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Abstract Climate change information required for impact
studies is of a much finer scale than that provided by Global
circulation models (GCMs). This paper presents an applica-
tion of partial least squares (PLS) regression for downscaling
GCMs output. Statistical downscaling models were devel-
oped using PLS regression for simultaneous downscaling of
mean monthly maximum and minimum temperatures (Tmax

and Tmin) as well as pan evaporation to lake-basin scale in an
arid region in India. The data used for evaluation were
extracted from the NCEP/NCAR reanalysis dataset for the
period 1948–2000 and the simulations from the third-
generation Canadian Coupled Global Climate Model
(CGCM3) for emission scenarios A1B, A2, B1, and
COMMIT for the period 2001–2100. A simple multiplica-
tive shift was used for correcting predictand values. The
results demonstrated that the downscaling method was able
to capture the relationship between the premises and the
response. The analysis of downscaling models reveals that
(1) the correlation coefficient for downscaled versus ob-
served mean maximum temperature, mean minimum tem-
perature, and pan evaporation was 0.94, 0.96, and 0.89,
respectively; (2) an increasing trend is observed for Tmax and
Tmin for A1B, A2, and B1 scenarios, whereas no trend is
discerned with the COMMIT scenario; and (3) there was no

trend observed in pan evaporation. In COMMIT scenario,
atmospheric CO2 concentrations are held at year 2000 levels.
Furthermore, a comparison with neural network technique
shows the efficiency of PLS regression method.

1 Introduction

Information concerning spatio-temporal patterns of tempera-
ture and their variability is necessary to model various surface
processes at global and local scales in disciplines like
hydrology, anthropology, agriculture, forestry, environmental
engineering, and climatology (Anandhi et al. 2009). General
circulation models (GCMs), representing physical processes
in the atmosphere, ocean, cryosphere, and land surface, are
the most advanced tools currently available to simulate time
series of climate variables for the world, accounting for the
effects of the concentration of greenhouse gases in the
atmosphere and to obtain information about an altered global
environment and climate system (Prudhomme et al. 2003).
However, in most climate change impact studies, such as
hydrological impacts of climate change, impact models are
usually required to simulate sub-grid scale phenomenon and
therefore, require input data (such as temperature) at similar
sub-grid scale. The methods used to convert GCM outputs
into local meteorological variables required for reliable
hydrological modeling are usually referred to as “downscal-
ing” techniques. Hydrologic variables, such as temperature,
evaporation, etc., are significant parameters for climate
change impact studies. A proper assessment of probable
future temperature and their variability are to be made for
various hydroclimatology scenarios.

More recently, downscaling has found wide application in
hydroclimatology for scenario construction and simulation/
prediction of (1) low-frequency rainfall events (Wilby 1998),
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(2) mean temperature (Benestad 2001), (3) potential evapo-
ration rates (Weisse and Oestreicher 2001), (4) daily Tmax and
Tmin (Wilby et al. 2002), (5) streamflows (Cannon and
Whitfield 2002), (6) runoff (Arnell et al. 2003), (7) soil
erosion and crop yield (Zhang et al. 2004), (8) mean,
minimum, and maximum air temperature (Kettle and
Thompson 2004), (9) precipitation (Tripathi et al. 2006), (10)
daily Tmax and Tmin (Schoof and Pryor 2001), (11) streamflow
(Ghosh and Mujumdar 2008), (12) Tmax and Tmin (Anandhi et
al. 2009), and (13) precipitation (Vimont et al. 2009).

Downscaling models make use of a strong observed
empirical relationship between one or several large-scale
predictors and a variable of interest at regional scale, the
predictand. The relationships between these scales can be
determined by a number of methods including regression
(Kilsby et al. 1998), partial least squares (PLS) regression
(Bergant and Kajfezˇ-Bogataj 2005), canonical correlation
analysis (Heyen et al. 1996; Xoplaki et al. 2000), K-nearest
neighbor (Gangopadhyay et al. 2005), and artificial neural
networks (Hewitson and Crane 1994; Gardner and Dorling
1998; Cannon and Lord 2000; Schoof and Pryor 2001; Goyal
and Ojha 2010a; Ojha et al. 2010). In the literature, authors
have not found application of PLS regression technique for
simultaneous downscaling of maximum and minimum tem-
peratures as well as evaporation specifically for Indian region.

