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Summary

Leaf wetness duration (LWD) is related to plant disease
occurrence and is therefore a key parameter in agromete-
orology. As LWD is seldom measured at standard weather
stations, it must be estimated in order to ensure the effect-
iveness of warning systems and the scheduling of chemical
disease control. Among the models used to estimate LWD,
those that use physical principles of dew formation and
dew and=or rain evaporation have shown good portabili-
ty and sufficiently accurate results for operational use.
However, the requirement of net radiation (Rn) is a dis-
advantage for operational physical models, since this
variable is usually not measured over crops or even at
standard weather stations. With the objective of proposing
a solution for this problem, this study has evaluated the
ability of four models to estimate hourly Rn and their
impact on LWD estimates using a Penman-Monteith ap-
proach. A field experiment was carried out in Elora,
Ontario, Canada, with measurements of LWD, Rn and other
meteorological variables over mowed turfgrass for a 58 day
period during the growing season of 2003. Four models for
estimating hourly Rn based on different combinations of
incoming solar radiation (Rg), air temperature (T), relative
humidity (RH), cloud cover (CC) and cloud height (CH),
were evaluated. Measured and estimated hourly Rn values
were applied in a Penman-Monteith model to estimate
LWD. Correlating measured and estimated Rn, we observed
that all models performed well in terms of estimating
hourly Rn. However, when cloud data were used the models
overestimated positive Rn and underestimated negative Rn.
When only Rg and T were used to estimate hourly Rn, the

model underestimated positive Rn and no tendency was ob-
served for negative Rn. The best performance was obtained
with Model I, which presented, in general, the smallest
mean absolute error (MAE) and the highest C-index. When
measured LWD was compared to the Penman-Monteith
LWD, calculated with measured and estimated Rn, few
differences were observed. Both precision and accuracy
were high, with the slopes of the relationships ranging
from 0.96 to 1.02 and R2 from 0.85 to 0.92, resulting in
C-indices between 0.87 and 0.93. The LWD mean abso-
lute errors associated with Rn estimates were between 1.0
and 1.5 h, which is sufficient for use in plant disease man-
agement schemes.

1. Introduction

Net radiation (Rn) is the energy available at an un-
derlying surface, which is the result of the budget
between total upward and downward radiation
(shortwave and longwave) fluxes (Rosenberg
et al., 1983). It is the fundamental parameter that
governs the climate of the lower atmosphere,
being the driving force for several processes,
such as evapotranspiration, air and soil heating,
and photosynthesis. However, Rn is not strictly a
macroclimatological parameter, since it depends
on the temperature, emissivity and reflectivity of
a surface (Monteith and Unsworth, 1990).



A general form used to express Rn for a con-
tinuous horizontal surface, which receives radia-
tion only from above, can be stated as,

Rn ¼ ð1 � �ÞRgþ Ld � Lu ð1Þ
where � is the surface reflection coefficient
(albedo), which depends on the surface optical
characteristics, Rg is the incoming solar radiation
(shortwave), and Ld and Lu are the downward
and upward longwave radiations, respectively.
Lu depends on surface temperature and emissiv-
ity, while Ld is influenced by atmospheric tem-
perature, humidity, and cloud cover. According
to Monteith and Unsworth (1990), under overcast
conditions Ld�Lu so Rn is almost zero at night
and around [(1 � �) Rg] during the day.

Rn is important for studies focussed on the sur-
face energy balance, where its magnitude is main-
ly related to the sensible and latent heat fluxes
(Jegede, 1997; Kalthoff et al., 2006). In agro-
meteorology, Rn is a common parameter used
to estimate reference evapotranspiration and leaf
wetness duration from physical models (Allen
et al., 1998; Huber and Gillespie, 1992). Despite
its importance in agrometeorological studies and
the relatively simple instrumentation needed for
its measurement, Rn is not measured frequently
and few historic data are available in the majority
of standard meteorological station networks. One
option is to solve the lack of data by modelling Rn
based on surface weather data, and cloud cover
and height, in hybrid models involving physical
principles, empirical relationships, and statistical
techniques (Pedro, 1980; Jegede, 1997; Iziomon
et al., 2000; Madeira et al., 2002).

