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Abstract
Drought basically consists of four main components: duration, severity, intensity, and frequency. The fact that these different 
components having impact on drought are related to each other brings some difficulties in drought research. These param-
eters are generally evaluated univariate in drought analyses, however, a “joint multivariate distribution” of these parameters 
is required for a realistic drought assessment. Joint multivariate evaluation of drought parameters can be determined with 
Copula functions. In this study, hydrological drought analysis is conducted for 16 streamflow gauging stations in the Tigris 
Basin, Turkey, with the Streamflow Drought Index (SDI). The drought duration and severity values are extracted using Run 
Theory, and the best fitted marginal distribution functions of each parameter are determined among 13 distribution func-
tions. The joint probabilities of drought duration and severity are evaluated using six different copulas (Ali-Mikhail-Haq, 
Clayton, Frank, Galambos, Gumbel-Hougaard and Joe), and the best representing copula is found as Galambos according 
to Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Univariate return periods and bivariate 
return periods calculated with Galambos copula are compared and the results are evaluated spatially. It is seen that the dif-
ference between univariate return periods and bivariate return periods is in the range of 5–10% in most of the stations. As a 
result of the spatial analysis of the drought duration and severity in the Tigris basin with bivariate copula, it is seen that the 
central and western parts of the basin have a high risk.

1 Introduction

Natural disasters cause serious hydrological imbalances and 
create a water deficit when the natural water availability 
used by different systems in the world falls below its long-
term average or normal values in a certain time period. On 
a regional scale, this phenomenon is defined as "drought". 
It is generally grouped into four classes as meteorological, 
hydrological, agricultural, and socio-economic droughts 
(Nabaei et al. 2019; Park et al. 2017; Van Loon 2015). Pre-
cipitation that falls less than average occurs as a “meteoro-
logical drought”. Drought in dry agricultural areas manifests 
itself as "agricultural drought" with the lack of soil moisture. 

“Hydrological drought” is described as a lack of groundwa-
ter and surface water in lakes or rivers (Mishra and Singh 
2010; Yüceerim et al. 2019). Socio-economic drought can 
be defined as the inability of the supply of an economically 
good (water) to meet the demand of droughts that occur due 
to the inadequacy of water resources systems (precipitation, 
irrigation, storage, etc.). Although there is a direct relation 
between meteorological and hydrological drought, hydro-
logical measurements cannot be considered one of the first 
drought indicators. There will be a time interval between the 
precipitation deficit and the occurrence of water deficiency 
in reservoirs. The hydrological drought situation may still 
be ongoing even long after the meteorological drought is 
over (Gumus and Algin 2017). Therefore, since it is difficult 
to obtain realistic information about hydrological drought 
by evaluating only meteorological drought, it is essential to 
consider hydrological drought separately using streamflow 
or groundwater data for the water resources management.

The drought event consists of four main components as 
duration, severity, intensity, and frequency. These features 
affect drought characteristics and make drought a stochas-
tic and complex natural disaster. A single variable cannot 
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provide a comprehensive assessment of droughts, as all 
these interdependent components have an impact on drought 
(Mishra and Singh 2010; Shiau et al. 2007). Therefore, the 
multivariate properties of drought should be considered in 
drought analysis and different drought characteristics should 
be analysed collaboratively. To evaluate different compo-
nents jointly, the best approach is to use probability theories, 
such as Copula (Ayantobo et al. 2018; Shiau 2006).

Copula functions have been used in hydrology to evalu-
ate the multivariate probability distribution in recent years. 
Copulas do not need assumptions for equality, normality, 
or independence for the marginal distribution of variables. 
Since they take into account the probabilistic nature of each 
variable, copula-based joint distributions have more advan-
tages than the other multivariate distributions (da Rocha 
Júnior et al. 2020; Nabaei et al. 2019; Zhang and Singh 
2007). In short, it can jointly model two different variable, 
even though they have different distributions. Copula func-
tions were proposed by Sklar (1959) to generate multivariate 
distributions and were first used in the finance and insurance 
industry. In hydro-meteorological studies, it is first used by 
De Michele and Salvadori (2003) to create a bivariate model 
describing the intensity and duration of rainfall. It is also 
commonly used to analyse the joint distribution of features 
of various hydro-meteorological events such as precipitation 
(Hangshing and Dabral 2018; Sajeev et al. 2021; Wee and 
Shitan 2013), flood (Balistrocchi et al. 2017; Li et al. 2013b; 
Luo et al. 2021) and drought (Dehghani et al. 2019; Pathak 
and Dodamani 2021; Shiau 2006).

Although there are many drought studies based on copula 
globally, these studies have generally been about the mete-
orological drought calculated by the Standardized Precipita-
tion Index (SPI) method. For example, Bivariate (Duration-
Severity) drought analyses are performed for Bangladesh 
by testing the data obtained from the SPI-3 time scale with 
three copula functions by Mortuza et al. (2019), for the 
Eastern Cape Province of South Africa by testing the data 
obtained from the SPI-3 and SPI-6 time scales with ten cop-
ula functions by Botai et al. (2020), for the Northeast Brazil 
by testing the data obtained from SPI-12 time scale with five 
copula functions by Pontes Filho et al. (2020). Contrary to 
meteorological drought, which is studied using precipitation 
data, studies in the form of joint modelling of hydrological 
drought with multiple components using streamflow data 
are limited worldwide. For example, using the streamflow 
or runoff data with various copula functions, Zhang et al. 
(2015) in the East River basin in China, Zhao et al. (2017) 
in the Weihe River in China, Vaziri et al. (2018) in the Tajan 
River in Iran studied bivariate (Duration-Severity) drought 
analyses of the hydrological drought.

