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Abstract Bootstrap, a technique for determining the accu-
racy of statistics, is a tool widely used in climatological and
hydrological applications. The paper compares coverage
probabilities of confidence intervals of high quantiles (5- to
200-year return values) constructed by the nonparametric
and parametric bootstrap in frequency analysis of heavy-
tailed data, typical for maxima of precipitation amounts. The
simulation experiments are based on a wide range of models
used for precipitation extremes (generalized extreme value,
generalized Pareto, generalized logistic, and mixed distribu-
tions). The coverage probability of the confidence intervals
is quantified for several sample sizes (n=20, 40, 60, and
100) and tail behaviors. We show that both bootstrap
methods underestimate the width of the confidence inter-
vals but that the parametric bootstrap is clearly superior to
the nonparametric one. Even a misspecification of the
parametric model—often unavoidable in practice—does not
prevent the parametric bootstrap from performing better in
most cases. A tendency to narrower confidence intervals
from the nonparametric than parametric bootstrap is
demonstrated in the application to high quantiles of
distributions of observed maxima of 1- and 5-day precip-
itation amounts; the differences increase with the return
level. The results show that estimation of uncertainty based
on nonparametric bootstrap is highly unreliable, especially
for small and moderate sample sizes and for very heavy-
tailed data.

1 Introduction

The bootstrap, introduced by Efron (1979), is a technique
for determining the accuracy of statistics in circumstances
in which confidence intervals cannot be obtained analyti-
cally or when an approximation based on the limit
distribution is not satisfactory (Efron and Tibshirani 1993;
Davison and Hinkley 1997). Bootstrap techniques have
become very popular in many areas of environmental
sciences, including frequency analysis in climatology and
hydrology (Dunn 2001; Hall et al. 2004; Ames 2006;
Kyselý and Beranová 2009; Twardosz 2009; Fowler and
Ekström 2009). There are two basic approaches to the
bootstrap: While the nonparametric bootstrap is based on
resampling with replacement from a given sample and
calculating the required statistic from a large number of
repeated samples (it is often termed simply ‘resampling’),
the idea of the parametric bootstrap is to randomly generate
samples from a parametric model (distribution) fitted to the
data and to calculate the statistic from a large number of
randomly drawn samples. In both cases, one attempts to
infer a distribution of the estimate of a given statistic (e.g.,
model parameter, quantile of a distribution) from the
available data.

The nonparametric bootstrap is often applied when
estimating uncertainties involved in frequency models as a
simple and intuitive first guess. It has been examined in
terms of simulation experiments that evaluated the utility of
the methods (Hall et al. 2004; Ames 2006) and widely
applied in analyses of observed datasets as well as model
outputs. However, when the data samples are small, their
distributions are skewed, and a suitable parametric model
can be assumed (which is the usual case in a frequency
analysis of precipitation amounts), the parametric approach
to the bootstrap may be advantageous. Kyselý (2008)
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quantified the performance of nonparametric and para-
metric bootstraps for several frequency models used in
extreme value analysis, concluding that the parametric
bootstrap should be preferred in most cases, more impor-
tantly for heavy-tailed distributions (typical for precipita-
tion amounts) than light-tailed distributions (typical for air
temperature data). Nevertheless, the study evaluated per-
formance of the two bootstrap methods only for one value
of the tail index (shape parameter) of heavy-tailed distribu-
tions, and possible dependence on the tail behavior was not
examined.

Herein, we analyze the performance of nonparametric
(NP) and parametric (P) bootstraps in terms of simulation
experiments for a wide range of heavy-tailed distributions
used for modeling, among other things, probabilities of
extreme precipitation. Heavy-tailed distributions are not
exponentially bounded, i.e., they have heavier upper tails
than do exponential-like distributions. In other words, when
data follow a heavy-tailed distribution, design values
corresponding, e.g., to 50- or 100-year return levels may
be severely underestimated if the heavy tails are not
correctly represented in the model used for the estimation
(the limiting Gumbel distribution for maxima, sometimes
applied also for modeling precipitation extremes, is not
heavy-tailed). There is a consensus that extremes of some
environmental variables are heavy-tailed (Katz et al. 2002),
including maxima of precipitation amounts (Buishand
1991; Egozcue and Ramis 2001; Kyselý and Picek 2007)
and streamflow (Farquharson et al. 1992; Anderson and
Meerschaert 1998; Kochanek et al. 2008), but also less
common variables like sedimentation rates in lakes (which
are sensitive to extreme precipitation; Lamoureux 2000).

The paper is organized as follows: in Section 2, the
methodology and settings of the simulation experiments are
given. Differences between coverage probabilities of
confidence intervals obtained with the NP and P bootstraps
are quantified in Section 3, and their dependence on the tail
index and sample size is evaluated. An application of the
two bootstrap methods to confidence intervals of high
quantiles of observed precipitation data is shown in
Section 4, and implications for use of the bootstrap
confidence intervals in heavy-tailed frequency models are
discussed in Section 5.

2 Methods

Simulation experiments are carried out with a number of
combinations of true (parent) and fitted probability distri-
butions. The parent distribution is that from which random
artificial data samples of a specified size are drawn in the
first step of each experiment; the fitted distribution is the
one that is adopted for the estimation in the artificial data.

Analogously to Kyselý (2008), the size of the artificial
samples n was set to 20, 40, 60, and 100 in each experiment
to span a range of values typical of time windows for which
climatological datasets are analyzed.

2.1 Fitted model

The generalized extremevalue (GEV) distribution (Appendix 1)
is applied as the fitted distribution in most experiments. It
includes three models for maxima of asymptotically large
samples (Gnedenko 1943), and it is widely used in
frequency modeling of heavy precipitation (Semmler and
Jacob 2004; Gaál et al. 2008; Overeem et al. 2008; Fowler
and Ekström 2009), air temperature (Kharin and Zwiers
2000, 2005; Kyselý 2002; Khaliq et al. 2005), low
streamflow (Onoz and Bayazit 1999; Kroll and Vogel
2002; Hewa et al. 2007), floods (Martins and Stedinger
2000; Kumar and Chatterjee 2005; Cunderlik and Ouarda
2007), durations of wet and dry spells (Kharin and Zwiers
2000; Voss et al. 2002; Lana et al. 2006), wind speed (van
den Brink et al. 2004), and other variables.

