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Abstract
This study compares seven global gridded daily precipitation datasets against gauged precipitation to evaluate their accuracy 
for capturing extreme precipitation in Iran. We evaluated the performance of satellite-based (CHIRPS and MSWEP-V220), 
reanalysis-based (CFSR and MERRA-2), ensemble-based (MRE3ensemble), and “bias-correction”-based (MRE3ensemble, 
EWEMBI, and W5E5) precipitation datasets for the period of 1980–2016. The extreme precipitation indices that we exam-
ined consist of intensity indices [the maximum consecutive 1-day precipitation (Rx1day) and simple precipitation intensity 
(SDII)], duration indices [the consecutive dry days (CDD) and the consecutive wet days (CWD)], and frequency indices 
[heavy precipitation events (R10mm) and very heavy precipitation events (R20mm)]. The results showed that MSWEP-V220 
had the best performance in Iran and Bias-Correction W5E5 was the second-best dataset to estimate precipitation in Iran. 
Although RMSE and MBE statistics showed high error and bias for all precipitation datasets in northern Iran, the evalua-
tion of the PBIAS showed the share of bias value in the northern regions of Iran compared to the total precipitation in the 
climate zone of Iran is less than 5%. In contrast, most datasets showed a high percentage of bias in the eastern and interior 
regions of Iran. The results showed that all the studied datasets in the rainy areas of Iran (Cfa, Csa, and Dsa) underestimate 
maximum one-day precipitation (Rx1day), precipitation intensity (SDII), and heavy and very heavy precipitation (precipita-
tion > 10 and 20 mm). In addition, MERRA-2 and CFSR overestimate the indices related to intensity and frequency in the 
most desert (BW) and semi-desert (BS) climates of Iran, respectively. CHIRPS data in all climate zones of Iran—except the 
CWD index in Cfa climate zone – overestimate the CDD index and underestimated the CWD. Accordingly, CHIRPS data 
show a drier climate for Iran unrealistically.

1 Introduction

Precipitation plays a vital role in issues related to hydrology 
(Poonia et al. 2021), meteorology, climatology, and climate 
change (Trenberth 2011). In addition, an essential part of 
water balance and the energy cycle is related to precipitation 
changes (Wang et al. 2020). Precipitation directly affects 
runoff generation and soil moisture (Sofia et al. 2019). 
Hence, careful study of precipitation, especially extreme 
precipitation, is essential in water resource management 
such as flood forecasting and drought monitoring (Funk et al. 

2014), environment (Su et al. 2007), and scientific and social 
applications (Funk et al. 2015). However, precipitation esti-
mating is very challenging in a country like Iran, with a 
complex topography and high climate diversity. Changes in 
extreme precipitation are generally heterogeneous compared 
to extremes temperature both spatially and temporally. The 
Fifth Assessment Report of the IPCC (AR5) expressed that 
probably, the frequency of extreme precipitation events in 
many parts of the globe has statistically increased since 1951 
(IPCC 2014). However, some areas also showed a decrease 
(Stocker 2014), and global observations generally showed 
an increase in the frequency and intensity of wet extremes 
over the past century (Donat et al., 2016).

Climate extremes often occur on relatively short time 
scales, and it is important that the daily data used to study 
climate extremes be able to reflect this time scale (Donat 
et al. 2020). Temperature waves (hot or cold) usually last 
for days or weeks. In contrast, heavy precipitation occurs 
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at intervals of several days, daily, or even relatively less 
than one day. Therefore, to adequately describe this type of 
extreme with high temporal and spatial variability, data with 
relatively high temporal and spatial resolution are required. 
So, we need long-term reliable data (at least five to six con-
secutive decades) to study long-term changes.

The availability of daily data with a suitable temporal 
and spatial scale is critical for examining climate extremes. 
Although a large number of datasets relating to the last cen-
tury are available (Schneider et al. 2018), the accessibility 
of daily data is limited globally, resulting in a limitation for 
studying extremes. Generally, three gridded climate datasets 
can be used for studying precipitation extremes: (1) Obser-
vational data, (2) Reanalysis data, and (3) Satellite data.

