring width of S. tibetica was found
to be significantly correlated with the early summer climate
(Bräuning 2001; Qin et al. 2003; Shi et al. 2010; Wang et al.
2008). In this paper, we present a temperature reconstruction
based on a ring-width chronology of S. tibetica from
Leiwuqi. The reconstruction should expand our knowledge
of climate variability for this area.

2 Materials and methods

2.1 Study area

Our study area is located in Leiwuqi, Qamdo area of the
eastern TP (Fig. 1). It is the source region of the
Lancangjiang River. The climate of this area is controlled
by the South Asian Monsoon in summer and by the
southern branch of the westliers in winter. According to the
meteorological record in Qamdo (97° 10′, 31° 9′, 3,307 m
above sea level (a.s.l.); Fig. 2), July is the warmest month
with a mean temperature of 16.4°C, and January the coldest
(−2.19°C). Summer (June–August) precipitation (296 mm)
accounts for 61.4% of the annual precipitation (482 mm). S.
tibetica and Picea likiangensis var. balfouriana are the two
dominant species in this area. In general, S. tibetica grows

on the south-facing slope, while Balfour spruce on the
north-facing slope.

2.2 Tree-ring sampling and chronology development

Tree-ring samples were bored from a well-drained, open-
canopy, and south-facing S. tibetica forest at an elevation
range from 3,967 to 4,042 ma.s.l. There is little evidence of
disturbances due to fire or human activities. Twenty-five
isolated trees were selected for sampling. Two (seldomly
one) cores were taken for each tree at a height of about
0.70 m above ground. The tree-ring samples were glued,
smoothed, and crossdated through traditional process of
dendrochronology in the lab (Stokes and Smiley 1968).
Then, we measured the ring width using Lintab with a
resolution of 0.01-mm resolution. The Cofecha program
(Holmes 1983) was used to check the quality of the
crossdating and measurement.

Tree-ring chronology was developed using program
Arstan (Cook 1985). We tried several methods of standard-
ization on the raw ring-width data: 30, 80, 180, 230, 280,
330, 380 yearsr, 67% of series length smoothing spline, and
negative exponential function or linear regression. The
correlation between trees decreased with increasing first-
order autocorrelation, suggesting the chronology signal
weakened as more low-frequency variation was preserved
in chronology. Accordingly, we finally used a 30-year
smoothing spline with a 50% frequency cut-off to detrend
each raw ring-width series to enhance growth variations on
interannual to decadal timescales. The resulted index series

Fig. 1 Map showing tree-ring
sampling sites, meteorological
station, and compared sites in
the text. Leiwuqi is the tree-ring
sampling site in this study.
Qamdo is the meteorological
station. Zaduo (Shi et al. 2010)
and Anymaqen (Gou et al.
2008) are the two compared
tree-ring records

46 H.-F. Zhu et al.



were averaged bi-weightly into a chronology to diminish
the influence of outliers. To quantify the signal strength
among different indexed series, we conducted common
interval analysis during 1800–2000. Several statistics were
calculated, including variance explained by the first
principal component (PC1), correlation between trees
(BTR), correlation within trees (WTR), and expressed
population signal (EPS) (Cook and Kairiukstis 1990). We
also calculated running EPS every 50 years with a 25-year
overlap to evaluate the representation of the chronology for
population through time.

2.3 Tree growth-climate relationship and climate
reconstruction

We correlated the ring-width chronology with monthly
climate records from previous October to current September
to investigate the tree growth-climate relationship. The
climate variables included monthly mean/maximum/minimum
temperatures and monthly total precipitation. The meteorolog-
ical station in Leiwuqi (96° 36′, 31° 13′, 3,811 m) was the

nearest one to the tree-ring sampling site. However, its record
only started from 1991. Hence, we used the longer record
(since 1954) from the Qamdo meteorological station, which is
about 65 km southeast to the tree-ring sampling site. The
temperature data of four seasons from Qamdo station had high
correlations (the least one is 0.89 in summer) with those from
Leiwuqi during 1991–2007. For precipitation, most
correlations were higher than 0.84 except for the winter
season (0.63).

We established several combinations of climate data
for calculating correlation coefficients between the tree-
ring chronology and climate variables. The seasonal
variable having the highest correlation with the chronol-
ogy was selected for the final reconstruction. The climate
data were regressed against the ring-width chronology.
The skill of the regression equation for the reconstruction
back to AD 1440 was tested by cross-calibration/verification
for the sub-periods 1954–1980 and 1981–2006, and by a
leave-one-out cross-validation (LOOCV) (Michaelsen 1987)
over the full-period 1954–2006. Evaluative statistics includ-
ed the variance explained (R2), the adjusted variance
explained R2

adj

� �
, the variance predicted (r2), the sign test

of both raw data and their first difference, the reduction of
error (RE; Fritts 1976) and the coefficient of efficiency (CE;
Briffa et al. 1988).