For the estimation of reference evapotranspi-
ration by physical models, daily Rn data are suf-
ficient. Models for such estimates are relatively
simple and normally perform very well under
several climatic conditions (Allen et al., 1998;
Pereira et al., 1998, 2002). However, for the esti-
mation of leaf wetness duration using physical
models, such as the Penman-Monteith approach,
hourly Rn data are required. These data are un-
common and are only measured at a few loca-
tions. When hourly Rn data are unavailable for
use in physical leaf wetness duration models, they
can be estimated based on simplified relation-
ships (Madeira et al., 2002).

Leaf wetness duration is a very important agro-
meteorological parameter, influencing the devel-

opment of several bacterial and fungal plant
diseases, so its estimation is fundamental to the
efficient performance of weather-based plant-
disease management schemes which rationalize
the timing of chemical controls (Huber and
Gillespie, 1992). As leaf wetness duration is not
widely available, several methods have been de-
veloped to estimate LWD from measured me-
teorological data (Pedro and Gillespie, 1982a, b;
Huber and Gillespie, 1992; Gleason et al., 1994;
Rao et al., 1998; Sentelhas et al., 2004a). Methods
based on the physical principals of dew deposi-
tion and dew or intercepted rain evaporation have
shown good portability and sufficiently accurate
results for operational use in plant disease warn-
ing schemes (Pedro and Gillespie, 1982a, b;
Gillespie and Barr, 1984; Rao et al., 1998; Luo
and Goudriaan, 1999, 2000). Among the physical
models used to estimate wetness deposition and
evaporation, those based on the Penman-Monteith
equation (Monteith and Unsworth, 1990) have
some advantages over those based on the energy
balance approach, e.g., they do not require a leaf
temperature estimate (Rao et al., 1998), which
makes them easily applicable using data from
nearby weather stations (Sentelhas et al., 2006).

Considering the importance of leaf wetness du-
ration for plant disease warning systems and the
lack of Rn data available to run physical models
which estimate LWD, our study aimed to eval-
uate the performance of four methods used to
estimate hourly Rn and their impact on leaf wet-
ness duration estimates with a Penman-Monteith
model.

2. Material and methods

2.1 Experimental site and measurements

The field experiment was carried out in Elora,
Ontario, Canada (43�490N, 80�350W, elevation
376 m above M.S.L.), in a turfgrass field for a
58 day period during the growing season of 2003
(from July 28 to October 5). Twelve days were
removed from the analysis because of problems
with the leaf wetness sensor.

The following meteorological variables were
measured: air temperature – T and relative hu-
midity – RH (T and RH probe, Vaisalla, model
HMP35A); incoming solar radiation – Rg and net
radiation – Rn (CNR1 net radiometer, Kipp &
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Zonen); wind speed – U (Met-One anemometer,
model 014A); rainfall – R (tipping bucket rain
gauge, resolution of 0.254 mm), and leaf wetness
duration – LWD (Model 237, Campbell Scientific).
T, RH, and U sensors were installed at 1.9 m
above the turfgrass while Rg and Rn sensors were
located at a height of 1.6 m. The rain gauge was
installed on the ground, with the top of the mea-
suring orifice at 0.8 m. The LWD sensor was
deployed at 1.9 m height over turfgrass, with
an inclination angle of 30� facing north. This
‘‘mock leaf’’ sensor was painted with two coats of
off-white latex paint to increase its ability to de-
tect small amounts of wetness, and heat-treated
(60–70 �C for 12 h) to remove or deactivate
hygroscopic components of the paint (Sentelhas
et al., 2004b). The threshold logger reading for
the LWD sensor was determined in a laboratory,
and values smaller than or equal to this threshold
(generally about 9000 k�) were considered wet
while greater values were considered dry.

