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Abstract Plants require solar radiation for photosynthesis
and their growth is directly related to the amount received,
assuming that other environmental parameters are not
limiting. Therefore, precise estimation of photosynthetically
active radiation (PAR) is necessary to enhance overall
accuracies of plant growth models. This study aimed to
explore the PAR radiant flux in the San Francisco Bay Area
of northern California. During the growing season (March
through August) for 2 years 2007-2008, the on-site
magnitudes of photosynthetic photon flux densities (PPFD)
were investigated and then processed at both the hourly and
daily time scales. Combined with global solar radiation (Rs)
and simulated extraterrestrial solar radiation, five PAR-
related values were developed, i.e., flux density-based PAR
(PPFD), energy-based PAR (PARE), from-flux-to-energy

S. Ge * R. G. Smith - R. I. Carruthers (<)
USDA—Agricultural Research Service, Western Regional
Research Center, Exotic and Invasive Weeds Research Unit,
800 Buchanan Street,

Albany, CA 94710, USA

e-mail: ray.carruthers@ars.usda.gov

S. Ge * M. G. Kramer

Department of Earth and Planetary Sciences,
University of California,

Santa Cruz, CA 95064, USA

C. P. Jacovides

Department of Environmental Physics & Meteorology,
University of Athens,

University Campus, Builds. PHYS-V,

Athens 15784, Greece

Present Address:

R. G. Smith

Department of Natural Resources and the Environment,
University of New Hampshire,

Durham, NH 03824, USA

conversion efficiency (fFEC), and the fraction of PAR
energy in the global solar radiation (fE), and a new
developed indicator—Ilost PARE percentages (LPR)—when
solar radiation penetrates from the extraterrestrial system to
the ground. These PAR-related values indicated significant
diurnal variation, high values occurring at midday, with the
low values occurring in the morning and afternoon hours.
During the entire experimental season, the overall mean
hourly value of fFEC was found to be 2.17 umolJ ™!, while
the respective fE value was 0.49. The monthly averages of
hourly fFEC and fE at the solar noon time ranged from 2.15
in March to 2.39 umolJ™' in August and from 0.47 in
March to 0.52 in July, respectively. However, the monthly
average daily values were relatively constant, and they
exhibited a weak seasonal variation, ranging from 2.02 mol
MJ ! and 0.45 (March) to 2.19 moIMJ ' and 0.48 (June).
The mean daily values of fFEC and fE at the solar noon
were 2.16 molMJ ' and 0.47 across the entire growing
season, respectively. Both PPFD and the ever first reported
LPR showed strong diurnal patterns. However, they had
opposite trends. PPFD was high around noon, resulting in
low values of LPR during the same time period. Both were
found to be highly correlated with global solar radiation Rg,
solar elevation angle %, and the clearness index K. Using
the best subset selection of variables, two parametric
models were developed for estimating PPFD and LPR,
which can easily be applied in radiometric sites, by
recording only global solar radiation measurements. These
two models were found to be involved with the most
commonly measured global solar radiation (Rg) and two
large-scale geometric parameters, i.e., extraterrestrial solar
radiation and solar elevation. The models were therefore
insensitive to local weather conditions such as temperature.
In particular, with two test data sets collected in USA and
Greece, it was verified that the models could be extended
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across different geographical areas, where they performed
well. Therefore, these two hourly based models can be used
to provide precise PAR-related values, such as those
required for developing precise vegetation growth models.

1 Introduction

Photosynthetically active radiation (PAR) is often regarded
as the portion of the solar spectrum extending from 0.4 to
0.7 um (McCree 1972; Alados and Alados-Arboledas
1999; Jacovides et al. 2004). PAR is important as it is the
sole energy source used by plants for photosynthesis
reactions that partially convert physical solar energy into
bioenergy-carrying biomass (Mariscal et al. 2000; Tsubo
and Walker 2005; Myers 2005). Precise estimation of
incident PAR is therefore essential in assessing and
modeling plant growth and biological production manage-
ment in different vegetative ecosystems (Alados and
Alados-Arboledas 1999). Such estimation could be inte-
grated with plant growth models and decision-making
systems to optimize vegetation management activities and
solar energy conversion efficiency into bioenergy-loading
biomass (Spitters et al. 1986; Papaionnou et al. 1993;
Alados et al. 1996; Gueymard 2000).