Observational data are the most reliable data for study-
ing global climate variables. However, this dataset remains 
sparse and problematic for many regions in developing coun-
tries, such as most parts of Iran, resulting in a lower ability 
to establish changes both in terms of spatial and temporal 
scales. Reanalysis datasets are generated by combining spe-
cific types of observational data in atmospheric numerical 
models (Dee et al. 2011) and provide variables on a regular 
grid within continuous spatial and temporal coverage over 
the entire globe. Therefore, they have become a popular 
dataset for studying climate variables. However, we must 
be careful in using this data due to three reasons: (1) Lack 
of homogeneity of observational data that is used as input to 
this dataset; (2) Imperfections in data assimilation schemes 
and (3) Model uncertainty (Thorne and Vose 2010). From 
this perspective, removing the bias of this dataset is an excel-
lent approach to using this data.

The availability of daily precipitation based on satellite 
data is a significant turning point in climate studies. Extract-
ing data from satellites is one of the most reliable methods 
for studying climate variables despite the limitations of 
the period and the algorithm used in satellite sensors. This 
dataset has been available since the 1960s when the first 
meteorological satellite (TIROS-1) was launched; however, 
daily data with the appropriate horizontal resolution has 
not been accessible before the 1980s. Today, an extensive 
range of satellite products such as CHIRPS v2.0 (Funk et al. 
2015), PERSIANN-CDR (Ashouri et al. 2015), 3B42 RT 
v7.0 (Huffman et al. 2007), CMORPH V1.0 (Xie et al. 2017) 
and most recently MSWEP_V220 (Beck et al. 2019a, b) are 
available to use.

On a regional scale, many studies have used gridded 
precipitation datasets to estimate precipitation extreme 
indices to assess the fitness of various methods and inno-
vations of the gridded dataset (Ou et al. 2013; Rhodes 
et al. 2015; Li et al. 2018; Alexander et al. 2020). How-
ever, many studies conducted in Iran (Rahimzadeh et al. 
2009; Soltani et al. 2016; Ghiami-Shamami et al. 2019; 
Rahimi and Fatemi 2019; Fathian et al. 2020) used only 

limited existing station datasets to study extreme precipi-
tation and the reanalysis, ensemble, and satellite dataset 
was not used in most of these studies. However, these 
datasets have good validity at some regional levels (Beck 
et al. 2017; 2019a, b). Few studies (Katiraie-Boroujerdy 
et al. 2017; Pour et al. 2020) that examined precipitation 
extremes with gridded data over Iran stated that they are 
reliable. None of these studies have used more than one 
gridded dataset and compared available datasets in terms 
of accuracy.

Monitoring and forecasting precipitation extreme indices 
have been used in various studies. Considering the extreme 
indices have consistently been the subject of climate change 
studies in different parts of the world. In the meantime, most 
of these studies have been performed using observation or 
reanalysis data purely. Locations examined in these studies 
include a basin (Su et al. 2006; Zandonadi et al. 2016; Chen 
et al. 2021), geographical area (Rahimzadeh et al. 2009; 
Molanejad et al. 2014; Iqbal et al. 2019) or world (Alex-
ander et al. 2006). Few studies at the level of a geographi-
cal area also examined the output of ensemble data (Soares 
et al. 2012) to study precipitation extremes. The number of 
studies that have used multiple datasets to study precipita-
tion extremes has grown significantly in recent years (Donat 
et al. 2016; Herold et al. 2017; Gupta et al. 2020; Zhao 
et al. 2020). An essential advantage of this type of study 
over similar studies using an individual dataset is the non-
dependence of the results on a specific dataset and the care-
ful examination of their uncertainty despite this important 
feature, this type of study has not been done in Iran so far.