All sensors were connected to a datalogger
(model 21X, Campbell Scientific) programmed to
measure each variable each second and to store
the averages and=or totals at the end of each
15-minute interval. Later, 15-minute data were
converted to hourly data. Hourly cloud data (%
of cover and height) were obtained from obser-
vations at Toronto International Airport, about
60 km east of Elora.

2.2 Net radiation models

Net radiation was estimated using four different
models. These models differ from each other
in terms of the complexity of the required me-
teorological data. The following models were
evaluated.

2.2.1 Model I

Model I is based on the physical principles of
radiation balance and empirical coefficients pres-
ent in the literature. This model was parameter-
ized by Pedro (1980) and is the most complex
among the models evaluated in our study. It as-
sumes that the turf is near air temperature, and
has an albedo of 30% (solar absorptivity¼ 0.7)
and emissivity of 0.95. It requires the following
meteorological data: Rg, T, RH (to obtain air va-
pour pressure – ea), the fraction of the sky covered

by clouds (CC) and cloud height (CH), which are
combined in the following equations.

Rn ¼ 0:7 �Rgþ 0:95 �RLc� 0:95 � 5:67 � 10�8

� ðT þ 273Þ4
2

where Rn and Rg are in Wm�2, T is in �C,
and RLc is the radiation emitted by the atmo-
sphere, adjusted by the fraction of cloud cover,
in Wm�2:

RLc ¼ RL � ð1 þ K �CC2Þ ð3Þ

where RL is the radiation emitted by the atmo-
sphere under clear sky conditions (Eq. 4) and
K is a coefficient which depends on the cloud
height (Eq. 5):

RL ¼ 5:67 � 10�8 � ðT þ 273Þ4

� 0:82 � 0:25EXPð�0:2162 � eaÞ½ � ð4Þ

K ¼ 0:2462 � 0:02 �CH ðK ¼ 0 for clear skyÞ
ð5Þ

where: ea is in hPa and CH in km.

2.2.2 Model II

Model II was parameterized by Madeira et al.
(2002) and is based on estimated sky temperature:

a) Temperature of cloudless skies (Tclear)

Tclear ¼ T � 20 �C ð6Þ
b) Temperature of cloudy skies (Tcloudy)

Tcloudy ¼ T � 15 �C ðfor high altitude cloudsÞ
ð7Þ

Tcloudy ¼ T � 10 �C ðfor low altitude cloudsÞ
ð8Þ

In Equations 7 and 8, cloud heights were classi-
fied as high when CH>3 km and as low when
CH�3 km. From these temperatures, downward
longwave radiation (Ld) was calculated by:

Ld ¼ ½5:67 � 10�8 � 1 � CCð Þ � 273 þ Tclearð Þ4�
þ ½5:67 � 10�8 �CC � 273 þ Tcloudy

� �4�
ð9Þ

The upward longwave radiation (Lu) was cal-
culated assuming the sensor was emitting as a
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blackbody at a temperature similar to the dew
point temperature (Td):

Lu ¼ 5:67 � 10�8 � ð273 þ TdÞ4 ð10Þ
Finally, Rn was calculated using Eq. (1), with

the same total shortwave absorptivity considered
in Model I:

Rn ¼ 0:7 �Rgþ Ld � Lu ð11Þ

2.2.3 Model III

Model III was also parameterized by Madeira
et al. (2002) and is based on different sky appar-
ent emissivities (") for clear skies (Gates, 1980):

"clear ¼ 0:674 þ 0:007 � T ð12Þ
and for overcast skies (Monteith and Unsworth,
1990):

"cloudy ¼ 1 � CCð Þ � "clear

þ 1 � 1 � "clearð Þ � 4 ��T

T

� �
ð13Þ

where �T is the difference between cloud base
temperature and air temperature, which was as-
sumed to be 5 �C. Ld was calculated using the
Stefan-Boltzman equation, as follows:

Ld ¼ 5:67 � 10�8 � "cloudy � 273 þ Tð Þ4 ð14Þ
and Lu and Rn were calculated using Equations
10 and 11.