Additional experiments with the generalized Pareto (GP)
distribution (Appendix 2) as the parent and fitted distribu-
tion are carried out in order to highlight general tendencies
for heavy-tailed data. The GP distribution is useful in the
‘peaks-over-threshold’ (POT) method for modeling
excesses above a sufficiently high threshold. Such approach
is preferred when whole time series of data are available,
due to the increase in the amount of data entering the
estimation procedure. Applications of the POT method
include the frequency analysis of air temperatures (Brabson
and Palutikof 2002; Katsoulis and Hatzianastassiou 2005;
Kyselý et al. 2008), precipitation amounts (Begueria and
Vicente-Serrano 2006; Bacro and Chaouche 2006; Kyselý
and Beranová 2009), floods (Adamowski 2000; Cox et al.
2002; Prudhomme et al. 2003), dry spells (Lana et al.
2006), wind speeds (Dupuis and Field 2004; An and
Pandey 2005), and wave heights (Pandey et al. 2004).

2.2 Description of the parent models and the simulation
experiments

The settings of the individual simulation experiments
(denoted E1 to E4) are summarized in Table 1. Note that
the parameterization used throughout the paper is in
agreement with Hosking and Wallis (1997), i.e., shape
parameter k<0 corresponds to a heavy-tailed distribution
(cf. Appendices 1 to 3).

In experiments E1, the GEV distribution is used as the
parent as well as the fitted distribution. This combination of
the true and fitted model represents the case when a correct
parametric model is adopted for the examined samples. The
tail behavior of the GEV distribution is governed by the
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shape parameter k, and the choice of the other two
parameters (location and scale) could be rather arbitrary;
their values (given in Table 1) reflect typical distributions of
daily maxima of precipitation amounts (in mm) over some
land areas in mid-latitudes. We examine four GEV
distributions as parent, with values of k ranging from −0.4
(a pronounced heavy tail) to −0.1 (in which case the tail
behavior differs little from the limiting Gumbel case). Such
a range of the tail index covers typical values estimated, for
example, for distributions of annual maxima of 1-day and
multi-day rainfall amounts in central Europe (Kyselý and
Picek 2007). Although tails heavier than k=−0.4 may
sometimes be found in practical applications, too, we note
that already for GEV distributions with k≤−0.33 (k≤−0.25)
the third (fourth) statistical moment does not exist (Hosking
and Wallis 1997). The bias in the estimates of k and high
quantiles from samples drawn from such heavy-tailed

distributions becomes more important (cf. the bias of the
shape parameter and the 100-year return values in experi-
ments with k=−0.4 in Tables 2 and 3), which also makes
the application and comparison of bootstrap confidence
intervals for k≲−0.4 less straightforward.

Other experiments that make use of a correct parametric
model for the estimation are E2, in which the GP
distribution is the true as well as the fitted distribution.
The shape parameter k is analogous in the GP and GEV
distributions, so the same set of values for k is used as in
E1. The location parameter is usually known in applications
of the POT method and equals zero (when the threshold
that delimits extremes is set), so the two-parameter version
of the GP distribution is adopted (Appendix 2). In order to
allow for a straightforward interpretation, return levels are
inverted from the estimated quantile function under the
assumption that the frequency of exceedances is one per

Table 1 Summary of settings of the simulation experiments

Experiment Parent distribution Fitted model

Type Location parameter Scale parameter Shape parameter Type

E1 GEV ξ=30 α=10 k={−0.4, −0.3, −0.2, −0.1} GEV

E2 GP ξ=0 α=10 k={−0.4, −0.3, −0.2, −0.1} GP

E3 GLO ξ=30 α=10 k={−0.4, −0.3, −0.2, −0.1} GEV

E4 Mixed GEV (75%) /
GLO (25%)

ξ(GEV)=30,
ξ(GLO)=45

α(GEV)=10,
α(GLO)=12

k(GEV)={−0.4, −0.3, −0.2,
−0.1}, k(GLO)=−0.4

GEV

Experiment k in parent distribution Mean estimated k

n=20 n=40 n=60 n=100

E1 −0.4 −0.308 −0.343 −0.359 −0.372
−0.3 −0.234 −0.264 −0.274 −0.284
−0.2 −0.150 −0.174 −0.183 −0.190
−0.1 −0.071 −0.082 −0.090 −0.093

E2 −0.4 −0.297 −0.337 −0.354 −0.369
−0.3 −0.221 −0.258 −0.270 −0.281
−0.2 −0.144 −0.168 −0.177 −0.186
−0.1 −0.059 −0.077 −0.082 −0.090

E3 −0.4 −0.241 −0.272 −0.288 −0.303
−0.3 −0.128 −0.157 −0.166 −0.177
−0.2 0.000 −0.022 −0.029 −0.036
−0.1 0.141 0.126 0.125 0.118

E4 −0.4 −0.293 −0.327 −0.339 −0.350
−0.3 −0.247 −0.278 −0.291 −0.298
−0.2 −0.207 −0.235 −0.245 −0.258
−0.1 −0.165 −0.194 −0.209 −0.220

Table 2 True (parent) values
and mean estimated values of
the shape parameter (k) for
individual experiments and
sample sizes (n)
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year, i.e., the same as in the conventional ‘annual maxima’
method with the GEV distribution. This latter setting
corresponds to the value of the mean exceedance rate in
the GP-Poisson process model (Coles 2001) that is equal to 1.

The other two sets of experiments, E3 and E4, are
carried out to demonstrate differences between the boot-
strap confidence intervals when false parametric models are
assumed and adopted for the examined samples. This
condition may be common in applications in which the
true (parent) distributions are unknown, although the
appropriate model may be selected according to goodness-
of-fit tests; the probability of selecting a false distribution
for given data increases with decreasing sample size.

In experiment E3, the generalized logistic (GLO)
distribution (Appendix 3) is used as parent but the GEV
distribution is utilized for the estimation. GLO is a model
that has become popular in hydrology following the study
of floods by Ahmad et al. (1988), and it also has been
found to be a useful distribution for maxima of precipitation
amounts (Shoukri et al. 1988; Asquith 1998; Lee and
Maeng 2003; Fitzgerald 2005; Kyselý and Picek 2007; Zin
et al. 2009). According to the Flood Estimation Handbook
(IH 1999), it has been recommended as the standard for
flood frequency analysis in the UK. We use a reparam-
eterized version of the log-logistic distribution of Ahmad et
al. (1988), in which the parameters are analogous to those
of the GEV distribution (Hosking and Wallis 1997;
Appendix 3). Since the GEV and GLO distributions are
closely related models that rank among distributions with

the same weight of the upper tails, the setting of experi-
ments E3 means that a false but related parametric model is
adopted for the estimation. The same set of parameters as in
E1 is used for the GLO distribution, with the shape
parameter k varying again between −0.4 and −0.1. Note
that high quantiles of the GEV and GLO distributions with
the same parameters are very similar (Tables 2 and 3).