Studies about the research on drought and planning to 
reduce its impacts are especially important for regions such 
as Turkey, where agricultural activities are intense, and the 

economy of millions of people depends on it. Since 51 mil-
lion hectares corresponding to 37.3% of Turkey's area is arid 
and semi-arid under climate conditions, drought is a critical 
issue that needs to be carefully handled (MGM 2019).

There are many studies on the temporal and spatial anal-
ysis of meteorological (Dabanlı et al. 2017; Keskin et al. 
2011; Tonkaz 2006; Umran Komuscu 1999; Yerdelen et al. 
2021) and hydrological (Altın et al. 2019; Gumus and Algin 
2017; Özcan et al. 2019) drought in different regions of Tur-
key, which is vulnerable to drought. However, there are lim-
ited studies in evaluating of multivariate drought using the 
copula method in Turkey. For example, Tosunoglu and Can 
(2016) calculated monthly SPI values (a time series for each 
region) for seven regions by Principal Component Analysis 
with precipitation data from 173 precipitation observation 
stations in Turkey. After obtaining the drought duration 
and severity parameters from the calculated SPI values by 
the Run Theory, they determined the best fitted marginal 
distribution and the best fitted copula among four differ-
ent copulas. As a result of comparing the univariate return 
periods with the bivariate return periods, it is seen that the 
joint return periods in some regions exceeded the univariate 
return periods by more than 50%. Tosunoglu and Kisi (2016) 
evaluated the hydrological drought of 5 streamflow gaug-
ing stations in the Çoruh Basin in northern Turkey with a 
threshold value. Their study compared the univariate return 
periods of annual maximum drought severity (the largest 
value of the computed severity series for each year), and 
corresponding duration (length of maximum drought sever-
ity) parameters and calculated the bivariate return periods 
of these parameters with the copula. As a result of the study, 
it is determined that the difference between the univariate 
and the joint return periods varied between 23 and 29%. 
Tosunoğlu and Onof (2017) performed a bivariate analysis 
of SPI values calculated with historical and synthetic data 
of five stations in the Çoruh basin in the north of Turkey 
using copula. As a result of the study, when evaluating the 
duration and severity of drought for univariate 50- and 100-
year return periods obtained in historical data as a bivariate, 
it is showed that the return periods increased to 83.2 and 
168 years, respectively. As the past studies are examined, 
there is no study in which the components of hydrological 
drought (duration, severity, peak, etc.) are evaluated jointly 
with the copula using streamflow data in the Tigris basin 
of Turkey. This basin originates from the Tigris-Euphrates 
River basin, which is the largest water basin in the Middle 
East. Especially analysing the drought return periods, which 
are calculated as univariate, with two variables together and 
determining the change in the return periods will help the 
effective planning and use of water resources in the region.

In this study, hydrological droughts of 16 streamflow 
gauging stations covering the entire Tigris Basin, Turkey, 
are calculated with the Streamflow Drought Index (SDI), and 
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the drought properties are evaluated. The drought duration 
and severity values are extracted with the Run Theory, and 
marginal distribution functions of each parameter are deter-
mined. To evaluate the joint probabilities of these two vari-
ables in the basin, the copula that best represents the joint 
bivariate at each station is determined by testing the perfor-
mances among six different copulas. First, the univariate 
return periods are calculated and the bivariate return periods 
corresponding to the drought duration and severity values of 
the univariate return periods are determined for these vari-
ables. Afterwards, the univariate return periods and bivariate 
return periods calculated with the copula that best represents 
(fitted) the region are spatially given and discussed.

2  Materials and methods

2.1  The study area

The Tigris-Euphrates River Basin (TERB) is one of the 
largest basins in the Middle East, and the size of this basin 
is 879,790  km2. This river basin is located in Iraq, Turkey 
(22%), Iran, Syria, Saudi Arabia, and Jordan (Bozkurt and 
Sen 2013). Euphrates and Tigris rivers are the two main 
rivers in this basin. The Tigris River is a river with a total 
length of approximately 1900 km, 523 km of which is within 
Turkey boundaries, born in the southeast of Turkey. The total 
area of the Tigris basin is 54,145  km2, which corresponds to 
6.9% of Turkey’s acreage. It also has 13.6% of the total water 
potential of the country with a water potential of 25,183  km3 

(DSI 2018). The geographical characteristics and observa-
tion periods of streamflow values for the stations are given 
in Table 1.

Anthropological impacts are considered when choosing 
the stations, and in this study drought analysis is carried out 
using monthly mean streamflow data from 16 streamflow 
gauge sites in the Tigris Basin, as shown in Fig. 1. Elevation 
values reach above 4000 m in the east of the Tigris basin, 
but it drops to 263 m in the west. The altitudes of the sta-
tions E26A020, E26A030 and E26A031 located in the east 
of the basin are above 1000 m, while the remaining stations 
are 400–910 m. The minimum long-term mean streamflow 
is observed 0.48  m3/s at station D26A040. The maximum 
long-term mean streamflow is observed 116.64  m3/s at sta-
tion E26A012. Stations with high streamflow are generally 
found on the Tigris River's main tributaries, whereas stations 
with low streamflow are found on its side tributaries.