The primary purpose of this study is to compare Iran's 
precipitation extreme indices with multiple gridded datasets 
with high horizontal resolution. In addition, another primary 
purpose of this study is to investigate the intensity, duration, 
and frequency of extreme precipitation in different climate 
zones of Iran. Due to the lack of observational data on the 
one hand and the insufficient length of data, on the other 
hand, we have to use gridded data. Since the performance 
of the different datasets is not similar and relying on an indi-
vidual dataset is associated with high uncertainty, we have 
compared the performance of seven global gridded datasets 
in terms of capturing extreme precipitation over Iran.

This study is done to achieve the following goals: (1) To 
evaluate routinely used reanalysis and satellite gridded data-
sets in Iran (2) Highlighting the fundamental differences in 
gridded datasets to capture extreme precipitation, (3) Revil-
ing value of integration of different precipitation data, and 
(4) Estimating extensive precipitation in mountainous areas 
and especially Caspian coasts of Iran where the observa-
tion data scare. The results of this study may have essential 
achievements for data assimilation, water resources man-
agement, and the identification of critical areas of heavy 
precipitation.
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2  Material and methods

2.1  Study area

Iran is located in southwest Asia in a region called the 
Middle East. It is a vast plateau bounded on the south by 
the Persian Gulf and the Sea of Oman and on the north by 
the Caspian Sea, the Central Asian steppes, and the Cauca-
sus Mountains (Fig. 1). Westerly winds in the cold period 
(Raziei et al. 2013; Mofidi et al. 2015) of the year and 
subtropical high pressure in the warm period (Zarrin et al. 
2010) mainly control the country's climate. At the same 
time, it is extended along the latitude; the relatively com-
plex topography and the proximity to the seas have created 
a very diverse climate for this country and high temporal 
and spatial variability are its predominant features. Since 
the purpose of this study is to investigate different gridded 

daily precipitation datasets for the study of extreme precip-
itation indices in Iran, we have classified the country into 
climate zones to analyze better the performance of each 
of the selected datasets whose full description is given in 
Table (1). Köppen–Geiger climate classification method 
used for climate zoning. Iran has 13 climate zones (out of 
31 Köppen–Geiger climate classification), so it is a coun-
try with a diverse climate. Considering the four conditions 
examined in the next section, 49 stations were selected to 
study Iran's observational extremes and verify the dataset. 
Of all selected stations, 6.12% are in the Bsh zone, 24.48% 
are in BSk zone, 30.61% are in BWh zone, 16.32% are in 
BWk zone, 2.04% are in Cfa zone, 10.20% are in Csa zone 
and 10.21% is in the Dsa zone. A large number of stations 
in the hot and cold desert and semi-desert areas in the 
Köppen–Geiger classification is due to the prevailing cli-
mate of Iran, which is desert (BW) and semi-desert (BS).

Fig. 1  Spatial distribution of Synoptic stations over Iran, with Digital 
Elevation Model (DEM), derived from the SRTM elevation data (~ 1 
 km2) and 1-km resolution Köppen-Geiger climate classification maps 

(Fick and Hijmans 2017). These Synoptic stations provided consistent 
observations from 1980 to 2016
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2.2  Data used in the study

2.2.1  Observational data

In Iran, there are 53 synoptic stations with 40 years records 
that are of high study value for the study of extremes. How-
ever, there is still no data for many parts of Iran, so the use 
of gridded data is required. To select the stations four main 
conditions were considered: (1) The period of the obser-
vation data should be the same as the data of the selected 
global daily gridded precipitation datasets (as shown in 
Table 1, only the CHIRPS data started in 1981), so stations 
selected that have had data in Iran since 1980, and 53 sta-
tions selected based on the first condition. (2) The maxi-
mum missing data from the entire time series of stations 
should not be 10% (Zolina et al. 2005); accordingly 4 out of 
53 stations omitted. (3) Data with more than three standard 
deviations from daily values and repeated data relating to 
more than ten days with non-zero values were then examined 
(Alexander et al. 2006), and none of the 49 stations has these 
two problems. (4) The uniformity of data was examined by 
the Standard Normal Homogeneity Test (SNHT) (Alexan-
dersson 1986), and their accuracy was confirmed at the level 
of 0.05.