Even though PAR is extremely important, it is often not
measured in most meteorological stations around the world;
therefore, it has to be estimated from the commonly
measured global solar radiation (Rg). As a result, PAR is
usually estimated with other measured variables as follows,
using one of three approaches: (a) the fractional energy of
PAR to global solar radiation (fE; Kvifte et al. 1983;
Papaionnou et al. 1993; Udo and Aro 1999; Mbttus et al.
2001; Tsubo and Walker 2005), (b) the fraction of photon
flux/energy conversion of PAR (fFEC; Alados et al. 1996;
Udo and Aro 1999, 2000; Alados et al. 1996; Alados and
Alados-Arboledas 1999; Al-Shooshan 1997; Finch et al.
2004; Jacovides, et al. 2004, 2007), or (c) the PAR photon
flux density (PPFD; McCree 1966; Papaionnou et al. 1993;
Alados et al. 1996; Jacovides et al. 2004). Such processes
were driven by different quantitative methods (McCree
1972; McCartney 1978; Udo and Aro 1999), and each
method has its positive and negative attributes.

Use of these models, however, varies with location and
season (Stigter and Musabilha 1982; Udo and Aro 1999). It
is thus required that such methods be recalibrated to
account for local climatic characteristics before application.
Relatively long-term measures, such as yearly and season-
ally, daily averaged fE values, are not significantly affected
by upper atmospheric and lower tropospheric conditions,
but the day-to-day differences in these values apparently
vary with cloud conditions (McCree 1966; Szeicz 1974;
Britton and Dodd 1976; Papaionnou et al. 1993). Therefore,
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average daily and/or monthly values of fE are often used,
even though fE is not a constant (Stigter and Musabilha
1982). As such, diurnal PAR variability is often ignored,
even though it is known to be an important factor
associated with eco-physiological processes of plants, e.g.,
photosynthesis, photoinhibition, and net ecosystem energy
exchange (Mohotti and Lawlor 2002; Misson et al. 2005).
The diurnal changes of PAR-related values thus could help
to more precisely estimate light use efficiency when
building energy-derived plant growth models and for other
activities that require detailed assessments of photosynthet-
ic radiation levels.

In the past, PAR was roughly estimated as approximately
half of the amount of incident global solar, producing errors
too large for estimating plant growth accurately. However,
more precise estimation of PAR is required for plant growth
models and decision-making systems when they involve
detailed management practices, such as the prediction of
biological controls, irrigation requirements, and/or needed
fertilization rates (Goudriaan and van Laar 1994; Asner and
Wessman 1997; Mariscal et al. 2000); otherwise, the
accumulated errors can be problematic and costly. To date,
estimation of PAR has almost totally focused on estimation
of incident PAR flux on the ground surface and above the
vegetation canopy directly from the ground-based global
solar radiation. However, when light penetrates the air, it is
affected by several atmospheric processes such as Rayleigh
scattering, water vapor and ozone absorption, and aerosol
loadings (Misson et al. 2005; Jacovides et al. 2007).
Apparently, as a counterpart of the incident PAR, the lost
PAR energy ratio (LPR) in the atmosphere is much more
directly related with absorption processes than the incident
PAR. Therefore, the LPR could also play an important role
to help estimate the temporal variability of incident PAR.
Unfortunately, this portion of PAR has not been extensively
studied, and its dynamics are still unclear.

This study is a part of a broader research effort aimed at
predicting growth of an important invasive plant, yellow
starthistle (YST), Centaurea solstitialis, which is consid-
ered a noxious weed in the states of California, Idaho,
Oregon, and Washington in the USA (Roche and Thill
2001). Biological control, the manipulated use of herba-
ceous insects to control plant growth, is an important
method that is used to achieve a more sustainable control
strategy for this weed, and predictive models are used to
help plan and manage the use of this technology. Thus, a
precise plant growth model driven by realistic environmen-
tal stimuli is a critical tool to help plan an integrated weed
control program to meet the goals of area-wide weed
management across entire watersheds. Therefore, it is
expected that PAR estimation models will be integrated
with other knowledge and approaches to improve the
management of YST. The present analysis aims to (a)
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investigate seasonal and diurnal patterns of PAR-related
values (PPFD, PARE, fE, fFEC, LPR) during the primary
plant growing season in northern California and (b) develop
models to precisely estimate hourly PAR values along the
coastal area of northern California. If successful, this will
aid in the wider improvement and application of YST
growth models that are to be used in the integrated
management of this and other noxious weed species.

