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Abstract
Radar data assimilation is an important method to improve the performance of numerical models in severe convective 
weather. In this study, the statistical relationships between the radar reflectivity intensity and the latent heat release intensity 
and humidity are calculated based on Weather Research and Forecasting (WRF) model forecast results. Then, they are used 
to convert the radar reflectivity observation data into the virtual observation of the temperature and humidity. Finally, these 
data are continuously assimilated to the initial field of the WRF model using the ensemble Kalman filter to simulate a warm-
sector squall line process. The results show that the temperature and humidity in the strong radar echo area are adjusted after 
the radar reflectivity data are assimilated, and new convective echoes can be excited quickly in a short time. The indirect 
assimilation of the radar reflectivity data can effectively improve the forecast skills of both the warm-sector squall line and 
the influence time of the squall line. After the assimilation, the forecast results of the influence time of the squall line on the 
downstream regions are basically consistent with the observations. At the same time, the forecast skills of the squall line 
intensity and the surface gust intensity are improved. The forecast results of the experiments with different influence radii 
are all better than those without radar reflectivity assimilation. When the influence radius is smaller, the improvement lasts 
longer. When the influence radius is larger, the improvement is more significant in the now-casting period with a shorter 
duration. The simulation skill of this squall line is high with an influence radius of 25 km. In addition, the assimilation of 
the virtual observation of both the temperature and humidity can improve the forecast skill of the squall line, especially the 
virtual observation with the assimilation of the humidity.

1  Introduction

Doppler weather radars can monitor the occurrence and 
the location of thunderstorms in time. How to improve the 
forecast skill of the numerical model for thunderstorms and 
other severe convective weather by quantitatively applying 
radar observation data to numerical forecasts has always 
been a hot topic. However, there are still many problems 

with the application of radar data in operational weather 
forecasts (Fabry and Meunier 2020). The observation opera-
tor of radar radial wind is relatively mature, and it has been 
widely tested and used in various assimilation methods (Xue 
et al. 2000; Gao et al. 2004; Xiao et al. 2005; Kuo et al. 
2005; Zhao and Xue 2009; Montmerle and Faccani 2009; 
Wen and Zhang 2012; Chen et al. 2014; Shen and Min 2016; 
Shen et al. 2017a, b, 2019a, b).

The observation operator of radar reflectivity is more 
complicated, and there are many assimilation methods of 
the radar reflectivity (Zhang 1999; Snyde and Zhang 2003; 
Zhang et al. 2004; Sun 2005; Tong and Xue 2005; Ander-
son and Collins 2007; Aksoy et al. 2009, 2010; Caumont 
et al. 2010; Takemi 2010; Dowell et al. 2011; Sun and Wang 
2013; Wang et al. 2013a, b; Wattrelot et al. 2014; Gao and 
Stensrud 2012, 2014; Gao et al. 2016; Wang and Wang 
2017), including cloud analysis method, latent heat forcing 
method, variational assimilation and ensemble Kalman filter 
(EnKF). Radar reflectivity observation information was used 
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to improve the temperature, humidity fields and cloud physi-
cal parameters of the initial field, such as rain, ice water, and 
snow water content. Many studies have shown that the dura-
tion of the model improvement is short if the cloud physical 
parameters are adjusted. However, it is longer if the tempera-
ture and humidity profile or the potential temperature profile 
is improved (Ge et al. 2013). Improving the temperature and 
humidity analysis is important assimilating radar reflectiv-
ity. Xue et al. (2003), Brewster (2015), Hu et al. (2006) and 
Schenkman et al. (2011) have shown success in simulating 
and forecasting convective storms by adjusting the relative 
humidity, water vapor mixing ratio and temperature in the 
model based on radar, satellite and ground observation data 
during cloud analysis. Xiao et al. (2007a, 2007b) proposed 
a direct assimilation method of radar reflectivity data, which 
used the total water condensate as the humidity control var-
iable to assimilate the radar reflectivity data directly and 
improved the quantitative precipitation forecast. In the short-
term forecast and nowcast for the London 2012 Summer 
Olympics, Lee (2013) applied the latent heat data retrieved 
from the assimilation of the radar reflectivity data to absorb 
the observation information in the radar reflectivity data in 
the high-resolution model (1.5 km) of the Met Office. Wang 
et al. (2013a) assimilated retrieved rainwater and estimated 
in-cloud water vapor instead of assimilating radar reflectiv-
ity directly using 3DVAR method in WRF. It was concluded 
that on average the assimilation of reflectivity significantly 
improves the short-term precipitation forecast skill up to 7 h. 
Fan et al. (2013) used three-dimensional variational method 
in the Beijing rapid updated cycling analysis and forecast 
system to assimilate the rain and water vapor data derived 
from the radar reflectivity data, which greatly improved the 
short-term precipitation forecast skill and extended the lead 
time to 6 h with positive forecast skills. He et al. (2021) 
adjusted the humidity profile of the model initial field based 
on the statistical relationship between the radar reflectiv-
ity and the humidity profile and found that this method can 
significantly improve the short-term forecast and nowcast 
skills of heavy rainfall. In addition, Weygandt et al. (2008) 
used the diabatic digital filter initialization method in the 
high-resolution rapid refresh system. In the radar reflectivity 
factor assimilation method of the real-time four-dimensional 
data assimilation, the reflectivity factor was converted into 
the rainwater mixing ratio, and then, the latent heat was 
deduced based on the difference between the model simu-
lated and observed rainwater mixing ratio. Finally, the latent 
heat was used as the observation data to be assimilated 
into the model by nudging so that the spin-up time can be 
reduced and the short-term forecast and nowcast skills can 
be improved in the model.