In this paper, we present a downscaling methodology
based on PLS projection to latent structures regression
technique to study climate change impact over Pichola lake
basin in an arid region. The objectives of this study include:
(1) predictor selection, based on variable Importance in the
Projection (VIP) score; (2) downscaling of mean monthly
maximum temperature (Tmax), minimum temperature
(Tmin), and pan evaporation using PLS regression approach;
(3) an application of simple multiplicative shift to correct
the bias of mean monthly GCM-simulated variables, and
(4) comparing results with neural network approach from
simulations of Canadian Coupled Global Climate Model
(CGCM3) for latest Intergovernmental Panel on Climate
Change (IPCC) scenarios. The scenarios which are studied
in this paper are relevant to IPCCs fourth assessment report
which was released in 2007.

The remainder of this paper is structured as follows:
section 2 provides a description of the study region and
reasons for its selection. Section 3 provides details of
various data used in the study. Section 4 describes briefly
the PLS regression and the reasons for selection of the
predictor variables for downscaling. Section 5 explains the
proposed methodology for development of the PLS
regression downscaling models for downscaling Tmax, Tmin,
and pan evaporation to the lake basin and introduction of
multiplicative shift for bias correction. Section 6 presents
the results and discussion. Finally, section 7 provides the
conclusions drawn from the study.

2 Study region

The area of the this study is the Pichola lake catchment in
Rajasthan state in India that is situated from 72.5° to 77.5° E
and 22.5° to 27.5° N. The Pichola lake basin, located in
Udaipur district, Rajasthan is one of the major sources for
water supply for this arid region. During the past several
decades, the streamflow regime in the catchment has changed
considerably, which resulted in water scarcity, low agriculture
yield and degradation of the ecosystem in the study area.
Regions with arid and semi-arid climates could be sensitive
even to insignificant changes in climatic characteristics (Linz
et al. 1990). Temperature affects the evapotranspiration
(Jessie et al. 1996), evaporation, and desertification process-
es and is also considered as an indicator of environmental
degradation and climate change. Understanding the relation-
ships among the hydrologic regime, climate factors, and
anthropogenic effects is important for the sustainable
management of water resources in the entire catchment;
hence, this study area was chosen because of the aforemen-
tioned reasons.

The meanmonthly Tmax in the catchment varies from 19°C
to 39.5°C and mean annual Tmax is 30.6°C. The mean
monthly Tmin ranges from 3.4°C to 29.8°C based on decadal
(1990–2000) observed value. The observed mean monthly
Tmax and Tmin as well as pan evaporation have been shown in
Fig. 1a, b for various months of year 2000, respectively. The
location map of the study region is shown in Fig. 2.

Fig. 1 a Maximum and minimum temperature in the study region. b
Observed pan evaporation in the study region
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3 Data extraction

The monthly mean atmospheric variables were derived
from the National Center for Environmental Prediction
(NCEP/NCAR; hereafter called NCEP) reanalysis data
set (Kalnay et al. 1996) for the period of January 1948 to
December 2000. The data have a horizontal resolution of
2.5° latitude×2.5° longitude and 17 constant pressure
levels in the vertical. The atmospheric variables are
extracted for nine grid points whose latitude ranges from
22.5° to 27.5° N, and longitude ranges from 72.5° to 77.5°
E at a spatial resolution of 2.5°. The meteorological data,
i.e., Tmax and Tmin as well as pan evaporation are used at
monthly time scale from records available for Pichola
Lake which is located in Udaipur at 24°34′ N latitude and
73°40′ E longitude. The data is available for the period
January 1990 to December 2000 (Khobragade 2009). The
Canadian Center for Climate Modeling and Analysis
(CCCma) (http://www.cccma.bc.ec.gc.ca) provides GCM
data for a number of surface and atmospheric variables for
the CGCM3 T47 version which has a horizontal resolution
of roughly 3.75° latitude×3.75° longitude and a vertical
resolution of 31 levels. CGCM3 is the third version of the
CCCMA Coupled Global Climate Model which makes use
of a significantly updated atmospheric component
AGCM3 and uses the same ocean component as in
CGCM2. The data comprise of present-day (20C3M) and
future simulations forced by four emission scenarios,
namely A1B, A2, B1, and COMMIT.