2.2  Methodology

2.2.1  Streamflow Drought Index (SDI)

The Streamflow Drought Index (SDI) method, developed 
by Nalbantis (2008), includes a similar calculation to the 
Standardized Precipitation Index (SPI) method (McKee 
et al. 1993), which is widely used to calculate the meteoro-
logical severity of drought. One of the main advantages of 
SDI is that it depends on streamflow data directly related to 
hydrological drought and can be easily calculated with this 
data. In this method, the onset and duration of drought are 

Table 1  Geographical characteristics and observation periods of the stations

Station no Station name Longitude (E) Latitude (N) Drain-
age area 
 (km2)

Elevation (m) Observation period Long-term mean 
streamflow  (m3/s)

D26A008 Pamukluk River-Dilaver Bridge 40.2333 37.6667 648 702 1974–2015 1.88
D26A012 Başnik Stream-Salat 40.8833 37.8500 1060 525 1980–2015 4.00
D26A032 Pamuk Stream-Karahan Bridge 40.5697 38.0667 305 738 1980–2010 1.88
D26A040 Mehmediyan Stream-Tepecik 40.5667 38.2667 79 800 1979–2015 0.48
D26A054 Kızılsu-Kasrik Strait 42.1781 37.3969 650 400 1981–2015 10.36
D26A060 Başköy Stream-Kıbrıs 40.9167 38.0167 157.9 594 1989–2015 0.62
D26A062 Sallar Stream-Yolköprü Village 39.7044 38.2433 51.6 852 1989–2015 0.76
E26A003 Garzan Stream-Beşiri 41.3458 37.9650 2450.4 545 1946–2002 48.5
E26A005 Tigris River-Diyarbakır 40.2297 37.8800 5655.2 570 1956–1997 71.3
E26A010 Bitlis Stream-Baykan 41.7825 38.1614 640.4 910 1955–2016 18.23
E26A012 Batman Stream-Malabadi Bridge 41.2044 38.1544 4105.2 597 1965–2016 116.64
E26A018 Ambar Stream-Köprübaşı 40.3842 37.9919 976 595 1969–1998 7.68
E26A020 Zap Stream-Üzümcü 43.5656 37.4864 5270.3 1072 1971–2012 56.28
E26A024 Kezer Stream-Pınarca 41.8572 37.9614 1169.6 530 1972–2016 19.73
E26A030 Zap Stream-Teknisyenler 43.9883 37.6986 4161.5 1425 1986–2011 35.35
E26A031 Çatak Stream-Tüliran 43.0544 37.9983 2455 1482 1988–2011 25.44
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determined using the cumulative streamflow amount of the 
river, which were used to evaluate and monitor hydrologi-
cal droughts and obtain water balance indicators for hydro-
logical drought (Jahangir and Yarahmadi 2020; Tigkas et al. 
2012). The relevant references can obtain more information 
about the SDI method and its application to hydrological 
drought analysis (Nalbantis 2008; Nalbantis and Tsakiris 
2009). The SDI is defined as Eq. 1:

In Eq. 1, SDIi,k, is the value of streamflow drought index 
for kth month in ith hydrological year, Vi,k is streamflow 
volume for kth month in ith hydrological year, V

k
 and Sk 

are the mean and the standard deviation of streamflow vol-
umes in kth month over the study period. The time period 
between October–September is chosen as the hydrological 
year within the scope of this study. In this study, a 3-months 
SDI (SDI-3) is used for a short-term drought identification, 
and SDI values are calculated using the gamma distribution. 
In this method, the severity of drought for a wet and drought 
condition is categorized in eight classifications as shown in 
Table 2 (Gumus and Algin 2017).

2.2.2  Run theory

This approach, proposed by Yevjevich (1967), is known 
as the threshold level method or Run Theory and many 
researchers use it, because it can be applied to daily, monthly 
and annual data (Nam et al. 2015; Wu et al. 2020). As seen 
in Fig. 2, hydrological droughts are divided into drought 
components and can be characterized for a chosen threshold 
level. Drought event is based on SDI values (a threshold 

(1)SDI
i,k =

V
i,k − V

k

S
k

i = 1, 2, … , k = 1, 2, 3, 4, …

value of below 0) is selected to identify drought using Run 
Theory in this study. Important drought parameters, such as 
duration and severity, can be simply calculated after iden-
tifying drought occurrences in accordance with the chosen 
threshold value with the Run Theory. According to the 
graph, a drought occurs if the values are negative, and the 
drought continues until the values become zero.

Figure 2 shows drought characteristics using the Run 
Theory for a threshold value of below 0, the Di represents 
the drought duration (the sum of consecutive months with 
the negative SDI values, the unit of duration is month), and 
Si represents the unitless drought severity (the sum of the 
negative SDI values of the consecutive dry period).