In the last set of experiments, E4, the samples are drawn
from a double-populated GEV–GLO model, i.e., a mixture
of two distributions (Fig. 1). Three quarters of data in each
artificial sample are drawn from the GEV distribution while
the remaining quarter originates from the GLO distribution.
This may represent a condition when two mechanisms
producing extremes—for example heavy precipitation—are
present in a sample: most extremes arise from an ‘ordinary’
population but less frequently there also occur events from
a secondary ‘extra-ordinary’ population (cf. van den Brink
et al. 2004). A relatively large fraction of data from the
secondary population (25%) is chosen in order to highlight
the differences from experiments E1, since for decreasing
fractions the results converge to those of E1. The GLO
distribution with a shifted location and a heavy upper tail
(k=-0.4) is used to represent the secondary population. The
model parameters (which again span a range of values for
the tail behavior of the primary GEV distribution) are
summarized in Table 1, and the probability density
functions of the mixed models together with both compo-
nents are plotted in Fig. 1. The GEV distribution is again
adopted as a model for the data. The setting of experiments

Table 3 True (parent) values and mean estimated values of the 100-year return level for individual experiments and sample sizes (n)

Experiment k in parent distribution 100-year return value in parent distribution Mean estimated 100-year return value

n=20 n=40 n=60 n=100

E1 −0.4 162.4 154.2 157.3 158.9 160.2

−0.3 129.2 127.1 128.9 128.4 129.0

−0.2 105.5 105.2 105.5 105.8 105.6

−0.1 88.4 90.0 88.9 89.0 88.5

E2 −0.4 132.7 124.9 127.5 128.7 130.2

−0.3 99.4 97.0 99.3 99.0 99.3

−0.2 75.6 76.5 76.0 75.9 76.0

−0.1 58.5 60.2 59.4 58.8 58.7

E3 −0.4 162.1 154.6 156.5 158.0 159.3

−0.3 129.0 124.3 125.5 125.1 125.2

−0.2 105.3 101.2 100.7 100.5 100.2

−0.1 88.3 83.7 82.8 82.2 82.1

E4 −0.4 174.6 169.2 171.6 172.6 172.9

−0.3 151.5 149.1 150.9 152.1 150.9

−0.2 135.8 134.8 136.2 135.9 137.1

−0.1 126.2 123.9 124.6 125.4 125.5
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E4 corresponds to the case when a simplified model is
fitted to an examined sample.

2.3 Other settings of the simulation procedure

The simulation procedure in each experiment and each
combination of sample size (n=20, 40, 60, and 100) and
tail behavior (governed by k) is as follows (Kyselý
2008):

1. Five thousand artificial samples of n values are
randomly drawn from the specified parent distribution
(or the mixture of the parent distributions in E4).

2. To each artificial sample, the GEVor GP distribution is
fitted and its quantiles corresponding to the return
levels of 5 to 200 years are estimated.

3. The 90% and 95% confidence intervals (CIs) of the
model parameters and quantiles are estimated from the
P and NP bootstraps. The former involves generating a
large number of random samples from the fitted
distribution (with parameters estimated from the artifi-
cial sample); the latter consists in a simple resampling
with replacement of the artificial sample.

We confine our attention in this study to the most
widely-used percentile CIs. For both bootstrap approaches

and all artificial samples, 1,000 iterations are carried out to
estimate 2.5%, 5%, 95%, and 97.5% quantiles of distribu-
tions of the 5- to 200-year return levels, which delimit the
90% and 95% CIs. The method of L-moments (Hosking
1990) is used for estimating the parameters and quantiles of
the GEV/GP distribution.

The performance of the NP and P bootstraps is evaluated
in terms of empirical coverage probability of the CIs, i.e.,
the percentage of simulated results for which the estimated
90% and 95% CIs cover the true values of the quantiles
(which are determined from parameters of the parent
distribution). It is expected that an appropriate (‘correct’)
method yields coverage close to the nominal value of
90/95% while a higher (lower) value points to CIs that
are too wide (narrow) compared to the real uncertainty,
provided that the quantile estimates are not biased.

3 Results

3.1 Experiments E1 (GEV fitted to GEV-distributed data)

For all values of the shape parameter k and all examined
sample sizes (n=20, 40, 60, and 100), the P bootstrap
performs considerably better in terms of the coverage

Fig. 1 Probability density functions of the two partial distributions and the double-populated parent models in experiments E4
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probability of the CIs (Fig. 2). The differences are
particularly important for small and moderate sample sizes
(n=20, 40) and for the very heavy-tailed GEV model (k=
−0.4). For example, the 90% CIs of the 100-year return
values estimated from samples with 40 members drawn
from the GEV distribution with k=−0.4 cover the true value
only in 64% of cases when the NP bootstrap is used. This is
improved to 81% for the P bootstrap (a value still lower
than the 90% that is expected). The coverage probabilities
of the 90% and 95% CIs of the 100-year return levels are
summarized for all experimental settings in Table 4; the
findings are analogous notwithstanding whether the 90% or
95% CIs are considered.

It should be noted that the coverage probability of the
90% CIs for all values of k, n, and in the whole range of the
5- to 200-year return levels is lower than the nominal value
of 90% for both the NP and P bootstraps (Fig. 2). This
means that the CIs constructed using the bootstrap are
always too narrow and undervalue the uncertainty involved
in the estimates. However, this underestimation is much less
severe when the P version of the bootstrap is employed.

Another favorable property of the P bootstrap is that the
coverage probability of the CIs is almost independent on
the return level. Except for very small samples (n=20)
drawn from the GEV distribution with k≤−0.3, the
coverage probability of the 90% CIs constructed by

Fig. 2 Dependence of the coverage probability of the 90% CIs from the parametric (P) and nonparametric (NP) bootstraps on the T-year return
level (T=5 to 200) in experiments E1, for individual sample sizes (columns) and values of the tail index (rows)
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Table 4 Coverage probabilities of the 90% and 95% CIs of the 100-year return levels estimated from the nonparametric (NP) and parametric (P)
bootstraps. k denotes the shape parameter of the parent distribution, n stands for the sample size

k n 90%_NP 90%_P 95%_NP 95%_P

a. Experiments E1 (GEV fitted to GEV-distributed data)

−0.4 20 52.7 75.1 55.8 80.8

40 63.8 81.2 67.6 86.8

60 69.2 84.0 74.1 88.9

100 72.1 84.6 77.0 90.6

−0.3 20 58.7 78.8 62.0 83.4

40 69.0 84.4 73.0 88.7

60 71.6 85.5 76.1 90.0

100 77.0 86.7 82.2 91.5

−0.2 20 62.7 81.3 66.5 85.6

40 71.6 84.9 76.3 89.4

60 77.0 86.6 81.6 91.0

100 80.7 88.2 85.7 92.5

−0.1 20 69.9 83.6 73.8 87.0

40 75.8 86.7 80.8 90.6

60 78.9 87.1 84.0 90.8

100 82.5 88.0 87.5 92.3

b. Experiments E2 (GP fitted to GP-distributed data)