2.2.2  Global daily gridded precipitation datasets

New precipitation datasets are released regularly following 
innovations in weather forecasting models, satellite recovery 
methods, and multi-source integration techniques. There are 
more than 400 synoptic stations in Iran and 13% of these 
stations (53 stations) have data for forty years (beginning 
in 1981), and only 16 stations have data for seventy years 
(beginning in 1951). On the other hand, there is no station 
in the interior desert areas and the highlands (the highest 
station in Iran located at an altitude of 2985 m) of Iran. 
Therefore, using only the station data will not provide a good 
understanding of Iran's climate. However, as the observa-
tional data is limited by the arid environment and complex 
topography, sufficient and reliable information about pre-
cipitation in Iran has not been available so far. To improve 
the accuracy of estimation precipitation, this study examined 
various precipitation datasets, including satellite, reanalysis, 
and bias-correction data for 1980–2016 (Table 1).

2.3  Assessment metrics to quantify the evaluation 
of the multi precipitation datasets

Statistical measures of Root Mean Square Error (RMSE), 
correlation, bias, and variability hybrid performance meas-
ures, the Kling—Gupta efficiency (KGE) (Knoben et al. 

2019; Gupta et al. 2009; Kling et al. 2012), mean bias error 
(MBE), and percentage of bias (PBIAS) used to evaluate 
the performance and amount of bias of precipitation dataset 
(Table 2).

Where, S
i
 is the estimated value of the variable in O

i
 is the 

observational value of the variable, n is the number of points 
with the observational variable (Knoben et al. 2019). σ is 
the standard deviation, and μ is the mean. Moreover, r is the 
linear correlation between the observed and simulated data.

2.4  Selected precipitation extremes indices

In this study, six extreme precipitation indices of an Expert 
Team on Climate Change Detection and Indices (ETCCDI) 
(Alexander et al. 2006) were used to examine the aspects 
of Duration, Frequency, and intensity of the precipitation. 
These indices are computed from the total amount of daily 
precipitation. Table 3 shows an overview of the indicators 
discussed in this study.

3  Results and discussion

3.1  Evaluation of selected dataset

Figure 2 shows the spatial distribution of seven selected 
precipitation datasets in Iran with four validation methods, 
and Table 2 shows the changes in these statistics in differ-
ent climate zones. The maximum value of RMSE is for the 
CHIRPS and CFSR, respectively. These datasets showed 
an RMSE above 100 mm (Cfa, and Csa climate zones). 
This value is 103 mm for the CHIRPS and 101.261 mm 
for the CFSR. The lowest value of RMSE was calculated 
with 64.37 mm for EWEMBI. For all datasets, the maxi-
mum MBE values are the same as RMSE, and the bias value 
increases from south to north of Iran. All datasets underesti-
mate precipitation in southern Alborz (diverse climate zones 
of BSK, BWk, and Dsa) and Zagros (climate zone of Dsa). 
The CFSR has shown the highest bias range, so this dataset 
is not reliable in Iran. The RMSE and MBE statistics of all 
precipitation datasets show a significant error in the north-
ern regions of Iran (Cfa and Csa climate zones). However, 
a different result was obtained by PBIAS and KGE metrics 
which are more efficient in estimating precipitation bias. The 
reason is the different calculation methods of RMSE and 
MBE statistics. Since the values of RMSE and MBE statis-
tics are a function of precipitation range, large amounts of 
RMSE and MBE in the Caspian Sea region (Cfa and Csa: 
Bandar Anzali, Babolsar, Gorgan, Ramsar, and Rasht sta-
tions) seen due to heavy precipitation. Therefore, the use of 
only two statistics of MBE and RMSE does not represent 
good results.
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To achieve accurate results, this study uses two-hybrid 
methods of PBIAS and KGE.