2.2.3  Univariate marginal distributions for drought 
duration and severity

It is necessary to determine the best fitted distribution 
function of the drought duration and severity variables to 
calculate the joint probability function in copula. The best 

Fig. 1  Tigris River Basin of Turkey

Table 2  Classification for wet and drought conditions according to 
calculated SDI values

SDI values Classification

SDI ≥ 2 Extremely wet
1.5 ≤ SDI < 2.0 Severely wet
1.0 ≤ SDI < 1.5 Moderately wet
0 ≤ SDI < 1.0 Mildly wet
− 1.0 ≤ SDI < 0 Mild drought
− 1.5 ≤ SDI < − 1.0 Moderate drought
− 2.0 ≤ SDI < − 1.5 Severe drought
SDI ≤  − 2 Extreme drought
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fitted distribution function of input variables will increase 
the accuracy of the joint distribution function to be calcu-
lated (Kavianpour et al. 2020). In this study, the Exponential, 
Extreme Value, Gamma, Inverse Gaussian, Logistic, Log-
logistic, Lognormal, Nakagami, Normal, Rayleigh, Rician, 
t location-scale and Weibull marginal distributions are used. 
The best fitted marginal distributions for each variable are 
determined according to the Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC) values. The 
details are given in the following section (see Sect. 2.2.6). 
Finally, the best fitted distributions for drought duration and 
severity are used to calculate the joint probability function 
in the copula.

2.2.4  Copulas

Although researchers have performed studies on the 
drought’s probability characteristics since the 1960s, most 
of these studies have been conducted as univariate analy-
sis of drought. However, as it is well known, drought is a 
complex natural phenomenon that can be expounded with 
severity, duration, and intensity parameters. Moreover, there 
is a significant correlation between these parameters. For 
this reason, “joint modelling” of drought variables is nec-
essary to interpret the effects of drought in a region more 
realistically and this would be only possible with the use of 
multivariate methods.

The probability distribution types of different variables 
must be the same in traditional methods to apply multi-
variate distributions (Shiau 2006). However, as the related 
drought parameters such as duration and severity generally 
fit different probability distributions, it creates difficulties 
in multivariate modelling (Azam et al. 2018; Pontes Filho 
et al. 2020). On the other hand, the copula functions method, 
which is introduced by Sklar (1959), successfully performs 
the calculations of the multivariate probability distribution 
and it has the feature of overcoming many disadvantages 

inherent in traditional methods (Wu et al. 2020; Zhang et al. 
2015).

Sklar's theorem explains the role of copulas in the relation 
between univariate distribution functions and their marginal 
distribution functions. For instance, let x1, x2,…, xn, be the 
univariate cumulative distribution functions (CDF) of ran-
dom vectors F1, F2, Fn. Then, according to Sklar's theorem, 
these random vectors have an n-dimensional copula function 
that defines joint univariate cumulative distribution func-
tions. This function is calculated as in Eq. 2:

where C is the n-dimensional copula with parameter θ.
Copula functions have advantages such as retaining the 

correlation between random variables and carrying different 
distribution properties of the variables. This feature provides 
excellent convenience to researchers in determining the mar-
ginal distributions of random variables. Drought analysis 
with copula theory takes into account dependencies among 
drought variables (Mesbahzadeh et al. 2020).

2.2.5  Copula family

There are many copula types and families in the literature to 
determine joint distributions (Sadegh et al. 2017). However, 
copulas used for the analysis of hydro-meteorological data are 
divided into four classes as the Archimedean (Ali-Mikhail-
Haq-AMH, Clayton, Frank, Gumbel-Hougaard and Joe), 
elliptical (normal and student t), extreme value (Galambos, 
Husler-Reiss, Tawn and t-EV) and miscellaneous (Farlie-
Gumbel-Morgenstern and Plackett) copulas (Ayantobo et al. 
2019). The Archimedean class copulas are frequently used in 
hydrological studies due to their simple structure and strong 
representation features (Mellak and Souag-Gamane 2020; 
Mortuza et al. 2019). In addition, it is known that the Galam-
bos copula, which is in the extreme value class, has proven 

(2)H
(

x1, x2,… , x
n

)

= C
(

F1

(

x1

)

,F2

(

x2

)

,… ,F
n

(

x
n

))

,

Fig. 2  The Run Theory
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its success in evaluating the drought duration and severity 
together (Kiafar et al. 2020; Mirabbasi et al. 2012). Botai et al. 
(2020) analysed the univariate and bivariate return periods 
for SPI values in Eastern Cape Province, South Africa. Three 
copulas (Joe, Tawn and BB1) are tested for bivariate analysis 
and Joe copula is found successful and selected for bivariate 
joint return periods.

Therefore, in this study, AMH, Clayton, Frank, Gumbel-
Hougaard and Joe copulas from the Archimedean class and 
Galambos copula from the extreme value class are used for 
evaluating the joint modelling of drought duration and severity. 
The mathematical expressions of the bivariate copulas used in 
the study are given in Table 3. u and v are random variables 
with uniform distribution, and θ is the copula parameter in 
the equations in Table 3. More detailed information about the 
copulas used can be obtained from the references given in the 
table.

2.2.6  The choice of the best fitted distributions and copulas

The selection of the best fitted marginal distribution of the 
drought duration and severity is required to determine the joint 
distributions with the copula. In addition, as the copula func-
tion to be selected directly affects the results of the analysis 
and calculations, it is essential to choose the copula function 
that will best represent the variables in the performed analyses. 
Using only a single selection criterion for copula selection pre-
sents some disadvantages and determining the most suitable 
parameter set with a single criterion is not entirely satisfac-
tory due to the limitations in comparing distributions (Huang 
et al. 2014; Huard et al. 2006). In this study, Akaike Informa-
tion Criterion (AIC) (Akaike 1974) and Bayesian Information 
Criterion (BIC) (Schwarz 1978) are used as selection criteria 
when choosing the best fitted univariate marginal distributions 
and bivariate copula function that models the data. In both 
selection criteria methods, the lower the value indicates better 
performance. The formulas of AIC and BIC are given in Eqs. 3 
and 4, respectively.

