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Abstract
Precipitation is one of the most intrinsic resources for manifold industrial activities all over Western Australia; conse-
quently, immaculate rainfall prediction is indispensable for flood mitigation as well as water resources management. This 
study investigated the performance of artificial neural networks (ANN) and Linear multiple regression (LMR) analysis to 
forecast long-term seasonal spring rainfall in Western Australia, using lagged El Nino Southern Oscillation (ENSO) and 
Indian Ocean Dipole (IOD) as potential climatic phenomena. The ANN was developed in the form of multilayer percep-
tron using Levenberg–Marquardt algorithm and subsequently LMR was used with statistical significance for future spring 
rainfall forecast. The total climatic dataset has been divided into calibration and testing phases to determine the efficacy of 
the developed models. Different statistical skill tests such as root mean square error (RMSE), mean absolute error (MAE), 
and Willmott index of agreement ‘d’ were used to assess the efficacy of LMR and ANN modelling. In general, LMR has 
lower MAE and RMSE values as compared to ANN for most of the stations during calibration and testing periods, whereas 
ANN models performed better than LMR models based on ‘d’ values. The overall statistical analysis paradigm suggests the 
efficacy of LMR over ANN models for rainfall forecasting using more climatic variables. As a result, the developed LMR 
model, incorporated with lagged global climate indices, will facilitate the adequate preparedness for the risks associated 
with potential droughts in the study region.

1  Introduction

Australia is experiencing manifold extreme events such as 
bushfire, flood, and drought due to the climate change. Con-
siderable spatial and temporal variations of climatic parame-
ters (such as temperature, relative humidity, and wind speed) 
are observed in different parts of Australia. Khastagir et al. 
(2017) observed that mean temperature and relative humid-
ity during summer months (Dec–Feb) are the most critical 
parameters for the occurrence of frequent bushfire events 

in Victoria; consequently, northwest Victoria is more fire 
prone compared to other parts of Victoria, because of high 
temperature and relatively low relative humidity (Khasta-
gir et al. 2018). In addition, spatial and temporal rainfall 
variation of rainfall was observed in Greater Melbourne, 
the capital of Victoria, Australia (Khastagir 2008). This also 
enhances the spatial and temporal variation in storm runoff 
and the streamflow (Islam et al. 2014). An incessant 11-year 
(1996–2007) drought was observed in Melbourne, when the 
cumulative rainfall was significantly below the long-term 
average (Khastagir and Jayasuriya 2008). Immaculate long-
term prediction of rainfall is one of the main predicaments 
confronted by water resources manager due to the intricate 
ever-changing atmosphere. To facilitate water resources 
management as well as controlling excessive flooding, an 
accurate understanding of long-term rainfall prediction is 
intrinsic. Due to paucity of rainfall, there is a probability of 
detrimental effect on flora and fauna in the aquatic system.

Climatic parameters can play a significant role in planning 
and mitigation activities for several key areas of the rural 
and urban communities such as water supply, infrastructure, 
agriculture, and extreme event mitigation. A climate index 
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can be used effectually to illustrate the change of climate 
dynamics. Large-scale climate phenomena illustrated by the 
climate indices facilitates the identification of rainfall varia-
bility in most parts of the world. Climate phenomena namely 
El Nino Southern Oscillation (ENSO), Indian Ocean Dipole 
(IOD), Southern Annular Mode (SAM), and Madden–Julian 
oscillation (MJO) are widely known for their effect in Aus-
tralian climate (Mekanik et al. 2013; Hossain et al. 2018b, 
2020a). In addition, it is well established that the effects 
of ENSO on Australian seasonal rainfall is the strongest in 
the world. Moreover, IOD, a by-product of Indian Ocean 
sea surface temperature, significantly influences the West-
ern Australian seasonal rainfall; therefore, ENSO and IOD 
may be used as potential predictors for seasonal rainfall 
forecasting. Numerous studies have identified that large-
scale climatic phenomena are responsible for rainfall vari-
ability in Australia and beyond (Yilmaz et al. 2014; Hossain 
et al. 2018a, 2020a). Most of these studies investigated the 
influences of ENSO, IOD and IPO on seasonal and extreme 
rainfall.