EnKF assimilation method has the advantage of back-
ground error covariance flow dependence. As mentioned 
above, assimilation radar reflectivity by EnKF can improve 

the short-term forecast and nowcast skill of the thunder-
storm. But there are still some practical issues to consider. 
First, the direct radar reflectivity assimilation depends on 
observation operator, which is the microphysical scheme. 
Due to the huge amount of radar observation and the highly 
complex observation operator, real-time radar reflectivity 
assimilation would be affected by extensive computation. On 
the other hand, the excessive adjustment of the temperature 
should be avoided when the temperature and humidity pro-
files are adjusted for radar reflectivity indirect assimilation, 
it may result in integration unstable of the numerical model.

To avoid huge computation and integral instability may 
cause by radar reflectivity assimilation, a simple method 
was introduced in which the reflectivity information was 
converted into the temperature and humidity “virtual obser-
vation” based on the operational radar three-dimensional 
mosaic and the high-resolution model forecast results with 
the same parameterization schemes. The feasibility of the 
method is verified using EnKF assimilation temperature and 
humidity “virtual observation” for a warm zone squall line 
case.

The next section is the overview of the squall line case. 
The methods for retrieving temperature and humidity “vir-
tual observation” are introduced in Sect. 3. Improvements 
of EnKF analysis field and prediction results and various 
sensitivity experiments results was showed in Sect. 4. Sum-
mary and conclusions follow in Sect. 5.

2 � Overview of the squall line case

This squall line was occurred in the southern Anhui Province 
at 00:00 (UTC, the same below) to 12:00 on May 18, 2018, 
resulting in a large area of the thunderstorm and the wind 
speed exceeding 24.5 m/s. It can be seen from geopotential 
height at 500 hPa and wind at 850 hPa at 00:00 on May 18 
(Fig. 1) that the main part of the squall line was near contour 
584 gpm on the edge of the subtropical high. The low trough 
in Northeast China moved eastward and southward, and the 
low trough at 850 hPa moved eastward to the area from the 
Sea of Japan to the east coast of China. From 850 to 500 hPa, 
the southwesterly wind in front of the trough prevailed in 
the squall-line area. Although the low-level jet was far away 
from the squall-line area, the warm moist advection was still 
significant, and thus, the geopotential instability is strong in 
the squall-line area. Therefore, due to the infiltration of the 
cold air near the surface and the effect of the topography, the 
convective cells were first excited in eastern Hubei Province 
and the junction area of Anhui and Jiangxi Provinces. It is a 
typical warm-sector squall line, it is still difficult to predict 
it accurately.

The evolution of the squall line can be clearly seen from 
the radar composite reflectivity (Fig. 2). Before 02:00 on 
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May 18, scattered convective echoes first appeared in eastern 
Hubei and eastern Jiangxi Provinces. At 04:00, these echoes 
moved to Anhui Province and began to strengthen. At the 
same time, some scattered convective echoes appeared in 
southern Anhui Province due to the strong potential instabil-
ity. Then, under the influence of the southwesterly steering 
airflow in front of the trough, the convective echo moved 
from the southwest to northeast and gradually strengthened, 
forming an organized bow-shaped echo. At 07:00–09:00, it 
reached the maximum and caused a large area of thunder-
storms and gusts on the surface. After 10:00, the squall line 
gradually weakened during the eastward movement due to 
the energy consumption. When it moved to Jiangsu Prov-
ince at 12:00, the composite reflectivity decreased to below 
40 dBZ, and the squall line weakened and dissipated. In 
this process, the squall line was generated and dissipated 
in the warm sector in front of the trough and moved north-
eastward under the influence of the southwesterly steering 
airflow. Next, we will take the squall line process as the 
research object to analyze the impact of EnKF assimilation 
temperature and humidity “virtual observation” converted 
from radar reflectivity on the squall line nowcasting.