The nine grid points surrounding the study region are
selected as the spatial domain of the predictors to
adequately cover the various circulation domains of the

predictors considered in this study. The GCM data is re-
gridded to a common 2.5° using inverse square interpolation
technique (Willmott et al. 1985).The utility of this interpo-
lation algorithm was examined in previous downscaling
studies (Shannon and Hewitson 1996; Crane and Hewitson
1998; Tripathi et al. 2006; Ghosh and Mujumdar 2008;
Goyal and Ojha 2010b, c). The development of downscaling
models for each of the predictand variables Tmax and Tmin as
well as pan evaporation begins with the selection of potential
predictors, followed by the application of PLS regression on
downscaling model. The developed model is then used to
obtain projections of Tmax and Tmin as well as pan
evaporation from simulations of CGCM3.

4 PLS regression and selection of predictors

4.1 PLS regression

PLS regression is used to describe the relationship between
multiple response variables and predictors through the latent
variables. PLS regression can analyze data with strongly
collinear, noisy, and numerous X-variables, and also simul-
taneously model several response variables, Y. In general, the
PLS approach is particularly useful when one or a set of
dependent variables (or time series) need to be predicted by a
(very) large set of predictor variables (or time series) that are
strongly cross-correlated (Abdi 2003). This is often the case
in empirical downscaling of climate variables (Bergant and
Kajfež-Bogataj 2005). For details of PLS regression, readers
are referred to Manne (1987, Lindgren et al. (1993), Rannar
et al. (1994), and Wold et al. 2001).

Fig. 2 Location map of the study region in Rajasthan State of India with NCEP grid

PLS regression-based temperature and pan evaporation 405

http://www.cccma.bc.ec.gc.ca


4.2 Different error norms

The different statistical parameters of each model are
calculated during calibration to get the best statistical
agreement between observed and simulated meteorological
variables. For this purpose, various statistical performance
measures, such as coefficient of correlation (CC), root mean
square error (RMSE) and Nash–Sutcliffe Efficiency Index
(Nash and Sutcliffe 1970) were used to measure the
performance of various models.

4.3 Selections of predictors

The selection of appropriate predictors is one of the most
important steps in a downscaling exercise for downscaling
predictands. The predictors are chosen by the following
criteria: (1) predictors are skillfully predicted by GCMs; (2)
they should represent important physical processes in the

context of the enhanced greenhouse effect; (3) they should not
be strongly correlated to each other (Hewitson and Crane
1996; Hellström et al. 2001; Cavazos and Hewitson 2005;
Goyal and Ojha 2010d, e). Various authors, such as, Hertig
and Jacobeit (2008), Anandhi et al. (2009) have used
large-scale atmospheric variables, viz., air temperature,
geo-potential height, zonal (u) and meridional (v) wind
velocities, as the predictors for downscaling GCM output to
temperature over an area. For this study, we have used a total
of nine possible predictor variables, namely, air temperature
(at 925,500 and 200 hPa pressure levels), geo-potential height
(at 200 and 500 hPa pressure levels), zonal (u), and meridional
(v) wind velocities (at 925 and 200 hPa pressure levels), as the
predictors for downscaling GCM output to mean monthly
temperature and pan evaporation over a catchment.

The VIP scores obtained by the PLS regression, has been
paid an increasing attention as an importance measure of
each explanatory variable or predictor (Chong and Jun

Fig. 3 a VIP of the predictand
variable (Tmax) of the two-
component PLSR model. b
VIP of the predictand variable
(Tmin) of the two-component
PLSR model
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2005). The variable selection procedure under PLS is
proposed with an application to downscaling technique for
identifying influencing variables on understanding the
impact of climate change. The VIP scores which are
obtained by PLS regression, can be used to select most
influential variables or predictors, X (Chong and Jun 2005).
The VIP score can be estimated for jth X-variable by

VIPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
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where Rd is defined as the mean of the squares of the
correlation coefficients (R) between the variables and the
component and p is number of predictors.