A variety of methods can be used to derive the telecon-
nection of climate indices such as: Southern Oscillation 
Index (SOI), Dipole Mode Index (DMI), Niño 4, Niño 3.4, 
Niño 3, Niño 1.2, and the Inter-Decadal Pacific Oscillation 
(IPO) with Australian rainfall and their variabilities in dif-
ferent parts of Australia. Sea level pressure, sea surface tem-
perature anomalies, geopotential height and precipitation are 
some of the important variables that need to be considered 
while using the above stated climate indices (Shams et al. 
2018). In particular, several studies have been carried out 
in Australia and overseas to investigate the relationships 
between seasonal rainfall and climate phenomenon (Kirono 
and Kent 2011; Abbot and Marohasy 2012; Mekanik et al. 
2013; Hossain et al. 2018a). Saha and Chattopadhyay (2020) 
carried out theory-based investigation pertaining the time 
series of rainfall in seasonal scale as well as yearly scale 
in the Himalayas during the summer monsoon. Pal et al. 
(2020) carried out study to investigate the behaviour of the 
time series of rainfall during the summer in northeast India. 
Bagirov et al. (2017) reported that numerous data-driven 
prediction models such as linear multiple regression (LMR), 
autoregressive integrated moving average (ARIMA), the 
K-nearest-neighbours (K-NN), artificial neural network 
(ANN), and support vector machines for regression (SVM-
reg) are used for rainfall forecasting. Chattopadhyay (2007) 
investigated the efficacy of ANN model in predicting aver-
age summer-monsoon rainfall over India. Chattopadhyay 
and Chattopadhyay (2018) revealed the efficacy of conju-
gate gradient descent algorithm for multilayer ANN through 
Shannon-Fano coding. Chattopadhyay and Chattopadhyay 
(2009) used an autoregressive neural network (ARNN) 
model, and the neural network was trained as a multilayer 
perceptron with the extensive variable selection procedure. 

Acharya et al (2013) carried out analysis for developing an 
artificial neural network based multi-model ensemble with 
a view to estimating the northeast monsoon rainfall over 
south peninsular India. In addition, the prediction of north-
east monsoon rainfall of seven general circulation models 
(GCMs) was conducted by Acharya et al. (2011). Nonethe-
less, Hossain et al. (2020a) noted that the most popular and 
widely used models for rainfall forecasting in Australia are 
ANN and LMR.

The non-linear ANN modelling technique is widely used 
not only in the field of hydrology but also in other areas. 
Acharya et al. (2014) *developed an ANN-based multi-
model ensemble to estimate the northeast monsoon rainfall 
over south peninsular India. Abbot and Marohasy (2017) 
used ANN to forecast the monthly rainfall in Murray–Dar-
ling basin, Australia using different climate indices such as 
SOI, Dipole Mode Index (DMI), Niño 4, Niño 3.4, Niño 3, 
Niño 1.2 and the Inter-Decadal Pacific Oscillation (IPO). 
Similarly, Abbot and Marohasy (2017) used ANN using 
several climate indices such as SOI, PDO, and Nino 3.4 to 
forecast monthly and seasonal rainfall in Queensland, Aus-
tralia. Nonetheless, Hossain et al. (2020a) used both ANN 
and LMR to forecast spring rainfall of three rainfall stations 
in Western Australia. Chakraverty and Gupta (2008) carried 
out prediction of southwestern monsoon rainfall in India 
using ANN models. Bilgili and Sahin (2010) applied ANNs 
to predict the long-term monthly temperature and rainfall for 
different stations in Turkey. For the likelihood estimation of 
water resources and hydrological variables, LMR modelling 
technique is commonly used (Hossain et al. 2018b).

LMR is also widely used in different parts of the world 
for rainfall prediction (Hossain et al. 2020a). In this method, 
independent variables are used to predict one dependent var-
iable using least squares method. Rasel et al. (2015) used 
LMR to reveal the influences of lagged ENSO and SAM 
as the potential climate predictors for the long-term rain-
fall forecasting in South Australia; similarly, Mekanik et al. 
(2013) examined the influence of lagged ENSO and IOD 
on Victorian rainfall using LMR technique. Several other 
studies such as Hossain et al. (2018b, 2020a), Mekanik et al. 
(2013) and Rasel et al. (2015) analysed either LMR or com-
bined LMR with ANN model, using 3 months of lagged 
rainfall to forecast rainfall in different parts of Australia. 
Nonetheless, it is intrinsic to incorporate additional climatic 
variables to extend the forecasting capability of both the 
linear and non-liner models to determine the prediction 
efficacy.