Fig. 1   The 500 hPa geopotential height (solid line) and 850 hPa wind 
(arrow) at 00:00 (universal time) on May 18, 2018. The shades repre-
sent the 850 hPa wind speed, and the thick black box represents the 
main area of the squall line

Fig. 2   Composite reflectivity at a 0200, b 0400, c 0600, d 0800, e 1000 and f 1200 UTC 18 May 2018
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3 � Methods, data, and experiment design

3.1 � The method of retrieving the latent heat using 
the radar reflectivity

Before the indirect assimilation of radar reflectivity data 
using the EnKF, it is necessary to establish statistical rela-
tionships between the radar reflectivity intensity and the 
latent heat release and humidity under different environment 
conditions. As it is difficult to accurately simulate the inten-
sity and location of the radar reflectivity using the numerical 
model, this study uses the radar reflectivity diagnosed based 
on cloud physical parameters simulated using the Weather 
Research and Forecasting (WRF) model as statistical sam-
ples to calculate the quantitative statistical relationships 
between the latent heat release intensity, expressed by the 
difference between the single-point temperature and the 

environment temperature(ΔT  ), and the reflectivity intensity, 
environment temperature and environment humidity during 
the convective development. The calculation formula is

where RF was simulated radar reflectivity(dBZ) by WRF, 
and T was environment temperature (K) and RH was relative 
humidity (%). T and RH were the average temperature and 
relative humidity within a radius of 15 km respectively. Dif-
ferent pressure levels (400 hPa, 500 hPa, 550 hPa, 600 hPa, 
650 hPa, 700 hPa, 750 hPa, 800 hPa, 850 hPa, 900 hPa, 
925 hPa) are calculated separately.

The regression coefficients of different levels are shown 
in Table 1.

To statistically analyze of atmospheric saturation in the 

strong echo area, we statistically analyze the relative humid-
ity at different heights of the model according to 5 dBZ 
intervals. It is found that between the lifting condensation 
level and the 0 ℃ altitude, when the radar reflectivity simu-
lated by the model exceeds 25 dBZ, the relative humidity of 
the atmosphere exceeds 95%.

The real-time 12–36 h forecast results every 12:00 dur-
ing May–August of 2017–2019 are used as the statistical 
samples. Against the background of the typical summer 
temperature profile, the variation of the potential release 
intensity with the variation in the reflectivity intensity and 
relative humidity at different pressure heights is shown in 
Fig. 3. The latent heat release is positive above 850 hPa. The 
maximum intensity of the potential release occurs between 
600 and 300 hPa with a maximum of approximately 1.5 ℃, 
and it increases with the reflectivity intensity. The potential 
release intensity between 850 and 600 hPa is insensitive to 

ΔT = F(RF, T , RH) = a0 + a1 × RF + a2 × T + a3 × RH

Table 1   Regression coefficients of different levels

Level (hPa) a0 a1 a2 a3

400 0.515 − 0.087 0.021 − 0.003
500 − 0.996 − 0.178 0.027 0.007
550 − 0.287 − 0.158 0.022 0.012
600 0.188 − 0.190 0.003 0.014
650 1.283 − 0.140 0.0 0.017
700 1.260 − 0.093 − 0.006 0.018
750 0.869 − 0.096 − 0.002 0.109
800 1.371 − 0.242 − 0.009 0.011
850 4.742 − 0.142 − 0.013 0.005
900 1.561 − 0.04 − 0.013 0.020
925 − 0.106 − 0.04 − 0.017 0.014

Fig. 3   The statistical relationship of the latent heat release intensity 
against the background of the typical summer temperature profile. 
a The variation of the latent heat release intensity with the varia-
tion in the reflectivity intensity at different heights when the relative 

humidity is 80%. b The statistical relationship between the latent heat 
release intensity and the relative humidity at different heights when 
the reflectivity is 40 dBZ
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the reflectivity intensity, but it increases with the height. The 
potential release is mainly negative below 850 hPa, which 
may be caused by the mid-upper-level sinking of the low-
level radar echo in the model. In the sinking process, the 
evaporation and heat absorption caused by the incoming dry 
air makes the storm temperature lower than the environ-
ment temperature, and the storm is in the declining stage. In 
addition, Fig. 3b shows that the latent heat release intensity 
increases with the relative humidity below 400 hPa. Above 
400 hPa, the situation is the opposite.