(3)AIC = 2D − 2�

where D is the number of parameters of the statistical model 
and � is the log-likelihood value of the best parameter set.

2.2.7  Univariate and bivariate return periods

The return period for a univariate variable is calculated sepa-
rately for drought duration and severity as per Eq. 5.

where TD and TS represent univariate return period of dura-
tion and severity, L is the drought interarrival time, E(L) 
expected interarrival drought time which can be estimated 
from observed droughts, FS(s) and FD(d) are CDF of drought 
severity and duration.

There are two types of bivariate return periods calculated 
with the copula functions; “ TAND

DS
 ” which is the co-occur-

rence return period for the condition of D ≥ d and S ≥ s, and 
“ TOR

DS
 ” which is the joint return period for D ≥ d or S ≥ s. 

The formulation of TAND

DS
 and TOR

DS
 are given in Eqs. 6 and 7, 

respectively.

where C is the copula function in the bivariate return period.

3  Results and discussion

3.1  Drought analysis

The percentages of dry and wet occurrences of calculated 
SDI values using the streamflow data of 16 streamflow 

(4)BIC = D ln n − 2�,

(5)TS =
E(L)

1 − FS(s)
, TD =

E(L)

1 − FD(d)
,

(6)

T
AND

DS
=

E(L)

P(D ≥ d, S ≥ s)
=

E(L)

1 − FD(d) − FS(s) + C
(

FD(d),FS(s)
)

(7)T
OR

DS
=

E(L)

P(D ≥ dor S ≥ s)
=

E(L)

1 − C
(

FD(d),FS(s)
) ,

Table 3  Used Copulas and their mathematical formulations

Copula Name (Reference) Mathematical formulation Parameter range

Ali-Mikhail-Haq (AMH) (Ali et al. 1978) uv

1−�(1−u)(1−v)
� ∈ [−1, 1)

Clayton (Clayton 1978) max(u−� + v
−� − 1, 0)−1∕� � ∈ [−1, ∞)�0

Frank (Li et al. 2013a) −
1

�
ln
[

1 +
(exp(−�u)−1)(exp(−�v)−1)

exp(−�)−1

]

� ∈ R�0

Galambos (Huynh et al. 2014)
uv exp

{

(− ln(u))−� + (− ln(v))−�
}−1∕� � ∈ [0, ∞)

Gumbel-Hougaard (Li et al. 2013a) exp
{

−
[

(− ln(u))� + (− ln(v))�
]1∕�

}

� ∈ [1, ∞)

Joe (Li et al. 2013a) 1 −
[

(1 − u)� + (1 − v)� − (1 − u)�(1 − v)�
]1∕� � ∈ [1, ∞)
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gauging stations in the Tigris basin are given in Fig. 3a. 
According to the SDI values, it is observed that the dry 
period is more than the wet period in 11 of the 16 sta-
tions. The dry period is equal in four of them (D26A040, 
D26A060, E26A012, E26A024). In only one station 
(D26A012), the dry period is less than the wet period. 
The highest rate of dry period is seen at station D26A062 
with 57%. The distribution of the dry periods according 
to the classification at Table 2 is given in Fig. 3b. It is 
determined that the most common drought class at all sta-
tions is mild drought, and this event occurred at a maxi-
mum of 78% at station D26A062 and minimum of 57% at 
station E26A031. The highest moderate drought occur-
rence rate is 38% at station E26A031, while the highest 
severe drought is 14% at station E26A024. The rate of 
occurrence of extreme drought, which creates devastating 
impacts is calculated as 7% at station D26A012, which is 
the station where the least dry period occurs. There are no 
extreme drought conditions observed in stations E26A030 
and E26A031 throughout the basin, and the maximum dry 
event (over 90%) at these two stations is mild and moder-
ate drought.

The drought duration and severity parameters of the sepa-
rately calculated SDI values for 16 stations in the Tigris 
basin are determined using the Run Theory. The scatter plots 
of the drought duration and severity values of all stations 
and the histograms of the value ranges are given in Fig. 4. 
Drought duration (month) and severity (sum of negative 
SDI) values are mostly 0–10 at all stations. The maximum 
drought duration value at stations varies from 17 (D26A008) 
to 50  months (E26A031), and the mean of the highest 
dry period values of all stations occurs as 33.5 months. 
The mean of the dry periods occurring at all stations is 
6.43 months. The maximum drought severity value at the 
stations varies from 18.2 (D26A008) to 56.92 (E26A024), 
and the mean of the highest drought severity of all stations 

is 38.35. The mean value of drought severity occurring at 
all stations is 4.87.

Figure 5 shows the relationship between drought duration 
and severity spatially according to Kendall's tau, Spearman's 
rho and Pearson correlation coefficients. Correlation coef-
ficients obtained at all stations showed a significant relation-
ship between drought duration and drought severity for 0.01 
level (two-tailed). According to all correlation coefficients, 
the highest correlation occurred at station D26A012, and 
the lowest correlation; according to Kendall's tau and Spear-
man's rho occurred at station D26A060, and according to 
Pearson at station D26A062. Although Kendall’s tau value 
is relatively low compared to other coefficients, it can be said 
that there is a strong relationship between drought duration 
and severity throughout the basin when the correlation coef-
ficients are evaluated in generality.