−0.4 20 58.3 76.1 62.7 81.1

40 66.6 80.7 71.2 85.7

60 71.3 82.8 76.6 88.0

100 76.3 85.8 81.5 90.3

−0.3 20 62.9 79.3 67.9 83.3

40 70.6 82.6 75.9 87.1

60 75.1 85.5 80.7 89.3

100 79.5 86.4 84.7 91.1

−0.2 20 68.5 81.9 72.9 85.9

40 76.0 84.9 80.9 88.6

60 78.4 86.0 84.0 90.0

100 82.2 87.5 87.1 91.5

−0.1 20 73.3 84.9 78.3 88.3

40 78.9 86.1 83.9 89.7

60 82.2 87.8 87.4 91.5

100 83.8 88.4 89.9 92.4

c. Experiments E3 (GEV fitted to GLO-distributed data)

−0.4 20 52.6 74.0 55.7 79.5

40 63.9 78.8 68.0 84.6

60 66.2 78.6 70.8 84.5

100 72.1 81.3 77.7 87.3

−0.3 20 57.9 74.7 61.0 79.1

40 64.5 76.4 69.2 81.7

60 69.9 77.8 75.0 83.0

100 74.6 79.2 79.4 85.3

−0.2 20 61.8 74.0 66.3 78.4

40 68.6 75.2 73.3 80.3

60 71.5 74.3 76.1 79.8

100 73.7 73.3 79.7 80.1
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means of the P bootstrap is at least 80% for all return
levels, and it is close to the nominal value of 90% for
moderate and large sample sizes and less heavy-tailed
distributions (Fig. 2).

3.2 Experiments E2 (GP fitted to GP-distributed data)

Similar results are achieved in simulation experiments E2 in
which the GP distribution is fitted to the GP-distributed
data (Table 4, Fig. 3). Differences between the NP and P
bootstrap are slightly less pronounced but the general
tendencies remain unchanged: the P bootstrap always
performs better, CIs from both the P and NP bootstraps
have always too low coverage, the improvement of the P
over NP bootstrap is particularly important for very
heavy-tailed data and small sample sizes, and the coverage
probability of the 90% CIs of quantiles corresponding to the
5- to 200-year return levels from the P bootstrap is at least
80% except for n=20 and k≤−0.3.

Differences in coverage probabilities of CIs of high
quantiles between the experiments with the GEV and GP
distributions are relatively minor for the P bootstrap,
which reflects the fact that the shape parameter is
analogous in the two distributions. Some differences
between the behavior of the coverage probabilities in
the two experiments are related to the fact that the GP
distribution is estimated as a two-parameter model

(Appendix 2), with the location defined by the fixed
threshold also in practical applications, and a slightly
different bias of estimates in the two models. The fact that
the number of free parameters is smaller and skewness of
the data sample (l3/l2) is not employed in estimating the GP
distribution (in contrast to GEVand GLO—Appendix 1 and
3) is manifested in a tendency to a larger positive bias of the
estimates of the shape parameter, particularly for small
samples (Table 2).

3.3 Experiments E3 (GEV fitted to GLO-distributed data)

The performance of both bootstrap methods deteriorates in
experiment E3 (a false model fitted to heavy-tailed data)
compared with experiments E1 and E2, and the coverage
probability becomes particularly low for high quantiles
(Fig. 4). However, the P bootstrap performs better in most
cases even though the parametric model assumed for the
data is misspecified. Only for the combination of large
sample sizes (n=60, 100) and little pronounced heavy tail
(k=−0.1) does the NP bootstrap outperform the P bootstrap.
On the other hand, the superiority of the P bootstrap is
obvious even for large sample sizes (n=100) with pro-
nounced heavy tails.

It should be emphasized that the coverage probability of
the 90% (95%) CIs for 100-year return levels, except for
large samples (n=100), does not exceed 79% (85%) for the

Table 4 (continued)

k n 90%_NP 90%_P 95%_NP 95%_P

−0.1 20 66.9 74.0 72.2 78.1

40 70.1 71.7 75.7 76.8

60 71.5 69.3 76.0 75.2

100 71.3 66.5 77.8 72.9

d. Experiments E4 (GEV fitted to mixed GEV/GLO-distributed data)

−0.4 20 54.5 77.7 57.5 83.0

40 64.6 81.3 68.8 87.3

60 69.4 83.6 74.0 89.4

100 73.3 85.0 78.2 90.7

−0.3 20 56.2 79.3 59.6 84.3

40 66.8 82.9 70.4 87.8

60 71.5 84.2 76.2 89.3

100 76.6 86.8 81.2 91.2

−0.2 20 59.0 78.2 62.0 83.4

40 67.5 82.1 71.7 86.7

60 72.1 83.5 77.1 88.4

100 76.8 84.7 81.9 90.0

−0.1 20 57.4 76.9 61.0 81.5

40 67.6 80.1 71.3 84.8

60 69.0 78.6 73.7 85.1

100 73.7 79.5 79.3 86.2
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P bootstrap and 72% (76%) for the NP bootstrap (Table 4).
That is to say that the real uncertainties of the estimates are
always substantially underestimated. The low coverage is
related to the bias of the estimated model, and increasing
positive bias of k (manifested also in negative bias of high
quantiles) for less heavy-tailed parent distributions (Tables 2
and 3) may explain the worse performance of the P
bootstrap for less-pronounced heavy tails.

3.4 Experiments E4 (GEV fitted to double-populated
GEV–GLO data)

The P bootstrap outperforms the NP bootstrap in all settings
of experiments E4, in which a simplified (GEV) model is

applied to double-populated GEV–GLO data (Fig. 5). As in
experiments E1 and E2, the differences decrease with
increasing sample size but are still evident for n=100. The
coverage probability of the 90% (95%) CIs for the 100-year
return levels, except for large samples (n=100), does not
exceed 72% (77%) for the NP bootstrap (Table 4). The
performance of the NP bootstrap is particularly poor for
very small samples (n=20), for which the coverage
probability of the 90% CIs from the NP bootstrap is
between 50% and 60% for return levels T≥50 years
(Fig. 5). The coverage is improved considerably with the
P bootstrap (75–80%).

With increasing k (towards less heavy tails) of the parent
GEV distribution, the coverage probability of the CIs from

Fig. 3 Same as in Fig. 2 except for experiments E2
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the P bootstrap deteriorates for high quantiles as the two
parent distributions become more dissimilar (with respect to
the tail behavior) and the fitted model less appropriate; the
two populations that produce the samples are not differen-
tiated in the fitted model. Another feature related to the bias
of the adopted model is that for less-pronounced heavy
tails, there is little improvement in the coverage probability
of the CIs with increasing sample size for the P bootstrap
(unlike the NP bootstrap; bottom row of Fig. 5). Neverthe-
less, these are not arguments against the P bootstrap: the NP
bootstrap performs always worse, and the sample size of
n=100 may be large enough to recognize in a practical
application that the single-population GEV model is not
suitable for such data.