2.2.4 Model IV

Model IV is the simplest model evaluated. It was
parameterized for mid-latitudes by Iziomon et al.
(2000) and is based on Rg and T data. Net short-
wave radiation is given as a function of Rg and
�, and net longwave radiation is given as a func-
tion of T, as follows:

Rn ¼ 0:837 � Rg � 0:77ð Þ � 0:0275

� 5:67 � 10�8 � 273 þ Tð Þ4
h i

� 37:7 ð15Þ

The empirical coefficients used in Eq. (15)
were the average of the coefficients obtained by
Iziomon et al. (2000) for three locations around
latitude 47�550N. No change of the coefficients in
the first term of Eq. (15) was made in this model,
considering its empiricism, but their product
(0.65) is similar to the value used in the other
models (0.7).

2.3 Penman-Monteith model to estimate leaf
wetness duration

The Penman-Monteith model was applied to esti-
mate the latent heat flux (LE), which was used to
determine the period of wetness for a sensor over
turfgrass (Rao et al., 1998; Sentelhas et al., 2006).
The latent heat flux (LE) for a mock leaf was
calculated with the following equation (Monteith
and Unsworth, 1990):

LE ¼ �
s Rnþ 1200ðesTa�eaÞ

rb

h in o
ðsþ ��Þ ð16Þ

where s¼ the slope of the saturation vapour pres-
sure curve (hPa �C�1), Rn¼ net radiation of the
mock leaf, esTa¼ the saturated vapour pressure at
the weather station air temperature (hPa), ea¼
the actual air vapour pressure (hPa), �� ¼ the
modified psychrometer constant (assumed to be
0.64 kPa K�1 with moisture and heat transfer
for both sides of the sensor during dew, and
1.28 kPa K�1 for evaporation from one side of
a sensor after rain), and rb the boundary layer
resistance for heat transfer (sm�1), given by
Monteith and Unsworth (1990):

rb ¼ 307
d

U

� �1=2

ð17Þ

where d¼ the effective dimension of the mock
leaf (LWD flat plate sensor), equal to 0.07 m, and
U¼ the wind speed at the weather station (m s�1).
The model divides rb by 2, considering two sides
of the sensor in parallel. The maximum holding
capacity of the mock leaf was considered to be
0.8 m for dew. When there is rainfall, it initiates
or increases wetness and is added to the positive
LE reservoir up to 0.6 mm. The model simply
treats rain interception using measured rainfall
amount and a fixed maximum amount of water
in the rain reservoir (0.6 mm). This simplification
ignores the effect of rainfall rate on interception,
but does not lead to serious errors since the max-
imum intercepted water amount is very small.

Using the same procedure adopted by Pedro and
Gillespie (1982a, b), wetness onset and dry-off in
this model was considered as:

a) wetness onset occurs when LE>0 or rain
begins;

b) wetness dry-off occurs when the condensation
and=or rain accumulated by the model is con-
sumed by an equivalent amount of evaporation.
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LWD was computed considering the number
of hours, between 13:00 h of day n and 12:00 h
of day nþ 1, when the model estimated the pres-
ence of wetness. Daily periods were started at
13:00 rather than midnight to avoid splitting dew
events.

2.4 Data analysis

Estimated and measured hourly Rn data were
compared by regression analysis, and the perfor-
mance of the models was also evaluated using
the following statistical indices and measures of
errors. The coefficient of determination (R2) indi-
cates the precision of the estimates in relation to
measured Rn, the agreement index (D) indicates
the accuracy of the estimates in relation to mea-
sured Rn (Willmott et al., 1985), ranging from 0
(without agreement) to 1 (perfect agreement), the
mean error (ME) describes the direction of the
error bias, the mean absolute error (MAE) indi-
cates the magnitude of the average error, and the
absolute maximum error (MAXE):

D ¼ 1:0 �
P

ðOi � PiÞ2P
ðjPi � Omj þ jOi � OmjÞ2

( )

ð18Þ

ME ¼
P

ðPi � OiÞ
N

ð19Þ

MAE ¼
P

ðjPi � OijÞ
N

ð20Þ

MAXE ¼ MAXðjPi � OijÞ ð21Þ
where Pi is the estimated Rn, Oi the measured
Rn, and Om the average of measured Rn. Another
index, named the confidence index – C (Camargo
and Sentelhas, 1997), was also used. This index is
obtained by multiplying together D, a measure-
ment of accuracy, and the coefficient of corre-
lation (r), a measurement of precision. C-values
range from 0, for poor confidence, to 1 for very
good confidence.