3.2  Univariate marginal distribution

To calculate the joint probability of copula functions and 
drought characteristics, it is first necessary to determine the 
optimal marginal distributions of these variables (duration 
and severity of drought for this study) that affect drought 
characteristics. Therefore, in this study, the most suitable 
ones are determined among Exponential, Extreme value, 
Gamma, Inverse Gaussian, Logistic, Log-logistic, Lognor-
mal, Nakagami, Normal, Rayleigh, Rician, t location-scale 
and Weibull marginal distributions for drought duration and 
severity, according to AIC and BIC. The marginal distribu-
tion functions that the best fit for the drought’s duration and 
severity according to the stations are given in the radar graph 
in Fig. 6. For example, for the drought duration variable 
in the Tigris basin, the best fitted marginal distribution is 
determined by the Inverse Gaussian for 15 of the 16 stations, 
and the Exponential distribution only at station D26A040. 
The best fitted distribution for the drought severity variable 
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Fig. 5  Spatial distribution of correlation coefficient for drought duration and severity (a Kendall’s τ, b Spearman’s ρ, c Pearson)
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is found as Weibull for six stations, Lognormal at five sta-
tions, Log-logistics and Inverse Gaussian at two stations, and 
gamma distribution at one station.

3.3  Copula

AMH, Clayton, Frank, Galambos, Gumbel-Hougaard and 
Joe copulas are used to define the bivariate joint probability 
of the calculated drought duration and severity of the 16 
stations in the Tigris basin. The copula that best fits the data 
set is determined according to the AIC and BIC parameters 
using the best performance marginal distributions of drought 
duration and severity values. The numerical results obtained, 
and the parameters of the evaluated copulas are given in 
Table 4. The copulas with the best results are marked in 
bold and italics in the table. Among the copulas used, the 
Galambos copula, which is from the extreme value fam-
ily, showed the best fit at 13 of 16 stations (approximately 
81%). The stations, the best fitted copula of the Galambos, 
are D26A008, D26A012, D26A032, D26A040, D26A054, 
D26A062, E26A003, E26A005, E26A010, E26A018, 
E26A024, E26A030 and E26A031. The Frank copula from 
the Archimedean family is the best fitted copula in the basin 
at two stations (E26A012 and E26A020), and the Joe copula 
is designated as the best fitted in a single station (D26A062). 
The Archimedean copulas (AMH, Frank, Clayton, Gumbel-
Hougaard, and Joe) are generally successful in representing 
hydrological variables in the literature (Mellak and Souag-
Gamane 2020; Mortuza et al. 2019). However, within the 
scope of this study using streamflow data, it is seen that 
the Galambos copula is pretty successful compared to other 
copula types in jointly evaluating the drought duration and 
severity in the majority of the stations. Mirabbasi et al. 
(2012) and Kiafar et al. (2020) found the Galambos copula 

to be successful in evaluating jointly the drought duration 
and severity of monthly SPI values. It is determined that the 
Galambos copula, which is successful in different hydro-
meteorological studies, is successful in 13 stations in this 
study area. Although it did not yield the most successful 
result in the other three stations, it gave approximate results 
to the best fitted copulas. For this reason, the Galambos 
copula is applied to all stations for comparing the bivariate 
return periods in the basin with each other.

3.4  Univariate return periods

Univariate return periods for 20, 50, 100 and 200 years are 
calculated using Eq. 5 in the basin and spatial distributions 
are given in Fig. 7. For the 20-year and 50-year univari-
ate return periods, the highest drought duration and sever-
ity occurred at station E26A031 and the lowest at station 
D26A008. For the return periods of 100 and 200 years, the 
highest drought duration is also determined at the station 
E26A031 with 57.51 and 73.36 months, while the highest 
drought severity is calculated at the station D26A012 with 
169.74 and 340.34 months. For the return periods of 100 and 
200 years, the lowest drought duration and severity values 
are calculated at station D26A008. The drought duration 
variable also indicated similar characteristics in the basin for 
different return periods. However, it is observed that only at 
the stations E26A020, E26A030 and E26A031 in the east of 
the basin, the drought duration values for the return periods 
of 50, 100 and 200 years are mostly higher than the other 
parts of the basin. According to the drought severity values, 
it is observed that the drought severity for all return periods 
is quite low in the western part of the basin compared to 
other places.

Fig. 6  The best fit result of the 
univariate marginal distribution 
of the duration and severity
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Table 4  The result of AIC, 
BIC values and parameters for 
selected copulas (The bold and 
italices values represent the best 
successful copula) 

Station Criteria AMH Clayton Frank Galambos Gumbel-
Hougaard

Joe

D26A008 AIC – 253.68 – 305.78 – 311.37 – 312.13 – 311.24 – 305.84
BIC – 251.73 – 303.83 – 309.42 – 310.18 – 309.29 – 303.89
Parameter 1.0000 3.1084 16.914 4.9098 4.4530 34.9996

D26A012 AIC – 129.58 – 162.19 – 183.58 – 192.38 – 185.89 – 192.06
BIC – 128.11 – 160.72 – 182.11 – 190.92 – 184.42 – 190.60
Parameter 1.0000 4.2783 19.806 34.9829 5.6316 34.9997