4 Application to observed precipitation data

To demonstrate differences between application of the NP
and P bootstraps to real climatological data, we compare
CIs for high quantiles of precipitation amounts estimated
by the two bootstrap approaches. The examined dataset
consists of annual maxima of 1- and 5-day precipitation
amounts measured at 175 rain-gauge stations covering
the area of the Czech Republic, with complete series
over 1961–2005. The spatial distribution of the stations is
shown in Fig. 6. The dataset originates from Kyselý
(2009), who examined trends in characteristics of heavy
precipitation in individual seasons, and it is superior in
terms of spatial coverage and data quality to the one used in

Fig. 4 Same as in Fig. 2 except for experiments E3
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a previous study on statistical modeling of precipitation
extremes in this area (Kyselý and Picek 2007). The
assumption of stationarity of the examined data was
checked before application of the extreme value analysis:
trends significant at p=0.05 (according to the Mann–
Kendall test) were observed at 5.7% (3.4%) of stations for
annual maxima of 1-day (5-day) precipitation amounts, i.e.,
the percentage of significant trends at the given level is
close to the nominal value of 5% in both cases.

The GEV distribution was fitted to the individual
stations’ datasets using the method of L-moments, and
both bootstrap approaches were used to estimate the 90%
CIs of model parameters and quantiles corresponding to the
return levels of 10, 20, 50, and 100 years. The number of
repetitions in both NP and P bootstraps was set to 1,500.

Figure 7 shows scatter-plots of the relative width of the
estimated 90% CIs against the shape parameter for
individual return levels (the relative width of the CIs, i.e.,
the width of the CIs scaled by the value of the quantile
corresponding to the return level, is plotted in order to
remove variations related to the magnitude of the quantile
itself, e.g., larger values at mountain stations). Although the
range of the estimated values of the shape parameter is
wide, the estimated GEV distribution is heavy-tailed at a
large majority of the stations (151/156 for 1-day/5-day
maxima).

For all return levels, there is a tendency to more liberal
(narrower) CIs from the NP bootstrap. The percentage of
stations at which the CIs from the NP bootstrap are
narrower than those from the P bootstrap is summarized

Fig. 5 Same as in Fig. 2 except for experiments E4
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in Table 5, and the average relative widths of the CIs are
shown in Table 6. As expected, the differences between the
NP and P bootstraps increase with the return level; they are
small for 10-year return values but become quite pronounced
for 50- and 100-year return values (Table 6, Fig. 7). For

100-year return values of 1-day precipitation amounts, the
average relative width of the 90% CIs is 66.3% when the P
bootstrap is applied while only 49.9% when using the NP
bootstrap. These values are averaged over all 175 stations,
notwithstanding whether heavy-tailed or light-tailed GEV

Fig. 6 Spatial distribution of
the 175 stations with precipitation
data over 1961-2005

Fig. 7 Scatter-plots of the relative width of the estimated 90% CIs
against the estimated shape parameter for individual return levels (r.l.)
and annual maxima of 1-day (top) and 5-day (bottom) precipitation

amounts at 175 stations. The width of the CI is scaled by the estimated
value corresponding to the given return level at each station
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distribution is estimated. If only sites with an estimated
heavy tail (k<0) are considered, the difference is even more
pronounced—the average relative width of the 90% CIs is
70.7% for the P bootstrap and 52.2% for the NP bootstrap.
Since both NP and P bootstrap tend to yield CIs that are too
narrow for heavy-tailed data, as shown above, the uncertainty
of the high quantiles tends to be substantially underestimated
when using the NP bootstrap while the underestimation is
at least partly rectified with the P bootstrap.

Other features of the CIs that are demonstrated in Fig. 7
include dependence of the width of the CIs on k and
growing width of the CIs with rising return level (the latter
being increasingly important for very heavy-tailed data).
Also noteworthy is the fact that the dependence of the
width of the CIs on k is close to linear for the P bootstrap,
represented by a much narrower band for the P bootstrap
than for the NP bootstrap. Owing to the length of the examined
precipitation datasets (45 years), sampling variability may
strongly influence also the bounds of the estimated CIs for the
NP bootstrap (while it is ‘smoothed’ with the P bootstrap).
This is manifested, among other, in some outlying estimates of
the relative width of the 90% CIs from the NP bootstrap in
Fig. 7, particularly a large outlier in the upper row of the
plots (for 1-day maxima) for the 50- and 100-year return
levels. Scrutiny of the data reveals that this outlying estimate
appears at a station affected by extreme rainfall on July 22,
1998 (resulting in a severe flash flood in eastern Bohemia),
with 24-h precipitation amount of 163 mm, while the second
largest daily amount at this site over 1961–2005 was only
83 mm. A bootstrap that consists purely in resampling with
replacement of the 45 values of annual maxima puts too
much weight onto the single extreme observation, and this

leads to inflated confidence bounds for the estimates in this
specific case of a heavy-tailed sample. This example
demonstrates that estimates based on the NP bootstrap are
much more sensitive to random sampling variability and
much less consistent between samples (stations in this case)
than those obtained with the P bootstrap.

5 Discussion

The study compares performance of two basic variants of
bootstrap—parametric and nonparametric—for estimating
CIs of high quantiles in heavy-tailed data, which are typical
for precipitation extremes and some other climatological
and hydrological variables. When a correct parametric
model is fitted to data drawn from the GEV or the GP
distribution, the parametric bootstrap performs considerably
better for all examined return levels (5 to 200 years),
sample sizes (n=20, 40, 60 and 100), and tail behaviors (the
shape parameter k ranging from −0.4 to −0.1). The
parametric bootstrap is preferred also when a false model
(GEV) is fitted to GLO-distributed data, except for the
distribution with the least heavy tail (k=−0.1) and large
sample sizes. Since probability of selecting an incorrect
parametric model (by means of goodness-of-fit tests)
declines with an increasing size of the data sample, the
superiority of the nonparametric bootstrap in this particular
case is of little practical importance.

The last-examined experiments make use of a simplified
model (GEV) adopted for mixed (double-populated) data
drawn from combinations of the GEV and GLO distribu-
tions. This may represent a relatively frequent case in

Table 5 Percentage of stations at which the 90% CIs estimated from the NP bootstrap are narrower than those from the P bootstrap for high
quantiles of distributions of observed precipitation data (175 stations, 45 years)

Dataset Return level (r.l.)