Two characteristic conditions, one with clear
sky (when Rn� 400 Wm�2 between 11:00 and
15:00), and another with overcast weather (when
Rn�200 Wm�2 between 11:00 and 15:00), were
also used to illustrate the ability of the models
to simulate hourly Rn throughout the day. Five
days of each condition were selected from the

database, considering that just five days of over-
cast weather were available. From these days,
just two, one with a clear sky (30=07=2003) and
another with an overcast sky (03=08=2003), were
presented graphically.

The models used to estimate Rn were also
evaluated by considering their impact on LWD
estimates from the Penman-Monteith equation.
Measured LWD data were correlated with LWD
values obtained with the Penman-Monteith mod-
el using hourly Rn input values measured with
CNR1 and values estimated by the four models.
For these evaluations the same statistical indices
and errors presented in Equations 18–21, and the
C-index were used. In this case, Pi is estimated
LWD, Oi is the measured LWD, and Om is the
average of measured LWD.

3. Results

3.1 Performance of hourly Rn models

The relationships between measured and estimat-
ed hourly Rn are presented in Fig. 1. All methods
estimated hourly Rn quite well, however Models
I and IV presented less data dispersion than
Models II and III. In general, the models based
on cloud data showed a tendency to overestimate
positive Rn and to underestimate negative Rn.
However, when only Rg and T data were used
to estimate hourly Rn (Model IV), the tendency
was to underestimate positive Rn; while for neg-
ative values no tendency was observed.

Analyzing only negative Rn, all models es-
timated values with a high dispersion (Fig. 1).
Models I and IV presented a baseline for mini-
mum Rn around �90 Wm�2 and �50 Wm�2,
respectively, while Models II and III did not pres-
ent a clear baseline.

Considering the errors and indices presented in
Table 1, Models I and II presented a very slight
hourly Rn overestimation (ME of þ1.5 and
þ0.2 Wm�2, respectively), and Models III and
IV showed a moderate underestimation (ME of
�10.0 and �17.1 Wm�2). The mean absolute er-
ror (MAE) ranged from 20.3 Wm�2 for Model I
to 41.9 Wm�2 for Model III. The maximum ab-
solute error (MAXE) had the same tendency, rang-
ing from 97.7 Wm�2 for Model I to 166.5 Wm�2

for Model III. Considering the precision and ac-
curacy of the estimates, it is clear that Model I,
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the most complex, presented the best perfor-
mance, with R2¼ 0.9844 and D¼ 0.9949, re-
sulting in a C-index of 0.9871, which is classified
by Camargo and Sentelhas (1997) as very good
performance. Models II and IV also showed

good performance, with a C-index around 0.978.
Model III had the worst performance, but still
showed high indices of precision (R2¼ 0.9554)
and accuracy (D¼ 0.9818), resulting in a C-index
of 0.9596.

To illustrate the performance of the models
when estimating hourly Rn under contrasting
weather conditions, two days – one with clear
sky (30=07=2003) and another overcast sky
(03=08=2003) – were chosen (Fig. 2). Again,
Model I presented the best performance, estimat-
ing hourly Rn with high accuracy and precision
for both days (Fig. 2a, b). For a clear sky day,
Models II and III overestimated hourly Rn during
the day and underestimated it at night (Fig. 2c, e),
while Model IV had very good performance all
day except for the hours around midday, when
Rn was underestimated (Fig. 2g). For overcast
weather, Models II, III, and IV underestimated
hourly Rn throughout the day (Fig. 2d, f, and h).
This is expected for Model IV, which does not