The results of PBIAS statistic showed that despite the 
high amount of MBE for the northern zones of Iran, it con-
sists of a small percentage of annual precipitation. For exam-
ple, MBE in MSWEP-V220 was calculated at 58.58 mm in 
the Cfa climate zone, which is up to less than 4% of annual 
precipitation. Examining the PBIAS and KGE, the south-
east, northeast, southwest, and southern slopes of the Alborz 
mountains and the coasts of the sea of Oman show the high-
est value of PBIAS.

In the Cfa and Csa zones of Iran, where the precipitation 
intensity is heavy, the performance of satellite products and 
reanalysis data is poor. In contrast, bias-corrected data pro-
vide a better estimate of the absolute values in these areas. 
However, one of the significant advantages of satellite data 
and reanalysis data is the availability of them in the observa-
tion scares areas. EWEMBI and W5E5, are bias-corrected 
data, and their bias-corrected using gauged precipitation 
data. They approximately perform better when the maxi-
mum amount of precipitation is between 30 and 100 mm in 
the arid zone (BSh, BSk, BWh, and BWk) of Iran. Satellite 

data with Multi Weighted Measurement (MW) performs bet-
ter than InfraRed-based data. This is observed in CHIRPS, 
which underestimates heavy precipitation, especially in the 
southern regions. In contrast, MSWEP-V220, which uses a 
hybrid method, tends to overestimate the maximum precipi-
tation in the north of Iran (Cfa and Csa climates).

As part of bias-correction precipitation datasets, the 
reanalysis (CFSR and MERRA-2) performs worse than 
the satellite (CHIRPS) datasets (KGE score for CFSR and 
MERRA-2 is equal to 0.53 and 0.54, while the KGE score 
of CHIRPS is 0.61) (Figs. 2 and 3). However, it should be 
noted that as CHIRPS uses gauge, satellite, reanalysis, and 
analysis inputs, it significantly performs better in estimating 
precipitation than the PERSIANN and PERSIANN-CCS, 
which are merely infrared-based datasets (Katiraie-Borou-
jerdy et al. 2017). In addition, ensemble reanalysis data of 
NASA MRE3 with a KGE score of 0.63 shows the best per-
formance among the not bias-corrected dataset. This result 
confirms significant progress in earth system modeling and 
precipitation estimation based on ensemble data.

The vital point about third-generation analysis data 
(CFSR) is its high horizontal resolution. The CFSR with 

Table 2  Metrics for evaluation 
of reanalysis-based, satellite-
based, and “bias-correction”-
based datasets precipitation 
versus observation

Evaluation Metrics Equation Unit Range

Root Mean Squared 
Error (RMSE)

RMSE =
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1

N

∑N
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i
− O

i
)
2 mm [0 ~  + ∞)

Mean Bias Error (MBE) MBE =
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i
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i
) mm (– ∞ ~  + ∞)

Percent Bias (PBIAS)
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i
−Y

Si

i
)×100
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)

�

% (0–100)

Kling–Gupta Efficiency 
(KGE) KGE = 1 −

√

(r − 1)
2 +

(

�
Si

�
Oi

− 1

)2

+

(

�
Si

�
Oi

− 1

)2 NA (– 1) – (+ 1)

Table 3  Climate Extreme Indices (CPIs) analyzed in this Study

Category Short name Long name Calculation Description Units

Duration Indices CDD Consecutive Dry Days The maximum annual number 
of consecutive dry days (when 
precipitation <  = 1.0 mm)

The longest dry spell Days

CWD Consecutive Wet Days The maximum annual number 
of consecutive wet days (when 
precipitation >  = 1.0 mm)

The longest wet spell Days

Frequency Indices R10mm Number of heavy precipitation 
days

Number of days when precipita-
tion >  = 10 mm

Days when precipitation is at 
least 10 mm

Days

R20mm Number of very heavy precipi-
tation days

Number of days when precipita-
tion >  = 20 mm

Days when precipitation is at 
least 20 mm

Days

Intensity Indices SDII Daily precipitation intensity Annual total precipitation 
divided by the number of wet 
days (when total precipita-
tion >  = 1.0 mm)