2 Measurement site and data analysis
2.1 Study area

The primary field study site was located on a grass-
dominated hill slope with moderate densities of YST. The
study site was adjacent to Chabot Regional Park located
near the City of Moraga, California in the San Francisco
Bay region of the USA. The climate at the site is
Mediterranean and is characterized by a winter rainy season
(usually beginning in October) followed by a prolonged dry
season (starting in March or April). The climate is further
modified by the influence of marine factors that causes
cooler summers and warmer winters, along much of the
coastline and adjacent low-lying areas. During the dry
season, a periodic fog often forms due to an emergent
marine layer that inundates the land at night and dissipates
during midday. The experimental period (March through
August) represents the main growing season for YST, even
though seeds begin germinating with the winter rains;
however, cool temperatures typically limit excessive vege-
tative growth. Therefore, the field aspects of this study
focused on the dry spring and summer season (March to
August), coinciding with the time of rapid YST growth.

2.2 Measurements and methodology

The study was conducted over two growing seasons (spring
through summer) of 2007 and 2008. During 2007, PAR
data were collected from sunrise to sunset 1 day every
2 weeks, from June through August; in 2008, the PAR data
were collected from sunrise to sunset on 2 days every week,
from March through August. The photosynthetic photon
flux density was measured with a linear AccuPAR LP-80
Ceptometer (Decagon Devices, Pullman, WA, USA), which
outputs data in photobiological units of micromoles per
square meter per second. The ceptometer, which measures
light in the 400-700-nm wavebands across 80 sensors
embedded along an 84-cm probe, was set to automatically
collect PPFD measurements every 15 min. This instrument
has an error of +3% for common light sources including the
sun. Additional climatic data were downloaded from the
website of California Irrigation Management Information

System, a state governmental agency in region. The data
were collected at a weather station located in Moraga, CA,
USA (about 2 km from the experimental site) and included
an hourly global solar radiation (Rs, measured on a
horizontal surface with a Li-Cor Pyranometer model
LI1200S, with an error up to 5% under natural sunlight
conditions), vapor pressure, air temperature, precipitation,
relative humidity, and dew point temperature. Given the
proximity (2 km) and topographic similarity between the
weather station and the experimental site, climatic param-
eters measured at the weather station were highly similar to
those occurring at the experimental site. Due to cosine
response issues of the instrumentation, this analysis is
limited to cases with solar elevation angles #>12° (i.e.,
0.21 rad). The hourly data were further checked for
inconsistencies to eliminate problems associated with
questionable measurements.

Hourly and daily geometric parameters were estimated
(see “Appendix”) to supplement the AccuPAR LP-80
ceptometer data. Longitude and latitude (—122.12 W,
37.84 N) of the experimental site were used to calculate
extraterrestrial solar radiation, sunrise and sunset times,
day-length, and day angle for the field location. The
declination angle, the solar angle, and the solar elevation
angle were calculated for the middle of each local solar
hour and used to relate the calculated and corresponding
observed values during each hourly sampling period. We
also included the clearness index, K; (the ratio of the global-
to-extraterrestrial solar radiation), in our assessments as it
accounts for the attenuation of solar radiation by most
atmospheric constituents. Moreover, fE at the top of the
atmosphere was assumed to be 40% of global solar
radiation (Monteith and Unsworth 1990).

PPFD were approximately integrated using the following
formula:

1

n
i=

where fpagr 1S an instantaneous PPFD reading from the LP-
80 Ceptometer over the time interval A7. This sampling
interval accounted for the time required to obtain one
reading, and thus, #n is the number of intervals in an hour.
The unit of an instantaneous PPFD reading is micromoles
per square meter per second. Hourly PPFD values are given
in moles per square meter per hour (1 mol=10° pmol),
while daily PPFD values are expressed in moles per square
meter per day.

Conversion of PAR from a photon flux to an energy unit
requires detailed spectral and solar radiation data that is
expensive to collect. For simplicity, McCree’s conversion
factor 4.57 pmolJ ™' (McCree 1972; Jones et al. 2003) was
used to convert hourly PAR photon flux into its energy
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alternative (i.e., PARE). This conversion factor is a
conservative quantity when used under various atmospheric
conditions (McCartney 1978; Jacovides et al. 1997). In the
present analysis, it was preferred to engage such a constant
conversion factor centered at 550 nm across the wavelength
range of PAR wavelength limits. After translating PPFD
into PARE, fE was calculated as the fraction of PARE to
global solar radiation, measured at the nearby weather
station. For consistency, hourly and daily PARE values are
expressed in megajoules per square meter per hour and
megajoules per square meter per day, respectively.

The percentage of extraterrestrial PAR energy lost in the
atmosphere (LPR), in the trace of transmission, was
calculated as follows:

0.4Ry — PARE
0.4R,

LPR = *100 (2)

where R, is the global solar radiation at the top of the
atmosphere and PARE is the energy alternative of PPFD.
Within the extraterrestrial system, energy ratio of PAR to
extraterrestrial solar radiation as mentioned above was
assumed to be a constant value of 0.4 (Monteith and
Unsworth 1990).