Fig. 1. Relationship between measured and estimated hourly net radiation (Rn), using four different estimation models: a)
Model I – Pedro (1980), b) Model II – Madeira et al. (2002), c) Model III – Madeira et al. (2002), and d) Model IV – Iziomon
et al. (2000), for Elora, Canada, during the summer of 2003

Table 1. Mean (ME), mean absolute (MAE) and maximum
(MAXE) errors for hourly Rn estimated by Models I–IV.
Coefficients of determination (R2), and agreement (D) and
confidence (C) indices are also shown for the relationship
between measured and estimated hourly Rn

Error=
index

Hourly Rn Models

I II III IV

ME þ1.47 þ0.18 �9.99 �17.14
MAE 20.33 27.89 41.86 27.93
MAXE 97.72 103.05 166.50 102.64

R2 0.9844 0.9737 0.9554 0.9747
D 0.9949 0.9913 0.9818 0.9899
C 0.9871 0.9782 0.9596 0.9773
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take into account cloud data, but not for Models II
and III, since they use cloud data in their for-
mulation. To reinforce the models’ performance,
statistical errors and indices were determined us-

ing five days for each condition. For clear sky
conditions, the smallest MAEs were observed for
Models I and IV, 21.60 and 17.36 Wm�2, respec-
tively; which agrees with the highest C-indices

Fig. 2. Hourly variation of net radia-
tion flux (Rn) as measured by CNR1
sensor and estimated by Models I–
IV for two characteristic days: under
clear sky, with more than 400 Wm�2

between 11:00 and 15:00 (a, c, e, g),
and under overcast sky, with less
than 200 Wm�2 between 11:00 and
15:00 (b, d, f, h), at Elora, Canada,
during the summer of 2003
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of 0.9883 and 0.9919, respectively (Table 2). For
overcast conditions, the smallest MAEs were ob-
tained when Models I and II were used. For this
case, both precision and accuracy of the esti-
mates were smaller than for clear sky conditions,
with a C-index no greater than 0.92 (Table 2).

An overall analysis showed that all evaluated
models had performance varying from good to
very good, despite the differences presented above.
The magnitude of the errors presented in Tables 1
and 2 were expected, since models are only a rep-
resentation of the real processes involved in the
radiation budget. However, the magnitude of these
errors must be analyzed for their impact on each
kind of model that uses hourly Rn as input, such
as estimates of ET or LWD.

3.2 Impact of hourly Rn estimates
on Penman-Monteith LWD

LWD was estimated by the Penman-Monteith
model using hourly Rn input data measured by
the CNR1 sensor, and data estimated by the four
Rn models evaluated previously. Use of the mea-
sured and modelled net radiation values over turf
as good net radiation estimates for the wetness sen-
sor in the Penman-Monteith approach is justified

as follows. The sensor was designed to have a
solar absorptivity similar to that of a single leaf,
which is about 50%. So, for the top surface the
sensor absorbs 0.5Rg and at the bottom it absorbs
50% of the reflected shortwave radiation. For a
grass surface with albedo (�) of 30%, the sensor
absorbs 0.5� Rg at the bottom plus 0.5Rg at the
top, which we round off to a total absorption of
0.7Rg. The longwave exchange between the bot-
tom side of the sensor and the turf is neglected
since the temperature and emissivity of the sensor
and the underlying grass are similar. Therefore,
sensor net radiation is very similar to that of mea-
sured turf net radiation, and to the model as ex-
pressed in Eq. (2).

Estimated LWD was correlated with measured
LWD and the results are presented in Fig. 3. The
relationships between measured and estimated
LWD showed that the Penman-Monteith model
estimated LWD with high accuracy and precision,
independent of the source of hourly Rn data, with
slopes ranging from 0.95 to 1.02 and R2 values
from 0.8468 to 0.9245. Differences observed
among LWD estimates with measured and esti-
mated hourly Rn were small, and the best per-
formance resulted from hourly Rn estimated by
Models I and II (Fig. 3b, c), with ME of �0.41 h
and �0.21 h, MAE of 1.0 h and 1.07 h, and
MAXE of 2 h and 3 h, respectively (Table 3).
These errors are of the same magnitude as for
LWD estimated with measured hourly Rn (Fig. 3a
and Table 3).