3 Results and discussion

3.1 Tree-ring chronology and statistics of the common
interval analysis

Figure 3 shows the tree-ring-width chronology of S. tibetica
from Leiwuqi. The chronology extended back to AD 1384,
and could be considered reliable after AD 1440, when ten
cores from six trees are available and EPS exceeds the
recommended threshold of 0.85 (Wigley et al. 1984;
Fig. 3). Both the variance explained by PC1 and the mean
correlation BTR during 1800–2000 (Table 1) indicated high
consistency between the different ring-width series.

Fig. 2 Climate diagram from the meteorological station in Qamdo in
the eastern Tibet Plateau from 1954 to 2007. The climate variables
include the monthly maximum, mean and minimum temperatures, and
monthly total precipitation (bars). The horizontal dashed line represents
0°C at 4,000 m with an adjustment of a lapse rate of −0.6°C/100 m
from Qamdo meteorological station

Fig. 3 Tree-ring width chronol-
ogy of Sabina tibetica from
Leiwuqi. a The 50-year running
expressed population signal
(EPS); b ring-width index of the
chronology; c the sample depth
of the chronology
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3.2 Relationships between chronology and climate data

The chronology showed negative correlations with temper-
atures from March to July and positive ones with
precipitation from February to July (Fig. 4). The highest
correlation between tree growth and temperature (p<0.001)
were found for the seasonal window May–June. Seasonal
precipitation also correlated significantly (p<0.05) with the
chronology; however with lower correlation coefficients.

The negative correlations between tree growth and
climate (Fig. 4) suggest that high temperature, particularly
in May and June, limits the growth of S. tibetica in the
eastern TP. This is in agreement with earlier studies
(Bräuning 2001; Shi et al. 2010; Wang et al. 2008) on the
same species from the eastern, central, and southwestern
TP. Negative influences of early summer warmth on tree
growth were reported for S. przewalskii on the northeastern
TP (Gou et al. 2008; Liang et al. 2010; Liu et al. 2006;
Shao et al. 2010; Sheppard et al. 2004; Zhang et al. 2003).
In the western Himalayas, warm summers also limit the
growth of Juniperus polycarpos (Yadav et al. 2010),
Cedrus deodara (Yadav et al. 1997, 1999; Yadav et al.

2004) and Abies pindrow (Hughes 1992). In addition, Cai et
al. (2008) found the limiting effect of May–Jun temperature
on tree growth of Pinus tabulaeformis from the southeastern
Chinese Loess Plateau. High temperature in early summer
without sufficient precipitation increases transpiration and soil
evaporation, and thus leads to strong moisture stress on tree
growth (Cai et al. 2010; Gou et al. 2008; Yadav et al. 2010).

3.3 Calibration/verification statistics and reconstructed
temperatures

According to the correlations between tree-ring width and
climate variables, we selected the May–June mean temper-
ature for final reconstruction. The regression equations
explained over 60% of the variance in the instrumental
May–June temperature data, both in the calibration and
verification periods (Table 2). Sign test showed that the
estimated data were quite similar with the instrumental
records. Both RE and CE indicated that the equations had
good predictive skills for the mean May–June temperature.
In addition, the regression coefficients were essentially the
same for the two subperiods and the whole period. Finally,
the equation during the whole period (1954–2006) was
selected to reconstruct the mean May–June temperature
variation back to AD 1440.

As shown in Fig. 5a, the reconstructed temperatures
closely matched the instrumental record. However, our
reconstruction might not capture low-frequency variations
of May–June temperatures due to the application of the
rigid 30-year spline in the standardization process of
chronology construction. To ascertain the problem, we
examined the 11-year smoothing curve of the instrumental
and the estimated temperature data (Fig. 5a). The two
curves show very similar decadal variations during 1954–
2006. There are no significant autocorrelation (r=−0.16,
Durbin–Watson=2.00) in the residuals between the instru-
mental and the estimated May–June temperature (Fig. 5b).
In addition, the scatter plot clearly presented the linear
relationship between the instrumental and estimated data
(Fig. 5c). These analyses suggested that there should be no
obvious loss of low-frequency variation in our reconstruc-
tion of May–June temperature at least during the instru-
mental period. Nevertheless, there may have occurred low-
frequency temperature variations over the whole period