The statistical relationship between the relative humidity 
and the reflectivity intensity at different heights is shown in 
Fig. 4. It shows that when the reflectivity intensity exceeds 
25 dBZ between the lifting condensation level and the freez-
ing level, the relative humidity is within 98–100%. In other 
words, the atmosphere is close to saturation when the inten-
sity is more than 25 dBZ in this height range. However, 
below the lifting condensation level and above the freezing 
level, the atmosphere is closer to saturation with the increase 
in reflectivity, but the large span of the relative humidity 
indicates great uncertainty in the atmospheric saturation.

Based on the above statistical results and the radar reflec-
tivity observation data after the quality control and sparse-
ness process, the temperature and humidity of the model 
forecast are used as the environment temperature and humid-
ity to calculate the latent heat release intensity in the radar 
reflectivity assimilation using the EnKF, and thus, the virtual 
observation of the temperature at the height of the radar echo 
is obtained. Then, it is analyzed whether the echo height is 
between the lifting condensation level and the freezing level. 
If the echo is between the two levels, the atmosphere is con-
sidered to be saturated, and a virtual observation of the dew 
point temperature is achieved. Finally, in the area without 

a convective echo in the forecast but with a strong echo in 
the observation, the virtual observation of the temperature 
and humidity is assimilated to the initial field of the WRF 
model using the EnKF. Specifically, the observation error 
of the temperature and dew point temperature is defined as 
1℃ in this study.

3.2 � Assimilation system and forecast model

The EnKF used in this paper is developed by Pennsylvania 
State University (Zhang et al. 2006a, 2009, b; Meng and 
Zhang 2007, 2008a, b), and contains 32 ensemble members. 
The initial disturbance is generated in domain 01 using the 
background error covariance option cv3 in the WRF data 
assimilation system (Barker et al. 2004), then, the initial dis-
turbance is downscaled to domain 02 using the WRF model. 
The background error covariance expansion method devel-
oped by Zhang et al. (2004) is used, and the weight coeffi-
cient is 0.75. The model forecast error is represented by the 
stochastic combination of multi-physical process parameteri-
zation schemes (Meng and Zhang 2007; Lan et al. 2010b).

The forecast model is WRF V3.8 (Skamarock et al. 2005). 
A double nesting scheme is used to represent the model area 
with resolutions of 9 km and 3 km, and the grid numbers 
are 229 × 217 and 289 × 289, respectively (Fig. 5). There 
are 35 levels in the vertical direction of the model with a 
top-level of 50 hPa. The same parameterization schemes are 
used in the deterministic forecast, and the WSM6 param-
eterization scheme is used in the microphysical process 
(Hong et al. 2004). The YSU parameterization scheme is 
used in the boundary layer process (Noh et al. 2003), and the 
Kain–Fritsh parameterization scheme is used in the cumulus 
parameterization scheme. The real-time analysis and forecast 

Fig. 4   The statistical relationship between the relative humidity and 
the reflectivity intensity at different heights Fig. 5   The simulation domains (D1, D2) of WRF, shading represents 

topography (units: meters)
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data provided by the European Centre for Medium-Range 
Weather Forecasts to the China Meteorological Administra-
tion are used as the initial field and boundary conditions of 
the model, including the surface layer and 19 pressure lev-
els, that is, 1000 hPa, 950 hPa, 925 hPa, 700 hPa, 600 hPa, 
500 hPa, 400 hPa, 300 hPa, 250 hPa, 200 hPa, 150 hPa, 
100 hPa, 70 hPa, 50 hPa, 20 hPa, and 10 hPa. The hori-
zontal resolution of the surface level is 0.125°, and that of 
the pressure level is 0.25°. The lateral boundary conditions 
are updated every 3 h. The disturbance mode of the lateral 
boundary is the same as that of the initial condition.