RdðX ; cÞ ¼ 1

p

X

k

i¼1

R2ðxj; cÞ ð2Þ

Usually the predictor variable whose VIP score is greater
than 0.8 and above is considered as an important variable
(Wold 1995; Eriksson et al. 2001)

It can be seen form Fig. 3a, b that seven predictor
variables, namely, air temperature (925, 500, and 200 hPa);
zonal wind (925 hPa); meridional wind (925 hPa); geo-
potential height (500 and 200 hPa) have their VIP score
greater than 0.8. Hence, these variables are used in the
prediction model to obtain the projection of predictands. It
is noted that different predictors control different local
variables and mean temperature is most sensitive to surface
and near surface atmospheric factors (Chu et al. 2010).

5 Downscaling of GCM models

PLS regression is used to downscale mean Tmax and Tmin as
well as pan evaporation in this study. The data of potential

Table 2 Regression coefficients for models PLSM1, PLSM2, and PLSM3

Model Intercept A11 A12 A13 A14 A15 A16 A17 A18 A19 A21 A22 A23

PLSM1 30.34 0.57 0.51 0.45 0.46 0.45 0.42 0.34 0.38 0.29 −0.04 −0.06 −0.11
PLSM2 16.00 0.34 0.28 0.24 0.34 0.29 0.27 0.31 0.28 0.26 0.18 0.16 0.11

PLSM3 15.78 0.12 0.87 0.29 0.78 0.19 0.67 0.45 0.78 0.47 0.87 0.26 0.92

Model A24 A25 A26 A27 A28 A29 A31 A32 A33 A34 A35 A36 A37

PLSM1 0.02 −0.03 −0.06 0.03 −0.08 −0.10 −0.09 −0.16 −0.22 0.00 −0.09 −0.20 −0.04
PLSM2 0.13 0.08 0.02 −0.01 −0.03 0.01 0.02 −0.02 −0.02 0.09 0.07 0.09 0.15

PLSM3 0.56 0.19 0.92 0.34 0.45 0.67 0.28 0.71 0.68 0.38 0.61 0.48 0.24

Model A38 A39 A41 A42 A43 A44 A45 A46 A47 A48 A49 A51 A52

PLSM1 −0.09 −0.21 −0.07 −0.07 −0.08 −0.09 −0.09 −0.09 −0.08 −0.09 −0.10 0.15 0.17

PLSM2 0.16 0.16 0.06 0.05 0.05 0.05 0.04 0.04 0.05 0.04 0.04 0.23 0.24

PLSM3 −0.67 0.72 0.28 0.19 0.78 −0.45 −0.34 0.12 0.45 0.73 0.82 0.71 0.36

Model A53 A54 A55 A56 A57 A58 A59 A61 A62 A63 A64 A65 A66

PLSM1 0.18 0.16 0.17 0.18 0.16 0.17 0.18 0.06 0.05 0.05 0.05 0.04 0.04

PLSM2 0.25 0.23 0.24 0.25 0.23 0.25 0.25 0.12 0.12 0.12 0.12 0.12 0.12

PLSM3 −0.48 0.18 −0.26 0.45 0.28 0.48 0.82 0.61 0.53 0.72 0.37 0.49 0.39

Model A67 A68 A69 A71 A72 A73 A74 A75 A76 A77 A78 A79

PLSM1 0.05 0.04 0.03 0.05 0.03 0.02 0.04 0.03 0.02 0.02 0.01 0.01

PLSM2 0.12 0.12 0.12 0.09 0.08 0.08 0.09 0.08 0.07 0.08 0.08 0.07

PLSM3 0.46 0.78 −0.38 0.78 0.28 0.45 0.61 0.81 0.37 −0.24 0.18 0.71

Table 1 Different downscaling model variants used in the study for obtaining projections of predictands at monthly time scale