10-year r.l. 20-year r.l. 50-year r.l. 100-year r.l.

1-day annual maxima 78.9 84.6 84.6 86.3

5-day annual maxima 75.4 78.3 82.3 84.6

Table 6 Average relative widths of the 90% CIs (in %) estimated from the NP and P bootstrap for high quantiles of distributions of observed
precipitation data (175 stations, 45 years). The width of the CI is scaled by the estimated value corresponding to the given return level at each station

Dataset Bootstrap Return level (r.l.)

10-year r.l. 20-year r.l. 50-year r.l. 100-year r.l.

1-day annual maxima NP 26.0 31.3 40.9 49.9

P 27.6 36.4 52.0 66.3

5-day annual maxima NP 25.8 31.6 41.8 51.0

P 27.0 36.0 52.1 67.1
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extreme value analysis when the samples examined arise
from populations governed by different extreme-generating
mechanisms (characterized by specific distributions), which
are, however, difficult to disaggregate from data records.
The coverage probability of the CIs constructed from the
parametric bootstrap is always better in the experiments
with the mixed models, too, even for large sample sizes
(n=100).

A tendency to more liberal (narrower) CIs from the
nonparametric than parametric bootstrap is clearly demon-
strated in the application to high quantiles of distributions
of observed maxima of 1- and 5-day precipitation amounts,
measured at 175 stations over 1961–2005. The differences
increase with the return level, and the relative width of the
90% CIs of the 100-year return values of both 1- and 5-day
precipitation amounts is reduced on average by 25% when
the nonparametric bootstrap is used instead of the parametric
bootstrap. This reduction is likely to increase if inference is
based on samples from shorter time periods. Another
advantage of the CIs from the P bootstrap, demonstrated in
the application to real data, is that the estimates are much less
influenced by random (sampling) effects.

It should also be stressed that in all the simulation
experiments, the constructed CIs are too narrow and too
often miss the true values of model parameters and
quantiles. This means that the uncertainty of the parameters
and quantiles is underestimated, more importantly so for the
nonparametric bootstrap. The underestimation appears to be
a general feature of bootstrap CIs for heavy-tailed data and
is related to skewness in the distributions of estimates of
model parameters (Tajvidi 2003). We show that the
underestimation of uncertainty is more important

– For the nonparametric than parametric bootstrap
– For small sample sizes
– For higher quantiles (except when the correct model is

fitted), and
– When an incorrect (although related) parametric model

is used

This suggests that bootstrap should be regarded as the
first guess of the uncertainty, and alternative methods—e.g.
analytical expressions for the sampling variance of quan-
tiles of the distributions (Lu and Stedinger 1992; Kjeldsen
and Jones 2004) or likelihood-based confidence intervals
(Tajvidi 2003)—should be considered at least for compar-
ison. An inference relying uncritically on bootstrap may
obviously be misleading.

The present simulation experiments examined behavior
of bootstrap CIs for a range of frequency models. Although
all possible cases encountered in analyses of precipitation
data cannot be covered, the simulation results appear to be
indicative of some general tendencies of CIs constructed
using the bootstrap (as regards the dependence of results on

the sample size, tail behavior, and ‘correctness’ of the
parametric model). We also confined ourselves to the
percentile CIs since these are the most popular; see, e.g.,
Carpenter and Bithell (2000) or Dixon (2002) for a brief
review on advanced versions of bootstrap CIs. The
percentile and ‘bias-corrected and accelerated’ (BCa; Efron
and Tibshirani 1993) bootstrap CIs were compared by
Dupuis and Field (1998) and Kyselý (2008) for the GEV
distribution, and Tajvidi (2003) for the GP distribution; the
BCa CIs are usually superior, but the coverage probability
is still lower than the nominal value. More sophisticated
bootstrap procedures do not compensate for insufficient
data, so the poor performance of the nonparametric
bootstrap in small sample sizes does not much depend on
the variant of bootstrap CIs.

6 Conclusions

The basic choice of bootstrap method (nonparametric vs.
parametric) used for estimating uncertainties in frequency
models is usually not justified in climatological applications,
and respective limitations and drawbacks of the two boot-
straps are not discussed and/or evaluated. We provide
arguments for using the parametric version of the bootstrap
for constructing quantile confidence intervals in heavy-tailed
frequency models, provided that the suitable parametric
model is known or can be assumed (which is almost always
the case in modeling probabilities of precipitation extremes).
Even a moderate misspecification of the distribution does not
prevent the parametric bootstrap from performing better than
the nonparametric one. Inasmuch as a severe misspecifica-
tion of the parametric model adopted for examined data is
unlikely provided that the model is supported by some
goodness-of-fit tests and/or other statistical tools (such as the
L-moment ratio diagram; Hosking and Wallis 1997) and the
sample’s time period is not extremely short, we find it
difficult to identify any reasons for using the nonparametric
bootstrap. Confidence intervals constructed using the non-
parametric bootstrap should be interpreted very cautiously,
and especially so for small and moderate sample sizes and
for distributions with very heavy tails, as they may severely
undervalue the true uncertainty of the estimates. This is also
the reason why the nonparametric bootstrap should be
avoided when estimating uncertainty of design values for
use in practical applications.
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Appendix 1: Generalized extreme value (GEV)
distribution

The cumulative distribution function of the GEV distribu-
tion with parameters ξ (location), α (scale), and k (shape) is
(e.g., Hosking and Wallis 1997)

FðxÞ ¼ e�e�y
;

where

y ¼ �
ln 1� k x�xð Þ

a

� �

k
; k 6¼ 0;

y ¼ x� x
a

; k ¼ 0:

The distribution is bounded at xþ a
k from right (left) if k>0

(k<0). The quantile function is

xðFÞ ¼ xþ
a 1� � lnFð Þk
� �

k
; k 6¼ 0;

xðFÞ ¼ x� a ln � lnFð Þ; k ¼ 0:

L-moments are defined for k>−1; the first three
population L-moments are

l1 ¼ xþ a
1� Γ 1þ kð Þ

k
;

l2 ¼ a
1� 2�k
� �

Γ 1þ kð Þ
k

; and

l3 ¼ a
Γ 1þ kð Þ �1þ 3:2�k � 2:3�k

� �
k

;

where Γ denotes the gamma function.
The method of L-moments fits the GEV distribution by

choosing its parameters so that the first three L-moments,
11, 12, 13, match the corresponding estimates l1, l2, l3. The
resulting L-moment estimators of k, ! , and J are given by

k ¼ 7:8590zþ 2:9554z 2;a ¼ l2k

1� 2�kð ÞΓ 1þ kð Þ ; and

x ¼ l1 þ a
Γ 1þ kð Þ � 1

k
;

where

z ¼ 2

3þ l3
l2

� ln 2

ln 3
:

Appendix 2: Generalized Pareto (GP) distribution

The cumulative distribution function of the GP distribution
with parameters ξ (location), α (scale) and k (shape) is

FðxÞ ¼ 1� e�y;

where y is defined in Appendix 1. The distribution is
bounded at ξ from the left, and if k>0, also at xþ a

k from
the right. The quantile function is

xðFÞ ¼ xþ
a 1� 1� Fð Þk
� �

k
; k 6¼ 0;

xðFÞ ¼ x� a ln 1� Fð Þ; k ¼ 0:

L-moments of the GP distribution are defined for k>−1;
the first three population L-moments are

l1 ¼ xþ a
1þ k

; l2 ¼ a
1þ kð Þ 2þ kð Þ ; and

l3 ¼ a 1� kð Þ
1þ kð Þ 2þ kð Þ 3þ kð Þ :

Since the location parameter ξ, corresponding to the
lower bound of the GP distribution, is known in the current
application (ξ=0), only the two remaining parameters are
estimated. In such case, l3 is not used when estimating the
scale and shape parameters of the GP distribution, and the
L-moment estimators of k and α are given by

k ¼ l1 � x
l2

� 2; and a ¼ 1þ kð Þ l1 � xð Þ:

Appendix 3: Generalized logistic (GLO) distribution

The cumulative distribution function of the GLO distribu-
tion with parameters ξ (location), α (scale), and k (shape) is

FðxÞ ¼ 1

1þ e�y
;

where y is defined in Appendix 1. The distribution is
bounded at xþ a

k from right (left) if k>0 (k<0). The
quantile function is

xðFÞ ¼ xþ
a 1� 1�F

F

� �k� �

k
; k 6¼ 0;

xðFÞ ¼ x� a ln
1� F

F

� �
; k ¼ 0:

L-moments are defined for −1<k<1; the first three
population L-moments are

l1 ¼ xþ a
1

k
� p

sin kp

� �
; l2 ¼ akp

sin kp
; and

l3 ¼ �kl2:

The L-moment estimators of k, α, and ξ are given by

k ¼ � l3
l2
;a ¼ l2 sin kp

kp
; and x ¼ l1 � a

1

k
� p

sin kp

� �
:

Coverage probability of bootstrap confidence intervals 359



References

Adamowski K (2000) Regional analysis of annual maximum and
partial duration flood data by nonparametric and L-moment
methods. J Hydrol 229:219–231

Ahmad MI, Sinclair CD, Werritty A (1988) Log-logistic flood
frequency analysis. J Hydrol 98:215–224

Ames DP (2006) Estimating 7Q10 confidence limits from data: a
bootstrap approach. J Water Resour Plan Manage 132:204–
208

An Y, Pandey MD (2005) A comparison of methods of extreme wind
speed estimation. J Wind Eng Ind Aerodyn 93:535–545

Anderson PL, Meerschaert MM (1998) Modeling river flows with
heavy tails. Water Resour Res 34:2271–2280

Asquith WH (1998) Depth-duration frequency of precipitation for
Texas. US Geological Survey, Water-Resources Investigations
Report 98–4044, Austin, Texas, pp 112

Bacro JN, Chaouche A (2006) Uncertainty in the estimation of
extreme rainfalls around the Mediterranean Sea: an illustration
using data from Marseille. J Hydrol Sci 51:389–405

Begueria S, Vicente-Serrano SM (2006) Mapping the hazard of
extreme rainfall by peaks over threshold extreme value analysis
and spatial regression techniques. Journal of Applied Meteorol-
ogy and Climatology 45:108–124

Brabson BB, Palutikof JP (2002) The evolution of extreme temper-
atures in the Central England temperature record. Geophys Res
Lett 29:2163. doi:10.1029/2002GL015964

Buishand TA (1991) Extreme rainfall estimation by combining data
from several sites. J Hydrol Sci 36:345–365

Carpenter J, Bithell J (2000) Bootstrap confidence intervals: when,
which, what? A practical guide for medical statisticians. Stat Med
19:1141–1164

Coles S (2001) An introduction to statistical modeling of extreme
values. Springer, London, p 208

Cox DR, Isham VS, Northrop PJ (2002) Floods: some probabilistic
and statistical approaches. Philos Trans R Soc 360:1389–1408

Cunderlik J, Ouarda TBMJ (2007) Regional flood-duration-frequency
modeling in the changing environment. J Hydrol 318:276–291

Davison AC, Hinkley DV (1997) Bootstrap methods and their
application. Cambridge University Press, Cambridge p 592

Dixon R (2002) Bootstrap resampling. In: El-Shaarawi AH, Piegorsch
WW (eds) The encyclopedia of environmetrics. Wiley, New
York, pp 212–219

Dunn PK (2001) Bootstrap confidence intervals for predicted rainfall
quantiles. Int J Climatol 21:89–94

Dupuis DJ, Field CA (1998) A comparison of confidence intervals for
generalized extreme-value distributions. J Stat Comput Simul
61:341–360

Dupuis DJ, Field CA (2004) Large wind speeds: modeling and outlier
detection. Journal of Agricultural Biological and Environmental
Statistics 9:105–121

Efron B (1979) Bootstrap methods: another look at the jackknife. Ann
Stat 7:1–26

Efron B, Tibshirani RJ (1993) An introduction to the bootstrap.
Chapman and Hall, New York

Egozcue JJ, Ramis C (2001) Bayesian hazard analysis of heavy
precipitation in eastern Spain. Int J Climatol 21:1263–1279

Farquharson FAK, Meigh JR, Sutcliffe JV (1992) Regional flood
frequency analysis in arid and semi-arid areas. J Hydrol 138:487–
501

Fitzgerald DL (2005) Analysis of extreme rainfall using the log-
logistic distribution. Stoch Env Res Risk A 19:249–257

Fowler HJ, Ekström M (2009) Multi-model ensemble estimates of
climate change impacts on UK seasonal precipitation extremes.
Int J Climatol 29:385–416

Gaál L, Kyselý J, Szolgay J (2008) Region-of-influence approach to a
frequency analysis of heavy precipitation in Slovakia. Hydrol
Earth Syst Sci 12:825–839

Gnedenko B (1943) Sur la distribution limite du terme maximum
d’une serie aleatoire. Ann Math 44:423–453

Hall MJ, van den Boogaard HFP, Fernando RC, Mynett AE
(2004) The construction of confidence intervals for frequency
analysis using resampling techniques. Hydrol Earth Syst Sci
8:235–246

Hewa GA, Wang QJ, McMahon TA, Nathan RJ, Peel MC (2007)
Generalized extreme value distribution fitted by LH moments for
low-flow frequency analysis. Water Resour Res 43:W06301.
doi:10.1029/2006WR004913