The fFEC values are computed as fractions of PPFD to
global solar radiation Rg occurring over a measurement
increment (e.g., an hour or a day). For daily fFEC, the unit
was moles per megajoules, but the hourly fFEC was
expressed in micromoles per joule to maintain consistency
with energy units of Rg and PARE at hourly and daily
scales.

Hourly PPFD (moles per square meter per hour) was
summed within a day when hourly solar elevation was
higher than 12° to estimate the daily PPFD (moles per
square meter per day). Similarly, the daily global solar
radiation Rs, PARE, and LPR were computed by summing
the individual hourly values. The daily fE was calculated
from the daily sum of PARE divided by that of Rg.

The monthly averaged PAR values and corresponding
standard errors were used to assess diurnal trends and their
fluctuations with relevant PAR expressions (PPFD, fE,
fFEC, and LPR) based on the comparisons of monthly
averaged hourly values. The seasonal trends were deter-
mined by comparing monthly averaged hourly PAR values
at the same hour between different months for the time
intervals considered (March through August). To assess the
diurnal pattern of a parameter in question, the different
monthly averaged hourly values were compared among
different hourly periods during any given day, from sunrise
to sunset for each month. In March, PAR measurements
were taken between 8:00 and 17:00, while for April
through August, measurements were taken between 7:00
and 18:00.
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Correlation analysis was used to examine associations
between PAR values and selected climatic variables,
including global solar radiation, air temperature, relative
humidity, vapor pressure, dew point temperature, solar
elevation (transformed into its sine function), and the
clearness index (K;). These variables were further used to
develop multiple linear models for estimating hourly PAR
values. About three fourths of these hourly values (n=345)
were randomly selected for model calibration, while the
remaining one fourth (n=115) were used for model
verification.

3 Results

3.1 Distribution of monthly mean daily PPFD, PARE,
Rg, fFEC, {E, and LPR

Over the experimental periods, averaged daily values (mean +
SE) of PPFD, Rg, PARE, fFEC, fE, LPR, and K, were
48.30+10.52 mol/m*/day, 23.87+3.89 MJ/m?*/day, 11.27+
2.11 MJ/m?*/day, 2.16+0.08 umol/J, 0.47+0.02, 28.79+
6.85%, and 0.60+0.01, respectively. It was further found
that daily values of fFEC and fE were very conservative,
although not constant. The stand error of K; was slightly
greater than 1% of its mean, suggesting that sky conditions
were rather consistent during the experimental periods. For
the other parameters, standard errors were greater than 5%
of the corresponding means, except for fFEC (3.70%) and
fE (4.26%). In March, the monthly averaged daily values of
PPFD, Rs, PARE, fE, and fFEC were at their lowest levels
during the growing seasons; they increased from April and
reached their peaks in June around the summer solstice,
then decreased through July. In contrast, LPR exhibited the
opposite trend, highest in March (41.37%) and lowest in
June (21.76%). The monthly mean of the daily distributions
of PPFD, PARE, global solar radiation Rg, fFEC, fE, and
LPR is presented in Fig. 1. The monthly mean daily PPFD
varied between 30.28+6.3 (the average in March) and
59.91+£7.50 mol/m? (the average in June). The monthly
mean daily PARE (Fig. 1b) closely followed PPFD, ranging
from 7.58+1.37 (in March) to 13.51+2.08 MJ/m? (in June).
Global solar radiation (Fig. 1c) exhibited a seasonal pattern
similar to that of PPFD and PARE, reaching its minimum in
March and its maximum in June. Figure 1d, e further
reveals that both fractions, fFEC and fE, provide a
relatively conservative pattern over the time interval
considered in this study, a finding that supports earlier
research (Stigter and Musabilha 1982; Papaionnou et al.
1993). fFEC ranged from 2.01 (in March) to 2.23 molMJ ™"
(in June), with an annual mean daily value of 2.11 molMJ ",
whereas the respective fE ratio values varied between 0.44
(in March) and 0.48 (in June), resulting in an overall mean



Dynamics of PPFD and estimates in coastal northern California 111

a d
80 9
£ 70
o 2.5
- g t { t
S 60 T = E3 }
& i £ 5 1
g so E
3 = s
Z 40 s L
- g
§ 30 { e
8 2
é‘ 20 g
= E 0.5
=
s 10
0- T 0 T T T
2 4 6 8 2 4 6 B8
Themonthsin a year The monthsin a year
b e
18 - 0.7 4
) 16
-
é 14 0.6
e
& 107 . bos N
> g
'g 81 =
£ S g
i 0.3 1
g
S 21
0 T : T 0.2 : : :
2 4 6 8 2 4 6 8
The monthsin a year The monthsin a year
G g f
. 30 {
b
- 60 4
-‘E“ 25 { { o
= & 50
& 20 P
z 5 40
,g £y
g = E 30 {
g 10 - E. 20 -
$ =
51 £ 10
=
0 T T T 0 T T T
2 4 6 8 2 4 6 8
Themonthsin a year Themonthsin a year