Average daily wet-day precipi-
tation intensity

mm/day

Rx1day Max 1-day precipitation Maximum 1-day precipitation 
total

The maximum amount of pre-
cipitation that falls in one day

mm
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a KGE score of 0.533 showed the worst performance for 
Iran precipitation following MERRA-2 with a KGE score 
of 0.525 (Fig. 3). Therefore, it is suggested that CFSR 
would not use in future studies on Iran. It should be men-
tioned that the KGE score of CFSR is area-averaged, and 
the errors are much higher in different climate zones.

The evaluations of the EWEMBI (ERA-Interim cor-
rected) and W5E5 (ERA5 corrected) bias-correction data 
were done by KGE and scores of 0.699, and 0.715, were 
calculated, respectively. Among the 7-dataset studied 
over Iran, the best overall performance was obtained by 
MSWEP V2.2 (with an average KGE score of 0.725), and 
this shows the importance of daily gauge corrections and 
accounting for gauge reporting times. This result has also 
been obtained in the United States, examining 26 datasets 
(Beck et al. 2019a, b) and confirming the high perfor-
mance of the second version of MSWEP.

In the following, precipitation datasets in Iran's climate 
zones were investigated. All, not bias-corrected datasets 
showed lower performance on the north and northwest 
coasts, including the Csa, Cfa, and Dsa climate zones. 
This is due to the complex topography and high temporal-
spatial heterogeneity of precipitation in these areas.

Except for CHIRPS (which has been modified for sys-
tematic bias using gauged observations), the not bias-
corrected datasets have shown a considerable bias for 
precipitation on the northern coast of Iran. The bias of 
CFSR, MERRA-2, and MRE3 was 72.86, 57.42, and 
59.54 mm, respectively. Even MSWEP-V220, as the best 
gridded daily precipitation dataset over Iran, showed a bias 
of 58.58 mm for the northern coast of Iran. In contrast, 
bias-corrected data showed a much lower bias.

The maximum bias of EWEMBI and W5E5 was 34.95 
and 43.84 mm for the northern coast of Iran. These results 
reflect the difficulty of retrieving and simulating oro-
graphic and convective precipitation. MSWEP-V220 and 
W5E5 show the most accurate performance due to the use 
of the algorithm of reanalysis and hybrid satellite data 
(Figs. 2 and 3), and so these two datasets should be paid 
more attention.

Although W5E5 and EWEMBI have similar performance 
(the average KGE score of Iran was 0.725 and 0.715, respec-
tively), there are regional differences in northwestern and 
mountainous areas of Iran (Fig. 2). Comparing W5E5 with 
MSWEP-V220 in mountainous areas (including Alborz and 
Zagros Mountain chains), the performance of both datasets 
decreases is not too far from expectations. The findings of 
this study show that topography and type of climate zone 
should be considered for choosing satellite and, or reanalysis 
datasets.

The main findings of this study for evaluating precipi-
tation data show that the output of re-analysis and satel-
lite products is highly over (under) estimated in Iran. In 

contrast, multi-source weighted-ensemble datasets have 
higher performance. The maximum precipitation of Iran 
occurs in two climates of Cfa and Csa, where all datasets, 
even bias-corrected data, have overestimated precipitation.

3.2  Heavy and very heavy precipitation (R10mm 
and R20mm)

The spatial distribution of days with heavy precipitation 
has been shown in Fig. 4, and the number of days with 
very heavy precipitation is shown in Fig. 5. The maxi-
mum R10mm and R20mm (Figs. 4 and 5) can be seen in 
northern Iran, Alborz Mountain (from northwest to north-
east of the country). All studied datasets correctly showed 
the spatial pattern of heavy and very heavy precipitation 
(Figs. 3 and 4). The minimum and maximum of R10mm 
occurs in the BWh and Cfa climate zones with 3.80 and 
48.66 days based on observation data.