Hosking JRM (1990) L-moments: analysis and estimation of
distributions using linear combinations of order statistics. J Roy
Stat Soc 52B:105–124

Hosking JRM, Wallis JR (1997) Regional frequency analysis. An
approach based on L-moments. Cambridge University Press,
Cambridge, p 224

IH (1999) The flood estimation handbook. Institute of Hydrology,
Wallingford

Katsoulis BD, Hatzianastassiou N (2005) Analysis of hot spell
characteristics in the Greek region. Clim Res 28:229–241

Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in
hydrology. Adv Water Res 25:1287–1304

Khaliq MN, St-Hilaire A, Ouarda TBMJ, Bobee B (2005) Frequency
analysis and temporal pattern of occurrences of southern Quebec
heatwaves. Int J Climatol 25:485–504

Kharin VV, Zwiers FW (2000) Changes in the extremes in an
ensemble of transient climate simulations with a coupled
atmosphere-ocean GCM. J Clim 13:3760–3788

Kharin VV, Zwiers FW (2005) Estimating extremes in transient
climate change simulations. J Clim 18:1156–1173

Kjeldsen TR, Jones DA (2004) Sampling variance of flood
quantiles from the generalised logistic distribution estimated
using the method of L-moments. Hydrol Earth Syst Sci
8:183–190

Kochanek K, Strupczewski WG, Singh VP, Weglarczyk S (2008) The
PWM large quantile estimates of heavy tailed distributions from
samples deprived of their largest element. J Hydrol Sci 53:367–
386

Kroll CN, Vogel RM (2002) Probability distribution of low stream-
flow series in the United States. J Hydrol Eng 7:137–146

Kumar R, Chatterjee C (2005) Regional flood frequency analysis
using L-moments for North Brahmaputra region of India. J
Hydrol Eng 10:1–7

Kyselý J (2002) Comparison of extremes in GCM-simulated,
downscaled and observed central-European temperature series.
Clim Res 20:211–222

Kyselý J (2008) A cautionary note on the use of nonparametric
bootstrap for estimating uncertainties in extreme value models.
Journal of Applied Meteorology and Climatology 47:3236–3251

Kyselý J (2009) Trends in heavy precipitation in the Czech Republic
over 1961–2005. Int J Climatol. doi:10.1002/joc.1784

Kyselý J, Beranová R (2009) Climate change effects on extreme
precipitation in central Europe: uncertainties of scenarios based
on regional climate models. Theor Appl Climatol 95:361–374

Kyselý J, Picek J (2007) Regional growth curves and improved design
value estimates of extreme precipitation events in the Czech
Republic. Clim Res 33:243–255

Kyselý J, Beranová R, Picek J, Štěpánek P (2008) Simulation of
summer temperature extremes over the Czech Republic in
regional climate models. Meteorol Z 17:645–661

Lamoureux S (2000) Five centuries of interannual sediment yield and
rainfall-induced erosion in the Canadian High Arctic recorded in
lacustrine varves. Water Resour Res 36:309–318

360 J. Kyselý

http://dx.doi.org/10.1029/2002GL015964
http://dx.doi.org/10.1029/2006WR004913
http://dx.doi.org/10.1002/joc.1784


Lana X, Burgueno A, Martinez MD, Serra C (2006) Statistical
distributions and sampling strategies for the analysis of extreme
dry spells in Catalonia (NE Spain). J Hydrol 324:94–114

Lee SH, Maeng SJ (2003) Frequency analysis of extreme rainfall
using L-moments. Irrig Drain 52:219–230

Lu L-H, Stedinger JR (1992) Sampling variance of normalized GEV/
PWM quantile estimators and a regional homogeneity test. J
Hydrol 138:223–245

Martins ES, Stedinger JR (2000) Generalized maximum-likelihood
generalized extreme-value quantile estimators for hydrologic
data. Water Resour Res 36:737–744

Onoz B, Bayazit M (1999) Generalized extreme value-PWM model
for distribution of minimum streamflows. J Hydrol Eng 4:289–
292

Overeem A, Buishand A, Holleman I (2008) Rainfall depth-duration-
frequency curves and their uncertainties. J Hydrol 348:124–134

Pandey MD, van Gelder PHAJM, Vrijling JK (2004) Dutch case
studies of the estimation of extreme quantiles and associated
uncertainty by bootstrap simulations. Environmetrics 15:687–699

Prudhomme C, Jakob D, Svensson C (2003) Uncertainty and climate
change impact on the flood regime of small UK catchments. J
Hydrol 277:1–23

Semmler T, Jacob D (2004) Modeling extreme precipitation events—a
climate change simulation for Europe. Global Planet Change
44:119–127

Shoukri MM, Mian IUM, Tracy DS (1988) Sampling properties of
estimators of the log-logistic distribution with application to
Canadian precipitation data. The Canadian Journal of Statistics
16:223–236

Tajvidi N (2003) Confidence intervals and accuracy estimation for
heavy-tailed generalized Pareto distributions. Extremes 6:111–123

Twardosz R (2009) Probabilistic model of maximum precipitation
depths for Kraków (southern Poland, 1886–2002). Theor Appl
Climatol. doi:10.1007/s00704-008-0087-4

van den Brink HW, Koennen GP, Opsteegh JD (2004) Statistics of
synoptic-scale wind speeds in ensemble simulations of current
and future climate. J Clim 17:4564–4574

Voss R, May W, Roeckner E (2002) Enhanced resolution modelling
study on anthropogenic climate change: changes in extremes of
the hydrological cycle. Int J Climatol 22:755–777

Zin WZW, Jemain AZ, Ibrahim K (2009) The best fitting distribution
of annual maximum rainfall in Peninsular Malaysia based on
methods of L-moment and LQ-moment. Theor Appl Climatol
96:337–344

Coverage probability of bootstrap confidence intervals 361

http://dx.doi.org/10.1007/s00704-008-0087-4

	Coverage probability of bootstrap confidence intervals in heavy-tailed frequency models, with application to precipitation data
	Abstract
	Introduction
	Methods
	Fitted model
	Description of the parent models and the simulation experiments
	Other settings of the simulation procedure

	Results
	Experiments E1 (GEV fitted to GEV-distributed data)
	Experiments E2 (GP fitted to GP-distributed data)
	Experiments E3 (GEV fitted to GLO-distributed data)
	Experiments E4 (GEV fitted to double-populated �GEV–GLO data)

	Application to observed precipitation data
	Discussion
	Conclusions
	Appendix 1: Generalized extreme value (GEV) distribution
	Appendix 2: Generalized Pareto (GP) distribution
	Appendix 3: Generalized logistic (GLO) distribution
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