Fig. 1 Distribution of monthly means of daily PAR-related values: for a PPFD, b PARE, ¢ Rs, d fFEC, e {E, and f LPR. Data are means +
standard error

@ Springer



112

S. Ge et al.

daily ratio of about 0.46. The monthly mean daily LPR was
the highest at the beginning of the experimental season and
again toward the end of the dry season. The maximum LPR
was observed in March and the minimum in June.

3.2 Diurnal patterns of monthly mean hourly PAR-related
values

The monthly averages of hourly PAR wvalues exhibited
strong diurnal patterns (Fig. 2). Although fE and fFEC had
very conservative daily values when considered on a
monthly basis, both exhibited significant variability over
the course of a day. The diurnal differences of PAR among
local hours across a day from sunrise to sunset were higher
than that of monthly differences between the same local
hours of different months. Values of PPFD, PARE, fE, and
fFEC were typically low in the early morning, approached
their peaks around the noon hour, and then decreased
toward the later afternoon hours. The average hourly PPFD
values (Fig. 2a) recorded at 12:30 (average between 12:00
and 13:00 LST) varied from 4.72 in March to 7.49 molm 2
h™' in June, whereas the average hourly PARE values
(Fig. 2b) at the same time period ranged from 1.025 MJm 2
h™! in March to 1.63 MIm ?h™" in June. The means of
fFEC (Fig. 2d) ranged from 2.145 in March to 2.385 pmol
J ' in August. Over the experimental period, and the overall
mean hourly value of fFEC was 2.17 pumoll ', The
corresponding values of fE (Fig. 2¢) varied between 0.47
in March and 0.52 in July, whereas the overall mean hourly
value was 0.49. Finally, the LPR values (Fig. 2f) at noon
oscillated between 33% in March and 12% in July. Both
PPFD and PARE exhibited diurnal trends that were similar
to that of global solar radiation (Fig. 2c), further suggesting
that PPFD and PARE are likely to be associated with the
dynamical status of the global solar radiation field. When
values of fE and fFEC were evaluated from hour-to-hour to
capture diurnal patterns, they were found to vary with
daytime hours following the solar elevation angles. In
addition, on the basis of standard errors of the hourly
means, fE was found to be relatively constant, as its SE was
always less than 5%. Other PAR-related quantities (LPR,
Rs, PARE) were more variable, even on an hourly basis.
Considering these observations, it was found that PAR-
related variables may be (a) sensitive to changes in solar
zenith angle (local time) and (b) comprehensively affected
by meteorological parameters such as air turbidity, clouds
and/or fog formation, other water vapor, and aerosol
loadings.

3.3 Proposed parametric models for both PPFD and LPR

Using these collected data, we developed two empirical
parametric models. These models employed a multiple
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linear regression approach to select significant variables
from available weather data and calculated geometrics of
PAR values as given in “Appendix”. We constructed the
models using the best subset approach to determine the
required variables from the list of potential predictors given
in Table 1 by assessing their impacts on the overall
variability explained by the model. The most explanatory
parameters in the model were global solar radiation, solar
elevation, and the clearness index (Table 1).

For the hourly values of photosynthetic photon flux
density, the best results were obtained through the
expression:

PPFD = —0.1248 + 0.0069Rs + 0.0035Rs sin(4) — 0.0024RsK;
(n=345,R* = 0.95,p = 0.01)

3)
where PPFD is the hourly photon flux density (moles per
square meter per hour), Rg is the hourly global solar
radiation (watts per square meter), / is the solar elevation
angle, and K, is the clearness index. It is interesting to note
that the inclusion of air and/or dew temperature, vapor
pressure, or relative humidity did not improve the model’s
performance.

We subjected the model to verification using an
independent subset (z=115) of the data. Figure 3 displays
experimental PPFD values versus predicted values. The
proposed model predicted the measured PPFD values quite
accurately (R*=0.95, n=115, p<0.0001). From the regres-
sion line presented in Fig. 3, it can be seen that the
predicted PPFD flux is very close to the measured flux,
possessing an offset as low as 0.083 mol/m*/h and a slope
of up to 0.95. This further suggests that the hourly PPFD
can be precisely estimated from the global solar radiation
(Rs) along with the clearness index (K,) and solar elevation
angle (h).