Predictand Period of downscaling Length of the record Approach Model

Tmax 1990–2100 1990–2000 PLS regression PLSM1

Tmin 1990–2100 1990–2000 PLS Regression PLSM2

Pan evaporation 1990–2100 1990–2000 PLS regression PLSM3

Tmax 1990–2100 1990–2000 Neural network NNM1

Tmin 1990–2100 1990–2000 Neural network NNM2

Pan evaporation 1990–2100 1990–2000 Neural network NNM3

PLS regression-based temperature and pan evaporation 407



predictors is first standardized. Standardization is widely
used prior to statistical downscaling to reduce bias (if any)
in the mean and the variance of GCM predictors with
respect to that of NCEP-reanalysis data (Wilby et al. 2004).
Standardization is done for a baseline period of 1948 to
2000 because it is of sufficient duration to establish a
reliable climatology, yet not too long, nor too contemporary
to include a strong global change signal (Wilby et al. 2004;
Ghosh and Mujumdar 2008).

To develop downscaling models, the feature vectors (i.e.,
predictors) which are prepared from NCEP record, are
partitioned into a training set and a validation set. Feature
vectors in the training set are used for calibrating the model,
and those in the validation set are used for validation. The
11-year mean monthly observed maximum and minimum
temperatures as well as pan evaporation data series were
broken up into a calibration period and a validation period.
Table 1 summarizes the certain details of models. The
various error criteria are used as an index to assess the
performance of the model. Based on the latest IPCC
scenario, models for mean monthly Tmax and Tmin as well
as pan evaporation were evaluated based on the accuracy
of the predictions for validation data set. The criteria such
as Q²cum index, R²Xcum and R²Ycum index of PLS
regression models were chosen in this study (Wold 1995;
Eriksson et al. 2001; Wold et al. 2001).

Regression coefficients (Aij) for each predictor have
been shown in Table 2 where i ranges from 1 to 7 indicating
Ta 925, Ua 925, Va 925, Ta 500, Ta 200, Zg 200, and Zg

500, respectively, while j ranges from 1 to 9 representing
location of points in grid, as shown in Fig. 2.

5.1 Correcting bias by a multiplicative shift

Many GCMs either overestimate or underestimate maxi-
mum and minimum temperature. The correction scheme
brings the distributions close to the observed pattern. A
simple multiplicative shift is used to correct the bias of the
mean monthly GCM-simulated variable as follows:

X
0
i ¼ Xi

X obs

XGCM
ð3Þ

where X
0
i , Xi refers to raw and corrected GCM-simulated

variable, and XGCM and X obs are long term mean monthly
variable from the GCM and the observations for given
month (Amor and Hansen 2006).

6 Results and discussions

Seven predictor variables, namely, air temperature (925, 500,
and 200 hPa); zonal wind (925 hPa); meridional wind
(925 hPa); geo-potential height (500 and 200 hPa) at nine
NCEP grid points with a dimensionality of 63, are used as the
standardized data of potential predictors. These feature
vectors are provided as input to the PLS regression down-
scaling model. Model quality indexes Q²cum index, R²Xcum
and R²Ycum index have been shown in Table 3. It is clear

Table 4 Various performance statistics of models using PLS regression

Model CR RMSE N-S Index

Training Validation Training Validation Training Validation

PLSM1 0.96 0.94 1.23 1.63 0.92 0.87

PLSM2 0.98 0.96 1.55 2.26 0.93 0.87

PLSM3 0.95 0.89 1.78 2.78 0.89 0.85

PLSM1 (corrected) 0.97 0.96 1.13 1.43 0.94 0.89

PLSM2 (corrected) 0.99 0.98 1.15 2.16 0.94 0.91

PLSM3 (corrected) 0.97 0.93 1.74 2.67 0.90 0.86

RMSE is in degree Celsius for PLSM1 and PLSM2 and in millimeters for PLSM3

Table 3 Various quality measures of PLS regression model

Index Max temp (PLSM1) Min temp (PLSM2) Pan evaporation (PLSM3)

Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3

Q² cum 0.495 0.888 0.909 0.947 0.951 0.921 0.612 0.772 0.912

R²X cum 0.727 0.883 0.756 0.883 0.928 0.931 0.823 0.873 0.892

R²Y cum 0.506 0.893 0.910 0.950 0.956 0.929 0.543 0.792 0.941
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that all three indices are highest for the first three
components of the predictands. For predictand Tmax, Q²cum
index, R²Xcum and R²Ycum index are 0.921, 0.931, and
0.929; respectively. For Tmin, Q²cum index, R²Xcum and
R²Ycum index are 0.951, 0.928, and 0.956, respectively.
Similarly, for predictand pan evaporation, Q²cum index,
R²Xcum and R²Ycum index are obtained as 0.912, 0.892, and
0.941, respectively. Hence, model quality can be considered
as good. PLS regression is performed on this dataset. Results
of the different PLS regression models (viz. PLSM1, PLSM2,
and PLSM3), as discussed in Table 1, are tabulated in
Table 4. Neural network (NN) models have been developed
for each predictand. A comprehensive search of neural
network architecture is done by varying the number of nodes
in hidden layer. The network is trained using back-
propagation algorithm. Results of the different models of
neural network technique (NNM1, NNM2, and NNM3 for
Tmax, Tmin, and pan evaporation, respectively) were
imported from previous study of Goyal and Ojha (2009).
The calibration and validation results are described next.

6.1 Calibration/training results

It can be observed from Table 4 that for predictand Tmax, CC,
RMSE and N-S Index were 0.96 1.23, and 0.92, respectively,
using PLS regression model PLSM1 while CC, RMSE and
N-S Index were 0.99, 0.96, and 0.98, respectively using
neural network model NNM1. For predictand Tmin, values of
CC, RMSE, N-S Index and MAE were 0.98, 1.55, and 0.93,
respectively, while for model NNM2, values of CC, RMSE,
N-S Index and MAE were 0.98, 0.91, and 0.96, respectively.
The coefficient of correlation and N-S Index for the PLSM3
model were 0.95 and 0.89, respectively, whereas the values of
the coefficient of correlation and N-S Index for the model

NNM3 were 0.94 and 0.90, respectively, from predictand pan
evaporation.

6.2 Validation/testing results

For predictand Tmax, values of CC, RMSE, N-S Index were
0.94, 1.63, and 0.92, respectively for PLSM1 model while
values of CC, RMSE, N-S Index were 0.96, 2.31, and 0.91,
respectively, for NNM1 model. For predictand Tmin, the
values of CC and RMSE were 0.96 and 2.26, respectively, for
PLSM2 model while the values of CC and RMSE were 0.94
and 1.62, respectively, for NNM2 model. The value of N-S
Index was same, i.e., 0.87 for both models. The coefficient of
correlation and N-S Index for the PLSM3 model were 0.89
and 0.85, respectively whereas the values of the coefficient of
correlation and N-S Index for the model NNM3 were 0.90
and 0.84, respectively, for predictand pan evaporation.

Thus multiplicative shift is used to correct the bias of GCM
ofmodels PLSM1, PLSM2 and PLSM3 corresponding to Tmax,
Tmin, and pan evaporation, respectively. All the corrected
models performed better than uncorrected in terms of various
performance meausres, as shown in Table 5. It can be inferred
that the performance of PLS regression models bias corrected
(viz. PLSM1 (corrected), PLSM2 (corrected), and PLSM3
(corrected)) for predictands (Tmax, Tmin as well as pan
evaporation) performed well and are competitive in down-
scaling predictands values with neural network models and the
comparsion shows that PLS regression is a reasonable choice.

A comparison of mean monthly observed Tmax and Tmin

as well as pan evaporation with Tmax and Tmin as well as
pan evaporation simulated using PLS regression models
PLSM1 (corrected), PLSM2 (corrected), and PLSM3
(corrected) have been shown from Figs. 4, 5, and 6,
respectively, for calibration and validation period.