3.3 � Design of the numerical experiment

To simulate this warm-sector squall line process, the sche-
matic chart of the experiment is shown in Fig. 6. This pro-
cess mainly occurred in the afternoon on May 18, thus, the 
WRF-EnKF system starts at12:00 on May 17. First, the 
initial disturbance is generated using the cv3 option of the 
WRF data assimilation system, and the observation data are 
assimilated at 18:00 after 6 h of integration. Since convec-
tive echoes appear in the simulation area at 01:00 on May 
18, the radar reflectivity data are indirectly assimilated three 
times continuously from 01:00 to 03:00 on May 18. Then the 
ensemble mean field assimilated using the EnKF at 03:00 is 
taken as the initial field for the deterministic forecast.

To analyze the influence of the EnKF indirect assimila-
tion of the radar reflectivity data on the squall line process, 7 
sets of numerical experiments are designed (Table 2). As the 
observation operators of conventional surface observation, 
sounding observation and radar radial wind observation are 
relatively mature, assimilation using the WRF-EnKF system 
is well-developed for these data, and the experiment is used 

as the controlled experiment (CNTL). Based on the CNTL, 
the radar reflectivity data are indirectly assimilated as the 
reference experiment (REF) to analyze the effect of the 
assimilation of the reflectivity data. To evaluate the impact 
of different influence radii on the forecast skill, four sets of 
experiments are designed with different influence radii. In 
addition, to study whether improving the temperature pro-

file or the humidity profile in the radar reflectivity assimila-
tion has a more significant influence on the forecast results, 
REF_T and REF_Q are designed. The former only consid-
ers the influence of the radar reflectivity on the temperature 
profile, while the latter only considers the influence of the 
radar reflectivity on the humidity profile.

4 � Results

4.1 � Comparison of the analysis fields

The experiment results with different influence radii show 
that the simulation skill of the experiment with an influ-
ence radii of 25 km is high, namely REF25. Therefore, 
REF25 and CNTL are compared and analyzed to discuss 
the EnKF indirect assimilation of the radar reflectivity data. 
Figure 7 shows the comparison of the radar observation 
with the composite reflectivity analysis results of REF25 
and CNTL. By 01:00 on May 18, scattered convective ech-
oes were generated in the simulated area. However, in the 
convective echo simulated by the WRF model, because the 
control variables in the EnKF assimilation do not contain 
various cloud physical parameters, the analysis field will not 
change the composite reflectivity based on the cloud physi-
cal parameters. Therefore, the composite reflectivity results 
of the two analysis fields are exactly the same (Fig. 7b1 and 
c1). After 1:00, the radar reflectivity data are assimilated, 
and then, the forecast continues for another hour. The results 
show that there are new convective echoes in the region, but 
the forecasted location is inaccurate. By 03:00 on May 18, 
the convective echo moved to the border of Anhui, Hubei, 

Fig. 6   Schematic chart of the WRF-EnKF numerical experiment

Table 2   Settings of the 
sensitivity numerical 
experiments

No Experiment Description

1 CNTL Controlled experiment, which assimilates the conventional observation and radar 
radial wind observation data without assimilating the radar reflectivity data

2 REF05 Assimilate the radar reflectivity data with the influence radius of 5 km
3 REF15 Assimilate the radar reflectivity data with the influence radius of 15 km
4 REF25 Assimilate the radar reflectivity data with the influence radius of 25 km
5 REF35 Assimilate the radar reflectivity data with the influence radius of 35 km
6 REF_T Same as REF25, but only considers the effect of the reflectivity on the temperature
7 REF_Q Same as REF25, but only considers the effect of the reflectivity on the humidity
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and Jiangxi Provinces. In the CNTL, the convective echoes 
have moved to Anhui Province, which is to the east of the 
observation, with a lower intensity. After radar reflectivity 
data assimilation using the EnKF two consecutive times, the 
convective echo location is more accurate, but the intensity 
is higher than that of the observation.

The difference in the temperature and relative humidity 
analysis fields between CNTL and REF25 in Fig. 8. The 
horizontal difference at 500 hPa (Fig. 8a) shows that the 
temperature and humidity of REF25 in the convective area 
are higher than those of CNTL due to radar reflectivity 
data assimilation. Specifically, the maximum increase of 

the temperature is close to 1℃, and the maximum increase 
in relative humidity is approximately 40%. The areas 
with the increasing temperature and the increasing rela-
tive humidity are both in the strong echo area, indicating 
the effect of the radar reflectivity assimilation. The verti-
cal distribution (Fig. 8b) shows that the relative humid-
ity increases significantly within 850–400 hPa, with the 
maximum difference near 500 hPa, while the maximum 
temperature difference appears within 800–700 hPa. The 
inconsistency of the large difference centers of the tem-
perature and relative humidity may be induced by the rela-
tive humidity at the mid-lower level of the first guess field, 

Fig. 7   Observed composite reflectivity (a1-3) and composite reflectivity analysis of REF25 (b1-3) and CNTL (c1-3) at 01,02 and 03UTC 18 
May 2018
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which is close to saturation and it is impossible to adjust 
the relative humidity. However, despite the strong echo at 
low levels, the low relative humidity in the middle level 
of the first guess field can affect the middle level through 
the vertical covariance.