When LWD was estimated using hourly Rn
data from Model I (Fig. 3b), a better precision
of the estimates was obtained (R2 ¼ 0.9245),
but with an underestimation of around 3.3%.
When LWD was estimated with Rn data from
Model III, the overestimation was only 1.7%,
but with smaller precision, R2¼ 0.8683 (Fig. 3d).
The LWD errors associated with Model III were
higher than for Models I and II, with MAE of
1.29 h and MAXE of 6.0 h, the biggest errors
among all the models evaluated (Table 3).

LWD estimated with hourly Rn data from
Model IV showed the biggest MAE, 1.53 h,
but the MAXE¼ 4 h was very close to the value
obtained when LWD was estimated with Rn from
Model II and the CNR1 sensor. The use of Rn
from Model IV resulted in an underestimation of
4.3%, with the highest dispersion, R2¼ 0.8468
(Fig. 3e). For Model IV, such performance was

Table 2. Mean (ME), mean absolute (MAE) and maximum
(MAXE) errors for hourly Rn estimated by Models I–IV.
Coefficient of determination (R2), and agreement (D) and
confidence (C) indices are also shown for the relationship
between measured and estimated hourly Rn, for five days
with clear and overcast sky conditions

Error=
index

Hourly Rn Models

I II III IV

Clear sky

ME þ8.40 þ17.99 þ23.18 þ0.50
MAE 21.60 31.43 44.85 17.36
MAXE 97.72 95.92 118.90 �66.18

R2 0.9919 0.9874 0.9763 0.9948
D 0.9964 0.9932 0.9869 0.9971
C 0.9883 0.9807 0.9635 0.9919

Overcast

ME �2.11 �27.89 �62.22 �38.78
MAE 12.57 30.69 62.30 40.49
MAXE �53.55 �65.40 �104.85 �74.84

R2 0.9313 0.8915 0.8538 0.8809
D 0.9799 0.9189 0.7602 0.8478
C 0.9125 0.8192 0.6500 0.7468
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expected considering that it only uses T and Rg
data as inputs.

4. Discussion

Net radiation is a very complex parameter since
it is influenced by several factors, such as incom-
ing solar radiation, atmospheric temperature and
humidity, surface temperature, emissivity and re-
flectivity (albedo), and cloud cover, type and height
(Rosenberg et al., 1983; Monteith and Unsworth,

1990). Its modelling is also complex, especially
for estimating hourly data. In this case, the short-
wave radiation budget is not very complex, re-
quiring only incoming solar radiation and albedo
data. In contrast, the longwave radiation budget
normally requires atmospheric temperature and
humidity, surface temperature and emissivity, and
cloud data. From these, the two most difficult to
obtain are cloud data, which are only available at
airports and sometimes do not represent nearby
regions; and atmospheric and surface temperatures,

Fig. 3. Relationship between LWD measured at 1.9 m above the weather
station turfgrass and LWD estimated for the same height by a Penman-
Monteith model, using hourly Rn input data that were measured (a) and
estimated by Models I (b), II (c), III (d), and IV (e), for Elora, Canada,
during the summer of 2003
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normally represented by screen air temperature
(Rosenberg et al., 1983).

The purpose of this study was to evaluate the
performance of four models of varying com-
plexity to estimate hourly Rn: the most complex
model uses Rg, T, RH, CC and CH data and the
simplest is based only on Rg and T; and to evaluate
the impact of estimated Rn on LWD modelling
with a Penman-Monteith equation.