It has been commonly observed that the forecasting capa-
bility of non-linear modelling approaches (e.g. ANN) are 
better than the linear modelling techniques in predicting 
seasonal rainfall (Adamowski et al. 2012; Mekanik et al. 
2013; Djibo et al. 2015; Rasel et al. 2016a, b; Hossain et al. 
2020a). Nevertheless, most of the seasonal rainfall predictive 
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models considered only two independent variables in devel-
oping the linear models (Mekanik et al. 2013; Rasel et al. 
2016a, b; Hossain et al. 2018b, 2020a). Rainfall is a complex 
atmospheric global phenomenon, for which only two influ-
ential variables may not be sufficient to forecast accurately. 
Furthermore, non-linear ANN modelling approaches are 
black box models, which are intricate in nature and require 
special knowledge for their application. In addition, selec-
tion of number of hidden neurons is intrinsic in case of ANN 
models, for which no formal methods are currently avail-
able, other than the trial-and-error technique. As a result, 
the efficiency of both linear LMR and non-linear ANN mod-
els developed with multiple climatic variables needs to be 
investigated for practical use of the model output. Most of 
the previous research used only two variables to develop a 
particular linear model. However, in this study more than 
two variables were considered to develop a particular linear 
model. Consequently, it can be noted that if number of vari-
ables exceed two, the accuracy of the model can increase 
significantly. As a result, if the number of variables is more 
than two, three is a possibility that the prediction capability 
of linear model will be better than non-linear model. Accu-
racy of the ANN prediction depends on number of hidden 
layers; hence, in this research the best outcome was consid-
ered from 20 different hidden layers.

The main objective of this study is to investigate the 
efficacy of linear LMR and non-linear ANN modelling 
techniques using multiple climate variables and indices for 
spring rainfall forecasting in Western Australia. The multiple 
climate indices used in this study include Southern Oscilla-
tion Index (SOI), Niño4, Niño3, Niño3.4 and Dipole Mode 
Index (DMI) for monitoring ENSO and IOD respectively. 
These indices were used as predictors of monthly spring 
rainfall in LMR and ANN modelling.

2 � Study area

Western Australia, the largest state of Australia, has been 
selected as the study area. It is bounded by the Indian Ocean 
to the north and west, and the Southern Ocean to the south. 
Perth is the fastest growing capital of Western Australia. 
Western Australia is vulnerable to several climatic catastro-
phes such as: floods, droughts, and bushfires. In the recent 
decades, agricultural water supplies have plummeted in 
South-West of Western Australia; moreover, the frequency 
of the most intense cyclones have augmented in Western 
Australia (DPIRD 2020). Significant increase in frequency 
of extreme fire events have been observed at Perth, Kalgoor-
lie, and Broome, respectively.

This study selects seven rainfall stations located across 
Western Australia (WA) as shown in Fig. 1. The selection 
of these stations was based on the data availability and 

their spatial distribution representing all climatic condi-
tions in WA. The information of these rainfall stations is 
given in Table 1.

3 � Methodology

3.1 � Rainfall and climate indices data

To facilitate the construction and application of linear 
and non-linear models, two types of data (seasonal rain-
fall and climate indices) are required. Daily rainfall data 
(1965–2019) for the selected stations were collected from 
Australian Bureau of Meteorology (website: www.​bom.​
gov.​au/​clima​te/​data/). Monthly total rainfall was calculated 
from the daily data and the seasonal average was taken 
by averaging the monthly total of seasonal rainfall. The 
climate indices data were extracted from Climate Explorer 
website (http://​clime​xp.​knmi.​nl). The climate indices can 
be explained by sea surface temperature and sea level 
pressure anomalies around the globe. They can be used to 
describe the state and changes in the global atmospheric 
phenomenon, e.g. seasonal rainfall. Statistical analysis 
(such as time series analysis; their averages, extremes, and 
trends) can be performed using the climate indices. Two 
different types of indicators represent the ENSO: South-
ern Oscillation Index (SOI) and sea surface temperature 
anomalies. Another climate index IOD is represented by 
Dipole Model Index (DMI).