The same procedure was used to model hourly LPR
values. The optimal model treated K; as the effective
parameter and also included the interaction of K, with solar
elevation angles. The most predictive model of LPR was:

LPR = 0.9636 — 0.6761K, — 0.5913K, sin(h) (4)

where LPR is the ratio of PAR energy lost in the
atmosphere, to PAR energy at the top of the atmosphere.

As with PPFD, the independent subset (n=115) of the
original data was used to verify the accuracy of the
proposed model (Eq. 4). Figure 4 compares experimental
LPR values versus predicted ones through the proposed
model (Eq. 4). The proposed model predicted accurately the
measured LPR values (Fig. 4); however, the relationship
was not as strong as for PPFD (R*=0.85, p<0.0001, n=
115). The model had an offset of about 0.073 and a slope
up to 0.86, implying that the model overestimates LPR by
7.3%.
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Table 1 Significant correlation
coefficients (r) of four PAR-

relevant values when compared
with locally measured weather
variables (n=460, p<0.01)

PPFD LPR fE or fFEC

Sin(solar elevation)/solar elevation 0.93/0.92 —0.72/-0.73 0.61/0.62
Ground solar radiation 0.97 —0.87 0.53

K, 0.70 —0.85 0.13

Vapor pressure —0.15 0.21

Air temperature 0.45 —0.40 0.18
Relative humidity -0.42 0.35

Dew point temperature 0.19

In addition, we used a data set collected at Athens,
Greece to verify these two models across geographical
locations. The results demonstrated that these two models
performed very well (Fig. 5) in independent locales.
Therefore, we expect that they could be extended in many
different places, far away from the original study site.

4 Discussion
4.1 Variability of PAR values

Both fE and fFEC are two important characteristics of PAR
because they are closely related to light use efficiency in
plant growth (McCree 1972; Papaionnou et al. 1993;
Alados et al. 1996). They also have important implications
for global climate change and other environmental issues
(Hanan et al. 2002). Therefore, they were the main focuses
for similar earlier studies (Udo and Aro 1999; Tsubo and
Walker 2005). Across a range of latitudes, averages of fE
have been shown to vary between 0.43 and 0.49, with
individual values ranging from 0.41 to 0.52 when PAR was
defined as sunlight waveband between 0.4 and 0.7 pum

PPFDestimated (mol/m%/hour)

0 T T T T
0 2 4 6 8

PPFD measured (mol/m%hour)

Fig. 3 Verification results for the proposed parametric model used for
predicting PPFD

@ Springer

(Kvifte et al. 1983; Tsubo and Walker 2005). Within a
season, the daily ratios may change only slightly from day to
day, or even from month to month (Udo and Aro 1999). In
most studies, therefore, daily fE has been assumed to be
relatively constant across latitudes, diurnally, and temporally
(Williams 1976). Similarly, Jacovides et al. (2007) reported
that seasonal fFEC changed only slightly from 2.006 mol/MJ
in winter to 1.989 mol/MJ in summer, with an annual mean
of 1.995 mol/MJ. In this analysis, we found that the seasonal
differences of fE and fFEC, on a daily basis, were not as
large as those recorded on an hourly basis, suggesting that
the time scale considered has important implications for the
conversion of fFEC and fE. Therefore, we imagine that plant
growth models that use PAR would provide more precise
estimation of vegetative production when the diurnal patterns
of PAR are considered, due to apparent changes of PAR-
related values during a daily time course, assuming that other
given model driven factors are fixed.

4.2 Fog effects on PAR radiation
The frequent occurrence of dense fog over the experimental

site was a common climatic characteristic observed during
the time intervals examined here. It is known that
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Fig. 4 Verification results for the proposed parametric model used for
predicting LPR. The regression line is shown
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Fig. 5 Long-distance verification of the two models a PPFD and b
LPR constructed from data collected near San Francisco, CA, USA
and tested in Athens, Greece

suspended particles in the atmosphere, such as aerosol
particles and fog droplets, can scatter and absorb solar
radiation in the visible wavelengths. It also is well-known
that aerosol activation is the process leading to fog
formation. Scattering and absorption depend on particle
number and properties (size and shape) that in turn are
related to both dynamic and thermodynamic processes
occurring at particular spatial and temporal scales, which
may themselves further modify particle number and size
(Elias et al. 2006).