Table 1 Site information of the tree-ring sampling site and the statistics in common interval analysis (1800–2000)

Site information Latitude Longitude Altitude MSL Span Trees/cores

31.25° N 96.50° 3996 m 463 1384–2006 25/45

Common interval analysis PC1 BTR WTR EPS Span Trees/cores

0.59 0.57 0.59 0.98 1800–2000 18/30

MSL mean segment length, PC1 explained variance of the first principal component, BTR correlation between trees, WTR correlation within trees,
EPS expressed population signal

Fig. 4 Correlations between the ring-width chronology of Sabina
tibetica and the mean monthly/seasonal climate variables from
October of the pre-growth year to August of the current-growth year
during 1954–2006. Horizontal dotted lines denote a significance level
of p=0.05
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(1440–2006) that are not captured by our reconstruction
due to the data treatment.

Figure 6 shows the reconstructed May–June temperature
back to AD 1440 for Qamdo area. According to the 11-year
moving average curve and their long-term (1440–2006)
mean, warm periods could be identified during 1501–1514,
1528–1538, 1598–1609, 1624–1636, 1650–1668, 1695–
1705, 1752–1762, 1794–1804, 1878–1890, 1909–1921,
1938–1949, and 1979–1991. Cool early summers occurred
during 1440–1454, 1482–1500, 1515–1527, 1576–1597,
1610–1621, 1669–1679, 1706–1716, 1782–1793, 1863–
1873, 1894–1908, and 1922–1937. The top five of the 28
high-temperature extremes (anomaly≥2 STD) were indicated
in 1944, 1883, 1777, 1799, and 1460. The reconstruction
showed only four cold extremes in 1904, 1957, 1763, and
1769. The lower number of cold extremes captured in the
reconstruction may result from the finding that tree growth is
more limited by higher temperatures.

We examined the spectral characteristics of our recon-
struction using Multi-taper Method (Mann and Lees 1996).

The reconstructed May–June temperature showed signifi-
cant cycles at 23.8, 19.7, 13.0, 7.7, 5.1, 3.5, 2.6, 2.2 years
(Fig. 7). Liang et al. (2008) also found a significant peak at
2.7 and 4.7 years in a summer temperature reconstruction
for the Yushu area. The cycles of 23.8, 19.7, and 13.0 years
are near the sunspot cycle of 11 years and its double.

3.4 Comparison with nearby temperature reconstructions

Our temperature reconstruction shows several warm/cold
periods and extremes with other nearby temperature
reconstructions. For example, the warm periods 1650–
1668 and 1878–1890, and cool periods 1482–1500, 1610–
1621, 1669–1679, 1706–716, 1762–1772, 1706–1716,
1894–1908, and 1922–1937 in our reconstruction are
consistent with the Zaduo May–June maximum temperature
reconstruction (Shi et al. 2010; Fig. 6). The warm periods
1624–1636, 1650–1668, and 1794–1804 are in good
agreement with the March–May temperature reconstruction
for the western Himalaya (Yadav et al. 1999). The western

Calibration period 1954–1980 1981–2006 1954–2006

Verification period 1981–2006 1954–1980 LOOCVa

Calibration

R2 0.682 0.603 0.641

R2
adj

� �
0.669 0.586 0.634

Verification

r2 0.603 0.675 0.613

RE 0.601 0.673 0.612

CE 0.596 0.669

Sign test

First difference 20+/5− ** 22+/4−** 41+/11−**

Raw 20+/6− ** 23+/4−** 42+/11−**

Regression weights

a 15.6 15.7 15.7

b −2.01 −2.05 −2.03

Table 2 The calibration and
verification statistics for the
May–June temperatures

The regression equation is in the
form of y=a+bx, where y
denoted the mean May–June
temperature, x equaled the value
of the ring-width chronology, a
and b are the constants
a LOOCV represents leave-one-out
cross-validation (Michaelsen 1987)

**Stands for the significant level
of 0.01

Fig. 5 Comparisons between
the instrumental and estimated
May–June temperature of
Qamdo. a The instrumental and
estimated May–June tempera-
tures with their 11-year moving
averages (the thick solid lines);
b the residuals of the instru-
mental and estimated May–June
temperatures; c the scatter plot
of instrumental and estimated
May–June temperatures
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Himalayan record also shows cool conditions identified in
our reconstruction during 1440–1454, 1515–1527, and
1922–1937 periods. A regional tree-ring width chronology
of S. tibetica for the Qamdo area (Bräuning 2001), which
had negative correlations with temperature from March to
June of the growth year, indicated relatively higher growth
rates during 1490–1500, 1570–1580, and 1780–1790
periods. These periods correspond to the cooler episodes
in our reconstruction. In addition, our reconstruction shows
common warm extremes in 1799 and 1979, cold one in
1769 with the Zaduo reconstruction (Shi et al. 2010). The
cold extreme in 1904 identified in our reconstruction is also
indicated to be extreme in the Anymaqen April–September
maximum temperature reconstruction (Gou et al. 2008;

Fig. 6). The agreement between our reconstruction and
these nearby proxy records indicates that our reconstruction
should be of good reliability.