All extracted data (seasonal rainfall, ENSO and IOD) 
were divided into two sets, for the construction and vali-
dation of LMR models. The LMR models were assembled 
using the data from 1965 to 2014. The performance and 
efficacy of the developed LMR models were tested using 
the data from 2015 to 2019. A brief description of climate 
indices used is given as follows:

(a)	 Southern Oscillation Index (SOI) is a measure of sea 
level pressure differences between Tahiti (149.23° W, 
17.78° S) and Darwin (130.83° E, 12.45° S)

(b)	 Nino 3 is a measure of sea surface temperature anom-
alies which corresponds with the region (5° S–5° N, 
150° W–90° W),

(c)	 Nino 4 corresponds with the region (5° S–5° N, 160° 
W–150° W)

(d)	 Nino3.4 corresponds with region (5° S–5° N, 170° 
W–120° W) in the equatorial Pacific Ocean.

(e)	 DMI is a measure of difference in the average sea sur-
face temperature anomalies from the tropical Eastern 
Indian Ocean (10° S to Equator, 90° E–110° E) to 
the tropical Western Indian Ocean (10° S–10° N, 50° 
E–70° E).

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://climexp.knmi.nl
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3.2 � Linear multiple regression modelling (LMR)

The LMR is a linear statistical modelling technique, which 
uses the least square method to find the best correlation 
between a variable (seasonal rainfall) and several other vari-
ables (climate indices). The general equation for LMR mod-
els can be expressed according to the following equation:

where Ri is the spring rainfall; Xlag and Xlag are the variables 
of the linear MR equations (ENSO and IOD in this study), a1 
and a2 are the coefficients of the corresponding variables; c0 
is the constant and ‘e’ is the error of the linear MR analysis. 

(1)Ri = c0 + a1Xlag + a2Xlag + e

Fig. 1   Locations of the study 
area

Table 1   Specific information for the selected rainfall stations

Region Station Latitude Longitude

Southern Dwellingup − 32.7103 116.0594
Margaret River − 33.9583 115.0636
Marradong − 32.8556 116.45
Tambellup − 34.0444 117.6419

Eastern Giles Meteorological 
Office (GMO)

− 25.0341 128.301

Western Ningaloo − 22.6975 113.6744
Northern Rosewood − 16.46 129.01
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The effects of lagged climate indices were considered by 
adopting the spring rainfall of year ‘n’ and monthly (Decn-1, 
Jann to Augn) values of the climate indices.

For any established model, evaluation is considered as an 
essential part to determine whether the initiative is worth-
while in terms of providing the anticipated outputs. The gen-
eral tendency for the evaluation of empirical models is per-
formed based on statistical correlation tests. In this study, the 
performances of the constructed LMR models were assessed 
by applying several error indices and statistical performance 
tests as given in Sect. 3.4.

3.3 � Artificial neural network modelling (ANN)

Artificial neural network (ANN) is a statistical method 
designed to simulate the way biological human brain pro-
cesses information. ANN is a data-driven mathematical 
model that was developed to imitate the structure of a human 
brain neural network and has been widely applied to solve 
problems such as prediction and discrimination (Mekanik 
et al. 2013). In general, an ANN refers to a multilayer per-
ceptron structure. ANNs learn by detecting patterns and 
relationship within the provided input and desired output 
variables. ANN has been inspired by biological neural net-
works; it consists of simple neurons and connections that 
process information to find a relationship between inputs 
and outputs. The most common ANN architecture used by 
hydrologist is the multilayer perceptrons (MLP) which is 
a feedforward network that consists of three layers of neu-
rons, the input layer, the hidden layers, and the output layer 
(Mekanik et al. 2013). The number of input and output neu-
rons is based on the number of input and output data. The 
input layer only serves as receiving the input data for further 
processing in the network.