The effect of fog is clearly seen in the diurnal course of
fE and fFEC ratios (Fig. 2d, e), which is further dependent
on light level, solar elevation angle, and fraction of direct
versus diffuse light (Monteith and Unsworth 1990). That is,
when light levels are already low during times of dense fog,
there is up to 50% (and potentially more) loss of PAR
radiation through this aerosol distribution. Not only is there
more aerosol-induced extinction of PAR radiation but also
the overall incoming solar radiation is reduced by a similar
proportion under these conditions. Eugster et al. (2006)
reported that during dense fog conditions, PPFD was only
47% of the values observed at the same time of a day under
fog-free conditions. Figure 2 suggests that fog extinction

was uniform over the site domain for both morning and
afternoon hours, when present.

The findings in this analysis suggest that both fE and
fFEC values were heavily affected by fog. In the early
morning during summer (June through August), fE and
fFEC were often higher than the corresponding values in
any other month. At the same time, the corresponding
global solar radiation was lower; therefore, the resulting
PPFD and PARE were also lower. Nevertheless, in a recent
study, Wang et al. (2009) reported that atmospheric aerosol
loadings have increased globally during the past three
decades. Such a phenomenon could result in a decrease of
global solar radiation; however, global solar radiation may
also vary regionally in response to economic development
and environmental regulation (Wild 2009) via pollution
levels. Despite these findings, it remains unclear how both
fE and fFEC would be affected.

Another important consideration of the effects of fog is
the discrimination of fFEC and fE values under various sky
conditions. In this analysis, no clear effect on these ratios
was determined through categorization of observed sky
conditions. In this situation, a more likely scenario is that
the presence of dense fog masks sky vault-induced resultant
cloud cover effects and their impacts on the ground radiant
fluxes and consequently on those fractions.

4.3 Generality of our findings within the context
of previous work

Our results are generally in line with previous work
conducted across the globe (Table 2) and illustrate the need
for local calibration of fFEC to account for local climatic
differences. Table 2 reveals the extent of important site-to-
site variation in fFEC and its measurement. Our observed
hourly mean ratio (fFEC) value of 2.17 (micromoles per
joule) compares well to those reported elsewhere (Table 2).
In addition, results reported by Rao (1984), Papaionnou et al.
(1993), Udo and Aro (1999), and Jacovides et al. (2004) for
cloudy sky conditions are also in line with our findings. This
further reveals that foggy conditions have the same effect on
solar radiation transmission, as those caused by cloudy sky
conditions. Further, results reported under cloudy sky
conditions by Howel et al. (1983), Meek et al. (1984), and
Hodges and Kanemasu (1977) for various sites in the USA
are also in line with the daily fFEC values that we observed
in our study. It also is notable that daily averaged data from
Nigeria collected under cloudy conditions by Udo and Aro
(1999) also agree well with our findings.

4.4 Predicting PAR values

PAR exerts important effects on the eco-physiological
characteristics of plants. In the literature, several models
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Table 2 Ratios of photon flux density to global solar radiation (fFEC) at different worldwide locations

Op/Rs Cloudiness Location Method  References
Hourly (umolJ™')  Daily (molMJ™')  Hourly Daily

2.17 Manhattan, Kansas D Hodges and Kanemasu (1977)
2.33 Clear Dar as Salaam, Tanzania | Stigter and Musabilha (1982)
2.88 Cloudy

2.052 California D Howel et al. (1983)

2.15 Cloudy  Fresno, CA D Meek et al. (1984)

2.04 Fresno, CA
2.207 Cloudy Corvallis, Oregon 1 Rao (1984)
2.139 Clear Clear Athens, Greece 1 Papaionnou et al. (1993)
2.24 2.157 Cloudy Cloudy

1.874 Clear Almeria, Spain D Alados et al. (1996)

2.011 Cloudy

1.94-2.4 Clear Nordic Countries D Olseth and Skartveit (1997)
2.07 2.08 Clear Illorin, Nigeria D Udo and Aro (1999)
2.15 Cloudy

1.916 Clear Lusaka, Zambia D Finch et al. (2004)

2.112 Cloudy
2.197 2.01 Cloudy Cloudy  Nicosia, Cyprus D Jacovides et al. (2004)
1.995 Clear Athens, Greece D Jacovides et al. (2007)
2.106 Cloudy
1.991 Spring
1.999 Summer
2.17 2.16 Fog conditions California D Present work
Mar. 2.15 2.02 Mostly Clear California D Present work
Jun. 2.39 2.19 Fog conditions