D26A032 AIC – 131.63 – 157.45 – 177.56 – 184.45 – 175.51 – 183.19
BIC – 130.17 – 155.98 – 176.09 – 182.98 – 174.05 – 181.73
Parameter 1.0000 3.1018 18.693 34.9988 4.5199 34.9999

D26A040 AIC – 143.87 – 183.33 – 205.42 – 208.34 – 194.67 – 208.32
BIC – 142.43 – 181.89 – 203.99 – 206.90 – 193.24 – 206.88
Parameter 1.0000 3.4191 16.284 10.7922 4.0222 34.9972

D26A054 AIC – 155.98 – 195.65 – 211.11 – 222.39 – 206.66 – 222.03
BIC – 154.35 – 194.02 – 209.48 – 220.75 – 205.02 – 220.39
Parameter 1.0000 3.8949 15.475 8.1420 4.3480 34.9998

D26A060 AIC – 124.08 – 141.61 – 166.72 – 179.26 – 163.26 – 179.56
BIC – 122.67 – 140.21 – 165.32 – 177.85 – 161.86 – 178.16
Parameter 1.0000 2.4140 13.570 34.9896 3.8193 15.5127

D26A062 AIC – 134.92 – 163.82 – 167.23 – 168.69 – 158.53 – 168.37
BIC – 133.52 – 162.42 – 165.83 – 167.28 – 157.13 – 166.97
Parameter 1.0000 3.2450 14.303 6.8059 3.6033 34.9998

E26A003 AIC – 272.93 – 306.56 – 381.66 – 394.54 – 370.25 – 392.63
BIC – 270.82 – 304.45 – 379.55 – 392.43 – 368.14 – 390.51
Parameter 1.0000 1.9892 15.220 21.2937 3.5967 21.2735

E26A005 AIC – 173.98 – 209.02 – 218.70 – 221.00 – 209.88 – 220.84
BIC – 172.29 – 207.33 – 217.01 – 219.31 – 208.19 – 219.15
Parameter 1.0000 3.1435 14.262 12.7610 3.7544 34.9958

E26A010 AIC – 274.35 – 339.30 – 385.90 – 404.35 – 377.65 – 402.94
BIC – 272.22 – 337.17 – 383.77 – 402.22 – 375.52 – 400.82
Parameter 1.0000 3.3007 17.191 34.9960 4.4025 34.9999

E26A012 AIC – 278.90 – 319.39 – 330.37 – 329.10 – 322.87 – 326.40
BIC – 276.87 – 317.36 – 328.34 – 327.08 – 320.84 – 324.37
Parameter 1.0000 2.2481 13.444 5.2686 3.2280 34.9998

E26A018 AIC – 122.37 – 148.77 – 158.48 – 163.95 – 153.90 – 163.60
BIC – 121.03 – 147.44 – 157.15 – 162.62 – 152.57 – 162.27
Parameter 1.0000 3.2834 14.625 12.0171 3.7601 34.9997

E26A020 AIC – 178.97 – 214.69 – 225.16 – 225.05 – 223.24 – 221.50
BIC – 177.36 – 213.08 – 223.55 – 223.44 – 221.63 – 219.89
Parameter 1.0000 2.8877 15.047 4.9139 3.9996 34.9984

E26A024 AIC – 157.74 – 183.39 – 208.39 – 219.80 – 200.78 – 219.64
BIC – 156.07 – 181.73 – 206.73 – 218.14 – 199.12 – 217.97
Parameter 1.0000 2.5575 13.280 34.9880 3.5015 34.9995

E26A030 AIC – 104.77 – 120.46 – 120.99 – 123.12 – 118.97 – 120.13
BIC – 103.59 – 119.28 – 119.81 – 121.95 – 117.79 – 118.95
Parameter 1.0000 4.0148 15.498 9.6406 4.3473 34.9997

E26A031 AIC – 83.42 – 99.53 – 105.14 – 106.44 – 105.02 – 105.34
BIC – 82.53 – 98.64 – 104.25 – 105.54 – 104.13 – 104.45
Parameter 1.0000 3.1184 14.843 6.0855 4.1340 26.2232
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3.5  Bivariate return periods

With the help of copula functions, it is possible to deter-
mine the TDS

and (the probability that two variables exceed 
specific values) and TDS

or (the probability that one of two 
variables exceeded specific values) return periods as calcu-
lated in Eqs. 6 and 7. In this section, the return periods in 
the case of drought duration and severity variables simul-
taneously or separately will be evaluated. Bivariate return 
periods are determined with the help of copula functions 
using the drought duration and severity values deter-
mined with univariate 20-, 50-, 100- and 200-year return 
periods. For this purpose, the Galambos copula, which 
showed the most successful performance in the basin, is 
used at all stations. Using the Galambos copula, the return 
periods in case of simultaneously (TDS

and) and separately 
(TDS

or) drought duration and severity are given in Figs. 8 
and 9, respectively. As the TDS

and graph given in Fig. 8 is 

examined, it is seen that the bivariate return periods are 
approximately 5–10% higher than the univariate return 
periods in most of the stations in the basin. At station 
E26A031 located in the east of the basin, the bivariate 
return period is approximately 20% higher than the univar-
iate return period compared to other stations. For example, 
at station E26A031, the drought duration for the univariate 
20-year return period is 26.69 months and its severity is 
34. According to these drought duration and severity val-
ues, the co-occurrence return period calculated with the 
Galambos copula functions is 24.3 years. There may be a 
difference of more than 20% between the probability of 
the univariate return period and the bivariate return period 
co-occurring. The same station’s 50-, 100- and 200-year 
return periods are 61.1, 122.6 and 245.4 years, respec-
tively. At the stations E26A003, E26A010, E26A024, 
D26A008, D26A012 and D26A032 located in the middle 
region of the basin, in case of simultaneous occurrence 