The non-linear ANN modelling technique was applied 
to predict the long-term seasonal rainfall considering the 
climate indices as the probable predictors. The same cli-
mate indices which were used to develop the LMR model 
were considered to develop the ANN model. The computer 
program MATLAB was used for the development of the 
ANN model. No standard method has been discovered yet 
to determine the number of nodes in the hidden layer of 
ANN modelling technique. As a result, common practice of 
hidden layer node detection is the trial-and-error method, 
which is also applied in this research. The ANN model has 
the danger to learn from the random fluctuation in the train-
ing data, which is called overfitting. Consequently, the per-
formance of the network becomes very poor for unseen data 
during the testing phase. To prevent the overfitting problem 
in this research, early stop technique was employed which 
stop the training when the error in the testing data sets start 
to increase even though the error in the training continue to 
decrease.

For the application of ANN modelling approach, two acti-
vation functions are required for hidden layer and output 
layer, respectively. In this research, non-linear tan-sigmoid 
activation function is used for hidden layer and linear purelin 
function is applied for the output layer as recommended by 
Maier and Dandy (2001). These functions can be expressed 
according to the following equations for tan-sigmoid and 
purelin functions, respectively:

where Y  is the sum of all the inputs coming to the neuron.

3.4 � Goodness of fit tests

To check the efficiency of the adopted linear and non-linear 
modelling techniques, the outputs of the developed models 
are assessed using statistical methods, such as Pearson cor-
relation coefficients (R), root mean square error (RMSE), 
mean absolute error (MAE) and Willmott index of agree-
ment (d):

where Pobs,i is the observed rainfall, Ppred,i is the predicted 
rainfall, Pobs is the mean observed rainfall, and n is the num-
ber of observation.

4 � Results and discussion

4.1 � Relationship between lagged climate indices 
and spring rainfall

To forecast West Australian seasonal rainfall, the ability 
of ENSO and IOD has been investigated in this study. It 
is apposite to investigate the influences of IOD and ENSO 
on Western Australian spring rainfall, using both linear as 
well non-linear modelling approaches. This is because of 
2–3 months average values of climate indices having the 
highest correlation with Austral spring rainfall (Chiew et al. 

(2)f1 =
2

1 + e−2Y

(3)f2 = Y

(4)RMSE =

�
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1998). For this, it was decided to analyse the individual cor-
relation between spring rainfall and monthly climate indices, 
e.g. DMI, Southern Oscillation index (SOI), and Nino3.4, 
respectively. The rainfall values which have statistically sig-
nificant correlations with climate indices were further ana-
lysed using linear LMR modelling technique. The results of 
the correlation analysis are shown in Table 2. The outcomes 
of the correlation analysis reveal that only 4 months (May, 
June, July and August) of SOI and Nino3.4 have significant 
correlations with spring rainfall. Nonetheless, DMI values 
in April, May, June, July, August, and December have sig-
nificant correlations with spring rainfall.

Table 2 illustrates that Western Australian spring rainfall 
significantly affected by DMI, SOI and Nino3.4 for most of 
the rainfall stations. In particular, for Rosewood station, the 
maximum significant correlation between spring rainfall and 
SOI was found 0.50 in July, whereas for the same station 
maximum significant correlation between spring rainfall and 
Nino 3.4 was found 0.50 in August. Although, Tambellup’s 
spring rainfall is significantly affected by DMI and SOI, 

there is no statistically significant correlation with Nino3.4. 
The maximum significant correlation between the rainfall 
and DMI was observed in August for the five rainfall stations 
namely, Dwellingup, Margaret River, Marradong, Tambel-
lup, and Rosewood. The analysis verifies the intricate nature 
of atmospheric rainfall formation in West Australian rainfall 
stations; therefore, it can be postulated that single climatic 
driver is not effectual to predict long-term seasonal rainfall.