In summary, using the EnKF to assimilate the virtual 
observation information of the temperature and humidity 
retrieved from the radar reflectivity and adjusting the tem-
perature and humidity profiles in the convective area, new 
convective echoes can be quickly excited in the convective 
region to provide more accurate small and medium scale 
information for subsequent forecasts.

4.2 � Comparison of the forecast fields

The above analyses show that the EnKF can indirectly 
assimilate the radar reflectivity data to excite new convec-
tive echoes in the convective area. Are these new convective 
echoes closer to the observation? At 03:00 on May 18, the 
EnKF ensemble mean fields of CNTL and REF25 are used 
as the initial field of the WRF model for the 12 h forecast, 
and the composite reflectivity forecast fields of the 1st, 3rd, 
and 5th hours are shown in Fig. 9.

Compared with CNTL, the location of the squall line 
forecasted by REF25 is more accurate with higher intensity 
after the radar reflectivity data assimilation in Fig. 9. For 
example, at 06:00 on May 18, the squall line was between 
the Anqing radar and the Tongling radar, while the con-
vective echo forecasted by CNTL moved over the Tongling 
radar. In comparison, the location of the radar echo fore-
casted by REF25 is more accurate. Meanwhile, at 08:00 on 
May 18, the squall line forecasted by CNTL has moved past 
the Hefei radar, but in the observation, it just moves close to 

the Hefei radar. The convection occurrence time by REF25 
is more consistent with the observation, and the intensity is 
also higher.

To quantitatively evaluate the influence of the radar 
reflectivity data assimilation on the forecast, the equita-
ble threat score (ETS) of the composite reflectivity of the 
two experiment forecasts are calculated initiated at 01:00, 
02:00, and 03:00 on May 18 (Fig. 10), which are recorded 
as ETS01, ETS02 and ETS03, respectively. For radar echoes 
over 30 dBZ (Fig. 10a), ETS01 is significantly improved 
after assimilating the composite reflectivity data once, and 
the improvement can last for more than 9 h to 10:00 on May 
18. Compared with ETS01, ETS02 is higher in the first 6 h 
to 08:00 on May 18 after the second assimilation of the 
composite reflectivity data. ETS03 is still slightly higher 
than ETS01 and ETS02 in the first 4 h to 07:00 on May 18 
after the third assimilation of the composite reflectivity data. 
For 40 dBZ (Fig. 10b), the ETS values after the composite 
reflectivity data assimilation are generally higher than those 
of CNTL results without assimilation until the squall line 
began to weaken at 10:00 on May 18.

And we also found that the ETS03 is not always the high-
est at all lead times, for example, ETS03 at 30 dBZ is lower 
than ETS01 and ETS02 after a 4 h lead time. Similar results 
are found in CNTL. The similar result appeared in other 
studies of water vapor assimilation (Schenkman et al. 2011a, 
b), and the large and strong convective range of the analysis 
field may be the main reason.

The thunderstorm and gust induced by the squall line 
are the main causes of the disasters, thus, the accurate 
forecast of the gust intensity is particularly important for 
the early warning. The comparison of the maximum wind 
speed of each integration step forecasted by the WRF 
model (Fig. 11) shows that although the CNTL can better 

Fig. 8   The difference of the temperature and humidity analysis fields between the CNTL and the REF25 on 03UTC 18 May 2018. a 500 hPa, b 
the plane along AB in (a), the shades represent the temperature and the contours represent the relative humidity



Influence of the indirect assimilation of radar reflectivity data using the ensemble Kalman…

1 3

Page 9 of 15  99

forecast the eastward movement of the squall line gust, the 
forecasted intensity is lower and the range is smaller than 
the observation. A large area of the thunderstorm gust over 
18 m s−1 occurs in the observation, while the CNTL only 
forecasted a small area of the gust over 14 m s−1. Moreover, 
the forecasted location of the radar echo is to the east of the 
observation, and the forecasted gust appears earlier than the 
observation. After the radar reflectivity data assimilation, the 
forecasted intensity, location, and area of the gust are sig-
nificantly more accurate than those of the CNTL, although 
the gust area is still smaller than the observation. The gust 
is observed in areas with the forecasted gusts over 18 m s−1.