In general, there is little agreement between our
reconstruction and the Anymaqen April–September max-
imum temperature record (Gou et al. 2008; Fig. 6). They
had opposite warm/cold variations during some periods,
such as 1482–1550, 1794–1804, and 1922–1937. Spatial
correlations between the Qamdo reconstruction and the
Anymaqen record (Gou et al . 2008) with the
corresponding CRU-gridded temperature dataset (Mitchell
and Jones 2005) reveal their different geographical
representation (Fig. 8a and c). The Qamdo reconstruction
is associated with the temperature field south of approx-
imately 34° N with a north–south extension along the
moisture passage from the Bay of the Bengal (Fig. 8a).
However, the temperature field of the Anymaqen recon-
struction (Gou et al. 2008) is north to about 33–34oN with
the core region in the Anymaqen Mountains area (Fig. 8c).
The temperature fields of the proxy data are basically
validated by the meteorological data, despite their rela-
tively larger spatial representation (Fig. 8b, d). Further
investigation of the synoptic circulation features using the

Fig. 6 Comparison between our
temperature records with other
reconstructions along the eastern
margin of the Tibetan Plateau
over the 1440–2001 period. a
April–September maximum
temperature reconstruction for
the Anymaqen area (Gou et al.
2008); b the reconstructed
Zaduo May–June maximum
temperature (Shi et al. 2010); c
our May–June temperature
reconstruction for Qamdo. The
thick lines represent their
11-year moving average. The
solid circles are their high/low
extremes (≥2 STD)

Fig. 7 Power spectra of the reconstructed May–June temperature for
Qamdo during 1440–2006

Fig. 8 Spatial correlations of temperature records with corresponding
CRU-gridded temperature dataset (Mitchell and Jones 2005) over
1959–2001 and the synoptic circulation features. a and b are the
correlation fields (with p<0.05 filtered out) of the reconstructed and
instrumental Qamdo May–June mean temperature, respectively
(plotted using the Climate Explorer: http://climexp.knmi.nl); c and d
are the correlation fields of the reconstructed and instrumental April–
September maximum temperature for the Anymaqen area (Gou et al.
2008); e and f are the composite mean of NCEP (Kalnay et al. 1996)
May–June geopotential height and vector wind at the 500 hpa during
1954–2006 (plotted using the PSD Interactive Plotting and Analysis
Pages: http://www.esrl.noaa.gov)

b
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500 hpa geopotential height from the NCEP reanalysis
dataset (Kalnay et al. 1996) indicated that the climate of
the Qamdo area and the Anymaqen area are influenced by
different synoptic regimes. The Qamdo area is located at the
eastern front of India–Burma trough (Wu and Zhang 1998)
(Fig. 8e) during the May–June period, leading to dominant
southwesterly flow (Fig. 8f). On the contrary, relatively
fewer southwest flows can reach the Anymaqen area in May
to June. The area is more influenced by northwesterlies.

4 Conclusion

In this paper, we presented a 567-year May–June temper-
ature reconstruction for the Qamdo area based on a new
tree-ring width chronology of S. tibetica. The reconstruc-
tion indicates that warm conditions occurred during 1501–
1514, 1528–1538, 1598–1609, 1624–1636, 1650–1668,
1695–1705, 1752–1762, 1794–1804, 1878–1890, 1909–
1921, 1938–1949, and 1979–1991. The Qamdo area
experienced cool early summers during periods of 1440–
1454, 1482–1500, 1515–1527, 1576–1597, 1610–1621,
1669–1679, 1706–1716, 1782–1793, 1863–1873, 1894–
1908, and 1922–1937. Comparisons with other proxy
records and meteorological record validate our reconstruction
on both spatial and temporal scales. However, there is obvious
spatial variability in the May–June temperature variations
along the eastern margin of the TP. Since tree growth of
Sabina trees on the TP shares coherently inverse relationship
with early summer temperatures, there should be great
potential to develop a tree-ring network for reconstruct
spatial and temporal variability of early summer temper-
atures over the past few hundred years for this vast area.
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