Since both, the ENSO and IOD have intense influence 
on Western Australia, combined effects of the indices DMI, 
SOI and Nino 3.4 were investigated. To assess this combined 
effect, the climate drivers with significant correlated months 
were further organised to apply LMR and ANN techniques. 
IOD-ENSO input sets were analysed as potential predictors 
of Western Australian spring rainfall for all seven rainfall 
stations, and the potential combined models are illustrated 
in Table 3. It should be noted that the climate indices, which 
have the significant correlation with the spring rainfall were 
considered to develop the models. Hence, input data sets of 
climate indices, DMIApr–Dec, Nino3.4May–Aug, and SOIMay–Aug 

Table 2   Correlation between lagged climate indices and spring rainfall

a  Correlation is significant at the 0.05 level (2-tailed)
b  Correlation is significant at the 0.01 level (2-tailed)

Lagged climate indices Stations

Ningaloo Dwellingup Margaret River Marradong Tambellup GMO Rosewood

DMI(Apr) – – – – – 0.30a –
DMI(May) – – – 0.29a – − –
DMI(Jun) – – 0.26a − – 0.26a –
DMI(July) – – − − 0.29a – – –
DMI(Aug) – − 0.30a − 0.29a − 0.38b − 0.32a – − 0.33a

DMI(Dec) − 0.28a – – − – – –
Nino3.4(Apr) − 0.27a − 0.31a − 0.31a – – – –
Nino3.4(May) 0.29a − 0.29a − 0.33a – – – –
Nino3.4(Jun) − 0.33a − 0.26a − 0.33a – – − 0.29a − 0.41b

Nino3.4(July) − 0.29a – − 0.29a − 0.27a – − 0.27a − 0.47b

Nino3.4(Aug) – – − 0.27a − 0.31a – − 0.28a 0.50b

SOI(May) – 0.29a 0.32a – – – –
SOI(Jun) – 0.27a 0.31a – 0.26 a – 0.39b

SOI(July) – – – – – 0.35b 0.50b

SOI(Aug) – – – – – – 0.49b

Table 3   Climate indices months 
considered to develop linear and 
non-linear models

DMI Nino3.4 SOI

Apr May Jun Jul Aug May Jun Jul Aug
May May Jun Jul Aug – Jun Jul Aug
Jun May Jun Jul Aug – Jun Jul Aug
Jul May Jun Jul – May – – –
Aug May – – – – – – –
Dec May Jun Jul Aug May − Jul −
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were considered to develop both LMR and ANN models for 
all seven selected rainfall stations.

4.2 � Goodness of fit tests

As mentioned earlier, the statistical performances of the 
developed LMR as well as ANN models were assessed with 
statistical errors such as RMSE and MAE. In addition, the 
index of agreement ‘d’ was also used to assess the capabil-
ity of LMR and ANN model to fit the observation. Table 4 
illustrates the goodness of fit tests results during calibration 
(1965–2014) and testing period (2015–2019) for the devel-
oped LMR and ANN models for all stations, respectively. In 
general, the RMSEs were found lower for LMR technique 
compared to ANN models; therefore, the linear modelling 
technique seems to be more accurate than the ANN model 
in predicting the long-term seasonal rainfall of WA. It is 
evident from the results that the RMSE of the constructed 
linear LMR models are reasonably lower during the calibra-
tion period for all stations, although, RMSE of the testing 
period is considerably higher for Margaret river and Rose-
wood station. The results of MAE of the constructed models 
for LMR and ANN for calibration and validation shows that 
the higher MAE values were observed during the calibration 
period for the two stations (Marradong and Rosewood) for 
LMR model; although, during testing period, higher MAE 
values were observed for Margaret river and Rosewood sta-
tion. Nevertheless, for the remaining stations, higher MAE 
values were found for ANN models both for calibration and 
testing periods. Hence, it can be postulated that both MAE 
and RMSEs are generally lower for LMR compared to ANN 
models, in case of West Australian spring rainfall prediction.

The precision of the developed linear and non-linear 
models can be evaluated through a statistical test, index 
of agreement ‘d’ (Wilmott 1984), which demonstrates 
the efficacy of the models to fit the observations. Table 4 
highlights that IOD-ENSO-based ANN models pos-
sess better agreement compared to LMR models during 
the calibration period, having ‘d’ closer to 1 for most of 
the stations. In addition, during the validation period for 
GMO and Tambellup stations, ‘d’ value has significantly 
plummeted, while using LMR model. In general, for both 
the calibration and testing periods the non-linear ANN 
models performed better than LMR models based on ‘d’ 
values. The above stated information verifies that the LMR 
model may not be effectual to forecast the rainfall with 
utmost exactitude for all stations; hence, identification of 
an individual model to forecast rainfall, which is a com-
plex global phenomenon is not pragmatic. As a result, in 
this study, it was decided to carry out the selection of the 
best predicted models, based on comparatively lower MAE 
and RMSE as well as ‘d’ value relatively close to 1. It is 
important to note that the results obtained from this study 

are not consistent with the similar studies carried out for 
different parts of Australia by Rasel et al. (2015), Hossain 
et al. (2018b), Hossain et al. (2020b) and Mekanik et al. 
(2013). The contrasting output in this present study is due 