Therefore, the indirect assimilation of the radar reflec-
tivity using the EnKF can significantly improve the fore-
cast results. The forecasted intensity of the squall line is 

improved, and the forecasted intensity and range of the 
hourly maximum wind speed on the surface are closer to 
the observation than before. The assimilation also improves 
the accuracy of both the forecasted location of the squall line 
and the forecasted squall line influence time. The compari-
son shows that the improvement induced by the assimilation 
in the initial stage is more significant.

4.3 � Sensitivity experiment with different influence 
radii

The influence radius of the observation data is a very impor-
tant parameter in EnKF assimilation. Which influence radius 
can be set to achieve the best forecast results for the vir-
tual observation retrieved from the radar reflectivity? Four 

Fig. 9   Observed composite reflectivity (a1-3) and simulated compos-
ite reflectivity of REF25 (b1-3) and CNTL (c1-3) initial at 03UTC 
18 May 2018. AQRD, TLRD, and HFRD marked with × represent the 

locations of the Anqing radar, Tongling radar, and Hefei radar loca-
tion, respectively
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experiments with influence radius of 5 km, 15 km, 25 km, 
and 35 km are designed. The ETS score of four experiments 
initiated at 03:00 on May 18 (Fig. 12) shows that ETS values 
of four experiments after the radar reflectivity data assimila-
tion are higher than those of CNTL. However, the range and 
duration of the ETS improvement vary with the influence 
radii. For experiments of this squall line case, a larger influ-
ence radii corresponds to a higher ETS and a shorter dura-
tion. A smaller influence radii corresponds to a longer dura-
tion of the improvement, but ETS is not the highest in a short 
period of time. For example, for radar reflectivity greater 
than 30 dBZ (Fig. 12a), ETS is higher than that of CNTL 
before 12:00 on May 18 when the influence radius is 15 km 
(REF15). When the influence radius is 35 km (REF35), the 
ETS of the first 4 h is significantly higher than those of the 
other three sets, but it also decreases faster after 4 h. The 
trend is similar for echoes above 40 dBZ (Fig. 12b). When 
the influence radius is too large, the intensity and cover-
age of convection will be over-predicted compared with the 
actual observation, and too much water vapor will be con-
sumed in the environmental field, resulting in the decline of 
subsequent prediction performance. This result is consistent 
with that in relevant studies (Fierro et al. 2016), if the con-
vection in the analysis field is too strong, it is easy to lead to 
a rapid decline in prediction performance.

For the hourly maximum wind speed forecast, the ETS 
values of exceeding 10 m s−1 are shown in Table 3. The ETS 

values of the CNTL within 6 h are generally lower than those 
of the four sets of experiments. Among the four experiments, 
the ETS values of the REF25 and the REF35 are higher 
than the others. With a larger influence radius, the forecasted 
squall line intensity is higher, thus, the forecast skill of the 
surface gust is higher. With a small influence radius, such 
as 5 km, the small range of newly generated convective cells 
leads to a lower ETS score, but it does not consume too 
much water vapor in the environmental field, and its positive 
performance can be maintained for a longer time.

4.4 � Sensitivity experiments of the humidity 
assimilation and temperature assimilation 
separately

Figure 13 shows the ETS score for simulated composite 
reflectivity greater than 30 dBZ and 40 dBZ of REF_T and 
REF_Q. REF_T is almost the same as that of CNTL, while 
the ETS of the REF_Q is basically equivalent to that of the 
REF25 for simulated 30 dBZ reflectivity (Fig. 13a). This 
indicates that adjusting the humidity profile of the initial 
field is more important than adjusting the temperature pro-
file for the forecast of the composite reflectivity. For simu-
lated 40 dBZ reflectivity (Fig. 13b), the prediction score 
of REF_T was lower than that of CNTL except for the first 
2 h, and the ETS score of REF_Q was higher than that of 
CNTL for 6 h forecasts. The reason may be that when the 

Fig. 10   The ETS score for the 
simulated composite reflectiv-
ity greater than a 30 dBZ and 
b 40 dBZ by the CNTL and 
the REF25 initiated at different 
times
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temperature of the middle layer increases, the temperature 
lapse rate of the lower layer decreases, which is not con-
ducive to the enhancement of convection and inhibits the 
development of cloud and precipitation (Takemi 2010). 
In addition, the latent heat statistical method adopted also 
has statistical errors, which may be another reason for the 
decline in prediction performance.