Our results have shown that all evaluated mod-
els estimated hourly Rn quite well, with similar
performances as obtained by Iziomon et al. (2000)
with empirical models in Germany; and by Jegede
(1997), with the Fourier transform technique in
Nigeria. The C-index, which expresses a measure-
ment of both precision and accuracy, was above
0.95 for all models, representing a very high con-
fidence in the estimates. However, when two char-
acteristic conditions (clear and overcast skies)
were evaluated, it was observed that the models
estimated hourly Rn better in clear sky conditions,
with a C-index ranging from 0.96 to 0.99, than in
overcast conditions, with a C-index varying be-
tween 0.65 and 0.92. The poorer performance
of the models in overcast weather was expected,
since the expressions which account for clouds in
the longwave budget are based on empirical re-
lationships and the cloud data were obtained for
a location approximately 60 km away from the
field site. Even the models which consider cloud
data in detail, mainly Models II and III, present-
ed errors which are related to different effects of
distinct types of clouds covering the same amount

of sky and to imprecision in the measurements
of their heights. The use of air temperature to
represent surface and atmospheric temperature
can also be another source of systematic errors
(Rosenberg et al., 1983), but these errors could
apply to both sky conditions.

When the impact of hourly Rn data on LWD
estimates was evaluated, results showed that the
source of the hourly Rn data had only a small
influence on the performance of the Penman-
Monteith model. MAE values ranged from 1.0 to
1.5 h, which are smaller than the values of 1.8 h
obtained with the same Penman-Monteith mod-
el by Rao et al. (1998), and of 2 h obtained by
Sentelhas et al. (2004a), when measured hourly
Rn was used. Pedro and Gillespie (1982a, b),
using Model I to estimate hourly Rn and a physi-
cal model, based on an energy balance approach,
to estimate LWD, found MAE of less than 1 h.
Madeira et al. (2002) found mean absolute errors
of around 1.5 and 1.6 h when LWD was esti-
mated with an energy balance model having as
hourly Rn data those estimated by Models II and
III, respectively. Even the use of a very simple
Model IV to estimate hourly Rn produced good
LWD estimates. However, as this simple Rn
model is based on empirical coefficients, local
adjustments could be required for lower latitudes.

Results presented in this study are important to
show that methods based on the physical princi-
pals of dew deposition and dew or rain evapora-
tion, which have good portability and accurate
results, can be used to run weather-based plant-
disease management schemes, even in places
where only a modest meteorological data set is
available.

5. Conclusions

It has been demonstrated that hourly Rn can be
estimated from meteorological data with high pre-
cision and accuracy for Canadian mid-latitudes.
The best performance was obtained with Model I,
which presented, in general, the smallest MAE
and the highest C-index. For the simplest Rn
model, based on T and Rg, the empirical coeffi-
cients of the equation may require re-evaluation
for new sites at lower latitudes. The use of esti-
mated hourly Rn from the four evaluated models
did not significantly affect LWD estimated by a
Penman-Monteith model, although Model I gave

Table 3. Mean (ME), mean absolute (MAE) and maximum
(MAXE) errors for leaf wetness duration (LWD) estimated
with the Penman-Monteith equation using hourly Rn input
data that were measured and data estimated by Models I–IV.
Coefficients of determination (R2), and agreement (D) and
confidence (C) indices are also shown for the relationship
between measured and estimated LWD

Error=
index

Hourly Rn input

Measured Model
I

Model
II

Model
III

Model
IV

ME �0.03 �0.41 �0.21 þ0.26 �0.60
MAE 0.93 1.00 1.07 1.29 1.53
MAXE 3.00 2.00 3.00 6.00 4.00

R2 0.9180 0.9245 0.9140 0.8683 0.8468
D 0.9763 0.9559 0.9739 0.9575 0.9505
C 0.9354 0.9191 0.9311 0.8922 0.8747
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the best performance. Mean absolute errors for
LWD estimated with hourly Rn from the models
ranged from 1.0 when Model I was used, to 1.5 h
when Rn data was estimated by Model IV, which
are accurate enough to be used in weather-based
plant-disease warning systems which use only
hourly data from nearby standard weather stations.
Therefore, a Penman-Monteith model can be
used to estimate LWD with high confidence even
in places were a modest hourly weather data set
(T, RH, Rg and U) is available.
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