Table 4   Goodness of fit tests for the developed models during cali-
bration and testing period

Stations Goodness 
of fit test

Models Calibration Testing

Ningaloo RMSE LMR 3.88 2.25
ANN 4.38 3.81

MAE LMR 2.94 1.29
ANN 3.58 2.79

d LMR 0.60 0.42
ANN 0.70 0.60

Dwellingup RMSE LMR 25.36 31.13
ANN 49.23 30.15

MAE LMR 19.13 28.94
ANN 35.57 29.43

d LMR 0.47 0.37
ANN 0.17 0.38

Margaret River RMSE LMR 16.87 24.41
ANN 13.38 13.89

MAE LMR 13.97 20.63
ANN 20.63 12.84

d LMR 0.59 0.41
ANN 0.58 0.95

Marradong RMSE LMR 12.57 18.30
ANN 5.17 24.2

MAE LMR 9.92 16.92
ANN 3.08 20.64

d LMR 0.53 0.47
ANN 0.96 0.61

Tambellup RMSE LMR 12.05 14.26
ANN 14.6 19.55

MAE LMR 9.69 12.867
ANN 10.42 17.45

d LMR 0.61 0.26
ANN 0.57 0.54

GMO RMSE LMR 13.44 14.51
ANN 14.94 16.71

MAE LMR 11.02 11.05
ANN 11.97 13.28

d LMR 0.66 0.26
ANN 0.74 0.67

Rosewood RMSE LMR 15.46 23.02
ANN 11.19 12.74

MAE LMR 11.86 20.49
ANN 8.71 11.85

d LMR 0.77 0.42
ANN 0.9 0.76
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to incorporation of more critical variables for LMR model, 
unlike the above-mentioned studies.

Table 5 reveals the percentage improved by LMR models 
compared to ANN models; therefore, positive percentage in 
the table represents the prediction improvement over ANN 
models. For most of the stations, the linear MLR models 
performed better than the non-linear ANN models based on 
RMSE and MAE, although ANN models performed exceed-
ingly well based on index of agreement ‘d’ values.

4.3 � Relationship between LMR and ANN outputs 
with observed rainfall

Comparisons of the linear MR modelling and ANN out-
puts with observed rainfall are plotted during the calibration 
period and shown in Figs. 2, 3 and 4. Figure 2 delineates 
the comparison between the observed rainfall and predicted 
rainfall obtained for different stations in four regions, using 
both LMR and ANN models. Compared to ANN model, 
LMR model could re-produce the observed rainfall with 
reasonable accuracy for most of the stations. The LMR 
model has demonstrated considerable deftness to predict 
the extreme rainfall during the calibration period. Fig-
ure 3 depicts the comparison between the observed rainfall 