For the forecast of the hourly maximum wind speed 
(Table 4), the ETS values of REF_T and REF_Q are higher 
than that of CNTL but lower than that of REF25. This 
indicates that assimilating the virtual observation of the 
temperature or humidity retrieved from the radar reflec-
tivity using the EnKF can improve the forecast skill of 
the hourly maximum wind speed. When both of them are 
used, the ETS is the highest and the improvement is the 
most significant. In contrast, the ETS of the forecast after 
assimilating the humidity virtual observation is closer to 

that of REF25, which indicates that the adjustment of the 
humidity field has a more significant effect on the forecast 
of the squall line.

5 � Summary and conclusion

An indirect assimilation technique of radar reflectivity 
data is described in this paper. This technique, which used 
latent heating specified and water vapor saturation from 
statistical relationship of the WRF model forecast, was 
evaluated through a warm-sector squall line using EnKF. 
This study provides documentation of the performance 
of the indirect assimilation technique by comparing fore-
cast accuracy of models simulated composite reflectivity 
and maximum wind speed before and after assimilated 
radar reflectivity. New convective echoes can be quickly 

Fig. 11   Hourly maximum wind speed observation (a1-3) and simulated maximum wind speed of REF25 (b1-3) and CNTL (c1-3) initial at 
03UTC 18 May 2018
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growing in a short time after radar reflectivity data assimi-
lation and improved the forecast skill of the warm-sector 
squall line. The forecasted influence time of the squall line 
is more accurate so that the forecasted influence time of 
the squall line on the downstream regions after the radar 
reflectivity data assimilation is basically consistent with 
the observation. Moreover, the simulation of the squall 
line intensity is improved after the reflectivity data assimi-
lation. The squall line intensity increases, and the intensity 
of the surface gust caused by the simulated squall line is 
closer to the observation.

Sensitivity experiments with different influence radii 
show that the forecasts of all experiments are better than 
that of CNTL without radar reflectivity assimilation. When 
the influence radius is small, the improvement lasts longer, 
while when the influence radius is large, the improvement is 
more significant in the nowcast period, but it lasts a shorter 
period. The simulation of the squall line is better than the 
others based on the influence radius of 25 km.

The separate assimilation experiments of the virtual 
observation of the temperature or humidity show that 
both can improve the simulation of the squall line, and the 
improvement of the virtual observation of the assimilated 
humidity is more significant. The virtual observation of the 
assimilated temperature can slightly improve the reflectivity 
simulation, while it can better improve the simulation skill 
of the surface gust.

Compared with the direct assimilation method of radar 
reflectivity, the indirect assimilation method presented in 
this paper avoids the complex reflectivity observation opera-
tor and reduces the indirect error caused by the uncertainty 
of the observation operator. Compared to other indirect 
assimilation methods, e.g., the latent heating method, the 
method has a similar forecasting effect and easier to imple-
ment. In addition, we can found that the method also has 
certain shortcomings, such as the lack of assimilation ability 
of the reflectivity information above the level of 0 ℃ and 
there are still original false echoes with location deviations.

Fig. 12   The ETS score for the 
simulated composite reflectiv-
ity greater than a 30 dBZ and 
b 40 dBZ of different influence 
radius experiments initiated at 
03UTC 18 May 2018

Table 3   ETS score of hourly 
maximum wind speed 
exceeding 10 m/s of different 
influence radii experiments 
initiated at 03UTC 18 May 
2018

1 h 2 h 3 h 4 h 5 h 6 h

CNTL 0.0 0.02 0.04 0.0 0.01 0.0
REF5 0.02 0.03 0.02 0.02 0.09 0.03
REF15 0.07 0.10 0.04 0.05 0.0 0.0
REF25 0.1 0.17 0.17 0.10 0.09 0.05
REF35 0.14 0.16 0.22 0.09 0.09 0.0
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Future work will explore assimilating radar clear-sky 
echoes to eliminate false echoes. Furthermore, it is worth 
exploring how to make full use of the forecast information 
of different ensemble members to eliminate false echoes. 
In addition, structure of the vertical covariance in EnKF 
will examined in future and other weather processes, such as 
rainstorms and typhoons, will to be analyzed and evaluated.
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