Fig. 4 Typical results for
comparison of the monthly
observed Tmax with Tmax

simulated using PLR
regression downscaling
model PLSM1 for NCEP data

Tmax SRESA1B SRESA2 SRESB1 COMMIT Historical

S 340 267 667.0 378 −3
Test statistics 0.77 0..45 4.51 0.78 −0.15

Table 5 Mann–Kendall statis-
tics for Tmax based on 2001–
2100 for June

PLS regression-based temperature and pan evaporation 409



Once the downscaling models have been calibrated and
validated, the next step is to use these models to downscale
the control scenario simulated by the GCM. The GCM
simulations are run through the calibrated and validated
PLS regression models to obtain future simulations of
predictand. The predictands (viz. Tmax and Tmin as well as
pan evaporation) patterns are analyzed with box plots for
20-year time slices. The middle line of the box gives the
median whereas the upper and lower edges give the 75
percentile and 25 percentile of the data set, respectively.
The difference between the 75 percentile and 25 percentile
is known as inter quartile range (IQR). The two bounds of a
box plot outside the box denote the value at ×1.5 IQR lower
than the third quartile or minimum value, whichever is high
and ×1.5 higher than the third quartile or the maximum
value whichever is less. Typical results of downscaled
predictands (Tmax and Tmin) obtained from the predictors
are presented in Figs. 7, 8, and 9. In part (i) of these figures,
the Tmax and Tmin downscaled using NCEP and GCM
datasets are compared with the observed Tmax and Tmin for

the study region using box plots. The projected Tmax and
Tmin as well as an evaporation for 2001–2020, 2021–2040,
2041–2060, 2061–2080, and 2081–2100, for the four
scenarios A1B, A2, B1, and COMMIT are shown in (ii),
(iii), (iv), and (v) of Figs. 7, 8, and 9, respectively. From the
box plots of downscaled predictands (Figs. 7 and 8), it can
be observed that Tmax and Tmin are projected to increase in
future for A1B, A2, and B1 scenarios, whereas no trend is
discerned with the COMMIT scenario by using predictors.

Furthermore, the Mann–Kendall test was employed for
trend analysis in the present study (Mann 1945; Kendall
1975). This nonparametric test has been extensively used to
test randomness against trend. The test was performed for all
the scenarios based on GCM downscale predictands. A value
of 0.05 was chosen as the local significance level. Based on this
significance level, values larger than 1.96 or lower than −1.96,
respectively, indicate a significant positive or negative trend
(Mishra et al. 2009). The results of the Mann–Kendall test
statistics based on the various scenarios for period 2001–2100
are shown in Tables 5 and 6.

Fig. 6 Typical results for
comparison of the monthly
observed pan evaporation with
pan evaporation simulated
using PLR regression
downscaling model PLSM3
for NCEP data

Fig. 5 Typical results for
comparison of the monthly
observed Tmin with Tmin

simulated using PLS
regression downscaling model
PLSM2 for NCEP data
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Historically, Tmax was observed in the month of June
while Tmin was observed in the month of January in this
region. Hence, these months were chosen as a part of this
study for trend analysis. It is observed that there is no
significant trend, either positive or negative, historically for
both the predictands (Tmax and Tmin).

For predictand Tmax, it can be inferred from Table 5 that
there is a significant rising trend during May month for
SRESB1 and SRESA1B scenario. For predictand Tmin, it
can be observed from Table 6 that there is a significant
rising trend for SRESA2 and SRESB1 scenarios for
January month for the period of 2001–2100.

Furthermore, it can be concluded that climate would be
warmer in the future years. This will increase the vulnerability

of the water resource system and further affect the safety of
water in the lake catchment. Increase in temperature would
result in increase in evapotranspiration which is a major cause
of water depletion from riverine systems in arid and semi-arid
climates (Dahm et al. 2002). While projected increase in
temperatures may enhance the rate of evaporation in the
study region since evaporation is proportional to the increase
in the earth’s surface temperature (Anandhi et al. 2009).
However, temperature is only one of the factors that
determines the evaporative demand of the atmosphere, the
others being vapor pressure deficit, wind speed and net
radiation. The change in evaporative demand depends on
how those factors change, as well as on the change in
temperature (Rosenberg et al. 1989). Furthermore, increase

Fig. 7 Box plots results from
the PLS regression-based
downscaling model PLSM1
for the predictand Tmax
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in evaporation may lead to increase in precipitation since the
evaporated water would eventually precipitate.