Table 5   Percentage improved 
by LMR models compared to 
ANN models

Stations RMSE MAE d

Calibration Testing Calibration Testing Calibration Testing

Ningaloo 11.4 41.0 17.9 53.7 − 14.7 − 30.5
Dwellingup 48.5 − 3.2 46.2 1.7 175.3 − 0.5
Margaret River − 26.1 − 75.7 32.3 − 60.7 1.0 − 56.7
Marradong − 143.0 24.4 − 222.0 18.0 − 45.2 − 23.8
Tambellup 17.5 27.0 7.0 26.3 6.7 − 52.4
GMO 10.1 13.1 7.9 16.8 − 11.5 − 61.5
Rosewood − 38.2 − 80.7 − 36.2 − 72.9 − 14.1 − 44.6
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Fig. 2   Comparison of LMR modelling with ANN for the selected stations from different regions during calibration
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Fig. 3   Comparison of the models’ outputs with the observed rainfalls for the selected stations from different regions during the testing period
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Fig. 4   Comparison of the ANN modelling outputs with MLR models outputs in regards to peaks and troughs for the selected stations
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and predicted rainfall obtained for the selected stations, 
using both LMR and ANN models for the testing period 
(2015–2019). Although, on some occasions, LMR model 
outputs slightly deviate from the actual observed rainfall, 
overall, LMR model performs relatively well during testing 
phase compared to ANN model for several stations. The 
understandable reason behind these divergences of both 
LMR and ANN model on rainfall prediction is due to exist-
ence of climatic drivers as well as local climatic condition 
of Western Australia. The predictive capability of the mod-
els (both LMR and ANN) was also assessed in producing 
the rainfall peaks and troughs throughout the time series 
periods. Hence, additional information regarding developed 
LMR and ANN models can be extracted from the peaks 
and troughs; thus, plotted results of the peaks and troughs 
are illustrated in Fig. 4. In general, for all the four regions, 
LMR model was able to forecast the troughs and peaks with 
reasonable accuracy compared to ANN model.

5 � Conclusions and recommendations

In this study, artificial neural network and LMR techniques 
were used to forecast monthly Spring rainfall in seven dif-
ferent rainfall stations spreading all around Western Aus-
tralia. Climate indices representing ENSO and IOD, namely 
DMI, SOI, and Nino3.4 were used as predictors. Nino3.4 
and Southern Oscillation Index (SOI) were used as ENSO 
indicators and Dipole Mode Index (DMI) was chosen as IOD 
indicator. It is important to note that the predictors were 
lagged by 4–6 months to provide prediction lead time. Both 
ANN and LMR models performed with some level of preci-
sion to predict the monthly rainfall for Western Australia.

The correlation coefficients of past values of the climate 
indices with spring rainfalls for the seven stations were 
determined. As mentioned earlier, climate indices, which 
have the significant correlation with the spring rainfall were 
considered to develop both LMR and ANN models. The 
outcomes of correlation analysis disclose that only 4 months 
(May, June, July and August) of SOI and Nino3.4 have sig-
nificant correlations with spring rainfall; however, DMI val-
ues in April, May, June, July, August, and December have 
significant correlations with spring rainfall. Both the LMR 
and ANN models were analysed to explore the predictive 
potential of seasonal rainfall; subsequently, manifold sta-
tistical evaluation parameters namely: RMSE, MAE and d 
were used to determine the efficacy of these two models. 
In general, the RMSEs of the analysis disclose that LMR 
model is more effectual compared to the ANN models in 
predicting the long-term seasonal rainfall of WA. RMSE 
of the constructed LMR models are reasonably low during 
the calibration period for the study area, although, consider-
ably higher RMSEs were observed for Margaret River and 

Rosewood station during the testing period. Nonetheless, 
for most of the stations except Marradong and Rosewood 
higher MAE values were observed for ANN models in 
comparison with LMR models. ANN models possess better 
agreement compared to LMR models during the calibra-
tion period, having ‘d’ closer to 1 for most of the stations; 
similarly, during the validation period for Giles Meteoro-
logical Office (GMO) and Tambellup stations, ‘d’ value has 
significantly plummeted, while using LMR model. Based 
on the above discussion, it can be concluded that the errors 
(RMSE and MAE) are generally lower for LMR compared 
to ANN models, although, during the calibration and testing 
periods, ANN models performed better than LMR models 
based on ‘d’ values.

Overall, the constructed LMR models are suitable for 
most of the stations while predicting the extreme rainfall 
with reasonable exactitude, compared to ANN models. Due 
to considerable spatial and temporal variability of rainfall 
in Western Australia, further investigation using both linear 
and non-linear modelling techniques is required to recom-
mend a generalised model for seasonal rainfall prediction. 
To recapitulate, this study revealed the possibility of sea-
sonal rainfall forecasting using ANN as well as LMR mod-
els for the study area. Immaculate prediction of the spring 
rainfall in Western Australia will facilitate water resources 
management to safeguard flood mitigation and provide ade-
quate strategies to withstand potential droughts. Hence, the 
developed LMR model can be considered as an effectual 
alternative, in addition to the prevalent physically based 
forecasting models.
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