Fig. 7  Drought events for the univariate return period of 20, 50, 100 and 200 years (a Duration, b Severity)
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of drought duration and severity values corresponding to 
univariate return periods, the bivariate return periods of 
20, 50, 100 and 200 years are approximately 20.5, 51, 
102 and 204 years, respectively. In other words, it turns 
out that there is no significant difference between uni-
variate return periods and bivariate return periods at the 
central point of the basin. It has been observed that the 
difference between univariate return periods and bivariate 
return periods (TDS

and) is in the range of 5–10% at sta-
tions E26A005, E26A012, E26A018, E26A020, E26A030, 
D26A040, D26A054, D26A060 and D26A062 which are 
located outward the central parts of the basin.

As the TDS
or graph given in Fig. 9 is examined, it can be 

interpreted that the results are similar to the TDS
and results. It 

is seen that the highest difference occurred again at station 
E26A031, located in the eastern part of the basin, and the 
occurrence of both drought duration and severity variables 
separately decreased to 168 years for a 200-year univariate 
return period. In other stations, it can be said that the uni-
variate return period of 200 years varies between 181 and 
196 years. Therefore, it can be reached that the univariate 
return periods of a significant part of the basin are in parallel 
with the results of  TDS

or.
It can be said that stations D26A008, D26A012, 

D26A032, E26A010 and E26A024, located in the middle 

and western part of the Tigris basin, are at high risk of 
drought according to TDS

and compared to other stations.
There are studies about the bivariate return periods cal-

culated according to the drought duration and severity val-
ues of univariate return periods. For instance, Botai et al. 
(2020) analysed the bivariate return periods in Eastern 
Cape Province, South Africa with using Joe copula. The 
maximum change of the univariate 100-year return period is 
128.6 years for TDS

and, (increased 28.6%), and is 84.4 years 
for TDS

or. The minimum change is 106.8 years for TDS
and and 

94 years for TDS
or for 100 years. Tosunoglu and Can (2016) 

made a bivariate (drought duration and severity) frequency 
analysis of monthly SPI values using the precipitation values 
of 173 meteorological stations covering the whole of Turkey, 
including the Tigris basin with Copula functions. Univari-
ate and bivariate joint return periods are investigated in the 
region where the Tigris basin is also located (named the 
fourth region in the related study). Although their study is 
made with monthly SPI values, it is known that meteorologi-
cal drought eventually causes hydrological drought (Gumus 
and Algin 2017). In the study, the joint return periods of 
drought duration and severity (TDS

and) corresponding to uni-
variate return periods of 10, 50-, 100-, 200- and 500-year, in 
the region where the Tigris basin is located are 15.5, 78.0, 
156.1, 312.9 and 781.6, respectively. For TDS

or, the common 

Fig. 8  Spatial distribution of the co-occurrence return period (TDS
and) corresponding to various univariate risks of return periods
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return periods corresponding to 10, 50-, 100-, 200- and 
500-year return periods are determined as 7.4, 36.8, 73.6, 
147.3 and 367.8 years, respectively. For the monthly SPI at 
bivariate return periods, there is a difference of over 50% 
compared to the univariate return periods. However, the dif-
ference is lower at the 3 months SDI values for the current 
study. It can be interpreted that this result is due to the SDI 
values calculated with the 3-month cumulative totals.

4  Conclusions

In this study, hydrological droughts of 16 streamflow 
gauging stations of the Tigris Basin, Turkey are calculated 
with the Streamflow Drought Index (SDI). The drought 
duration and severity values are extracted. The univariate 
and bivariate return periods of these two variables in the 
basin are evaluated with the copula functions.

The main conclusions of the present study are:

• SDI values of the basin show that the percentage of 
dry period is significantly higher than the wet period 
at 69% of stations.

• A strong relationship is determined between drought 
duration and severity throughout the basin according to 
Pearson and Spearman's rho correlation coefficients.

• The best fitted marginal distributions of drought dura-
tion are found out that Inverse Gaussian for 15 of the 16 
stations. For the drought severity variable, Weibull and 
Lognormal distributions are determined the best fitted 
marginal distribution at six and five stations, respectively.

• It is found that the Galambos copula is the most success-
ful copula function compared to other used copula types 
in the majority (81%) of the stations for the bivariate 
analysis.

• Univariate analysis of return periods shows that for only 
three stations in the east of the basin the drought duration 
for the return periods is mostly higher than the other parts 
of the basin. Additionally, the drought severity return 
periods is quite low in the western part of the basin.

• It has been observed that the difference between univari-
ate return periods and bivariate return periods (TDS

and) is 
in the range of 5–10% at stations that are located outward 
the central parts of the basin.  TDS

or results are found to 
be similar to the TDS

and results.
• As a result of the spatial analysis of the drought duration 

and severity in the Tigris basin with the bivariate copula, 

Fig. 9  Spatial distribution of the joint return period (TDS
or) corresponding to various univariate risks of return periods
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it is seen that the central and western parts of the basin 
have a high risk in terms of return periods.
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