6.3 Comparison with previous downscaling studies

While this is the first study to use PLS regression approach
for downsclaing of maximum and minimum temperature as
well as pan evaporation prediction in Rajasthan, India, there
have been a few studies using other methods in other parts
of India. Hence, it is worthwhile to relate the performance
of the models presented here with those presented in other
studies that closely relate to this study.

In a recent study, Anandhi et al. (2009) developed
statistical downscaling models using a support vector
machine (SVM) approach for obtaining projections of

monthly mean maximum and minimum temperatures (Tmax

and Tmin) for a catchment of the Malaprabha reservoir in
southern part of India. The analysis reveals that the SVM
model is a feasible choice for downscaling the predictands.
The resulting models produced similar results to those of
this study. For example, the results of downscaling show
that Tmax and Tmin are projected to increase in future for
A1B, A2, and B1 scenarios, whereas no trend is discerned
with the COMMIT. However, downscaling of evaporation
has not been considered in this study. However, in the case
of Anandhi et al. (2009), between the two predictands, Tmax

was better simulated than Tmin, whereas in this work Tmin is
better simulated than Tmax. Hence, it has demonstrated that
PLS regression downsclaing method used in this study can
accurately capture the trend for predictand Tmax and Tmin.

Fig. 8 Box plots results from
the PLS regression-based
downscaling model PLSM2
for the predictand Tmin
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Since, no studies has been reported for downscaling the
pan evaporation in India to the best of our knowledge.
Hence, a comarison for pan evaporation has been made to a
similar study carried out in semi-arid-Haihe River basin,
China (Chu et al. 2010). Chu et al. 2010 developed the
dowsncaling models for pan evaporation using statistical
downsclaing method and results produced are similar to
those of this study.

7 Conclusions

Statistical downscaling approaches are generally used to fill
the gap between large-scale climate change and local scale
response. In this study, PLS regression is applied to the lake
catchment in India and we explored its applicability by
downscaling mean maximum temperature, mean minimum

temperature and pan evaporation simultaneously, which are
significant for evaluating the impact of climate change on
water resources management. Furthermore, we investigated
their trend for future years which would pave the way for the
study of hydro-climatological impacts on the lake catchment.

The selection of relevant predictors used for empirical
model development plays a crucial role. VIP score obtained
from PLS regression has been used for selection of
important variables.GCM bias correction procedure im-
proved the overall predictability of predictands. The results
of downscaling models using PLS regression show that
Tmax and Tmin are projected to increase in future for A1B,
A2, and B1 scenarios, whereas no trend is discerned with
the COMMIT scenario. Analysis for months (June for Tmax

while January for Tmin) with historical Tmax and Tmin values
reveals that no significant increasing or decreasing trend is
found in the observed data at the significance level of 5%.

Tmin SRESA1B SRESA2 SRESB1 COMMIT Historical

S 1,020 1,504 1,287 744 7

Test Statistics 2.67 4.26 3.45 2.51 0.46

Table 6 Mann–Kendall statis-
tics for Tmin based on 2001–
2100 for January

Fig. 9 Box plots results from
the PLSM3-based downscaling
model for the predictand pan
evaporation
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At the significance level of 5%, it is observed that there is
an increasing trend for Tmax for months of June for various
scenarios while there is likely an increasing trend of
minimum temperature for all the scenarios for months of
January of the year in future. For pan evaporation, it can be
concluded that trend is not obvious for future years since
the factors working on pan evaporation are complicated.

Appendix

Abbreviations used in text
CCCma: Canadian Center for Climate Modeling and

Analysis
CGCM: Canadian Coupled Global Climate Model
CGCM3: Third-generation Canadian Global Climate

Model
GCM: Global Climate Model
IPCC: Intergovernmental panel on climate change
NCAR: National Center for Atmospheric Research, USA
RMSE: Root mean square error
SRES: Special report of emission scenarios
Ta 925: Air temperature at 925 hPa
Ua 925: Zonal wind at 925 hPa
Va 925: Meridional wind at 925 hPa
Ta 950: Air temperature at 500 hPa
Va 500: Meridional wind at 500 hPa
Zg 500: geo-potential height at 500 hPa
Ta 200: Air temperature at 200 hPa
Ua 200: Zonal wind at 200 hPa
Va 200: Meridional wind at 200 hPa
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