D direct, [ indirect

have been developed to estimate PAR values, contributing
to many practical applications in the area of plant
physiology, biomass production, and natural illumination
in greenhouses. These models range from physics-based
radiation transfer models to more descriptive empirical
parametric models. The physics-based models have a
reasonable and reliable scientific underpinning but are
often complex, owing to the difficulty in obtaining data
for all of the required parameters. Thus, their detailed
requirements make them difficult and costly to use,
especially if they are fully developed (Alados et al. 1996).
In contrast, empirical models have been shown to be both
reasonable and useful in practice (Al-Shooshan 1997).
Empirical models are often based on different ground-
based climatic factors, including geometric parameters, and
are generally in the form of multiple linear regression
models. A more reliable and accurate method is to
incorporate important correlated factors into optional
models for more accurate estimations (Udo and Aro
1999). Some of these models force the intercept to be zero
(Udo and Aro 1999; Jacovides et al. 2004). These models,
although simple, may induce errors, especially when
estimating values on an hourly basis. For this reason, we

@ Springer

developed parametric models with intercepts. The intercepts
might be treated as an offset, which could be derived from
the trends of long-term estimates (e.g., seasonal means),
rather than estimates for shorter-term time scales (e.g.,
hourly means). However, when forcing the estimation
models through the origin, the result could remove some
long-term trends in climate change. Moreover, previous
models have only considered the main effects of the climatic
and geometric variables, while their interactions have never
been taken into consideration or incorporated into predictive
models (Alados and Alados-Arboledas 1999; Tsubo and
Walker 2005). We believe that these interaction terms
should be included to improve model predictions.

5 Conclusions
Our analysis of hourly and daily measurements of photo-
synthetic photon flux density and related climatic variables

revealed the following points:

1. PAR-related values exhibited different patterns, which
changed with time scale of consideration. The monthly



Dynamics of PPFD and estimates in coastal northern California

117

averaged values were relatively stable, but diurnal
patterns clearly existed within the studied values.

2. Concerning the diurnal variability of PAR: (a) low solar
elevation angles resulted in a longer slant path of the
direct solar beam flux traversing the atmosphere in the
spring, which led to lower radiant fraction values then
higher values observed in the summer. The monthly
average hourly fraction fFEC values measured at noon
hours ranged from 2.15 in March to 2.39 umolJ' in
August, while the respective fractions fE at the same
time varied from 0.47 in March to 0.52 in July.

3. The monthly average daily ratios of fFEC and fE
exhibited a weak seasonal dependence, low values in
the spring and high but more variable values in the
summer; lowest values occurred in March (2.02 molMJ !
and 0.45, respectively) and the highest values were
observed in June (2.19 molMJ " and 0.48, respectively).
An overall mean daily value of 2.16 molMJ ' for fFEC
and 0.47 for fE was found over the experimental period.

4. Given global solar radiation, global PAR, and other
related climatic data, the hourly PPFD component
seems essential for many agricultural applications and
could be estimated accurately to obtain diurnal changes
of PAR through empirical parametric models. In this
analysis, an empirical relationship between hourly
PPFD and hourly global solar radiation Rg, clearness
index K;, and solar elevation angle 4 was established.
Moreover, if only global solar radiation is measured,
we also developed a model to estimate the lost
percentages of PAR when it passed through the top of
the atmosphere through it to the ground. Such a model
was derived from the ground-based global solar
radiation, clearness index, and solar elevation angle.
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Appendix

Day angle (DA):
DA = (JD/365) x 360 x (x/180) (5)

where JD is Julian day, starting on January | and ending on
December 31. In leap years, 365 in Eq. 5 is replaced by
366.

Correction factor for solar constant (CSC) is applied

CSC =1, x Ey (6)

I.=1,367 W/m®> or 4,921 KJ/m? while E, is the
correction factor for the mean Sun—Earth distance; Ej is
simply approximated as (Duffie and Beckman 1980):

Ey =1+ 0.033 cos(DA) (7)

The intensity of solar radiation at the top of the
atmosphere (R() can be calculated as:

Ry = CSC x cos(6,) (8)

where 0, is the zenith angle which is calculated through the
following equation:

cos(60,) = sin(g) sin(8) + cos(p) cos(d) cos(w) 9)

where ¢ is the site’s latitude, ¢ is solar declination, and w is
the hour angle.
Solar declination can be obtained as follows:

27(JD + 284))

. _ in(23.4 .
sin(8) = sin(23.45) x sm( 36

(10)

The hourly and daily extraterrestrial solar radiations in
units of megajoules per meter are determined through the
following equations (Whillier 1956; Elminir et al. 2007):
For hourly values:

Ron = CSClcos(y) cos(8) cos(w;) + sin(p) sin(6)]  (11)

Equation 11 yields extraterrestrial radiation for 1 h centered
around the hour w;.For daily values:

24
Roqa = o CSC cos(yp) cos(d)

TS

X [sin(a)g) - (ﬁ) cos(wg)}

where wyg is the sunset hour angle given as,

ws = cos” ' (—tan(p) x tan(§))
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