In examining the maximum and minimum of R10mm 
and R20mm indices of MSWEP _V220 and W5E5 (Figs. 4 
and 5) datasets which were found to have the best per-
formance, they have not only identified the exact climate 
zones but also, there estimated values are very close to the 
observational data. The MSWEP _V220 and W5E5 data 
estimated the minimum value in the BWh zone as 3.60 and 
2.98 days and the maximum value in the Cfa climate zone 
as 33.07 and 36.63 days, respectively (Fig. 6). This is also 
true for R20mm, with the difference that the maximum of 
R20mm seen in the BWk climate zone with a long-term 
average of 0.92 days.

The general investigation of heavy precipitation in 
all datasets shows that geographically the minimum and 
maximum amount of heavy precipitation days with the val-
ues between 0 to 48.82 are seen in southeastern Iran and 
the high Zagros Mountains, and southwest of the Caspian 
Sea. Meanwhile, observation data showed 1.27 days for the 
minimum amount of heavy precipitation and 48.66 days 
for the maximum amount.

The minimum and maximum values for R20mm were 
0–28.32 days and 0.13–28.66 days for gridded datasets 
compared to the observation data. As mentioned, there 
are significant differences in the minimum and maximum 
amount of heavy precipitation in Iran with a different data-
set. Due to the lower density of stations in the Zagros 
Mountains and the heights of northeastern Iran, heavy and 
very heavy precipitation in some parts of the western and 
northeastern regions of Iran is not very well captured by 
the observational data.

In northwestern Iran, where there are few numbers of 
stations, heavy and very heavy precipitation has shown 
in an unrealistic pattern due to the incorrect interpola-
tion. The multi-source weighted-ensemble precipitation 
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of MSWEP _V220 provides an accurate spatial pattern 
in this area.

3.3  Consecutive dry and wet days (CDD and CWD)

Consecutive dry days gradually decrease from south to north 
in Iran (Fig. 7). although all datasets show a similar pattern 
for CWD and CDD over the territory of Iran, their values 
vary in each climate zone (Fig. 8). The average of minimum 
CDDs in Iran is 21.46 days, and the average of maximum 
CDDs in Iran is 196.29 days. The maximum CWD in Iran is 
seen in the Cfa climate zone located southwest of the Cas-
pian Sea, and the minimum one is seen in the BWh climate 
zone.

The highest annual CDD (Fig. 7) is found in the south-
east, the coast of the Sea of Oman, and central parts of Iran 
in all datasets. Hence, we can say that this region, from east 
to southeast, is an extensive arid hotspot. In this region, there 
are two main deserts of Iran, Dasht-e Lut (51,800  km2) and 
Dasht-e Kavir (77,600  km2) (Fig. 1a), which together cover 
about 8% of the total area of Iran. This is the reason for the 
significant increase in CDD. In this region, gridded datasets 
show CDD much more than observational data, and this is 
not because of the bias of gridded datasets but the lack of 
observations.

If we focus on the climate zones of Iran, we can see that 
the same CDD (CWD) difference can be seen over climate 
zones. For example, the significant difference of nearly 
50 days for the BSh climate zone and about 20 days for 
the BWk climate zone is seen between gridded datasets and 
observation data.

Considering MSWEP _V220 as the most appropriate 
dataset for estimating precipitation in Iran, CDD was cal-
culated at 187.96, 174.55, 156.63, 147.37, 131.68, 122.47, 
and 36.89 days in BWh, BSh, BWk, Dsa, Csa, BSk, and Cfa 
climate zones, respectively. It is interacting that the CDD in 
the mountainous climate zone (Dsa) is more than the steppe 
climate zone (BSk) in Iran.

In addition, it is worthy to note that many parts of Iran, 
especially central and eastern parts of it, have faced severe 
droughts over the past decades. Based on observation data, 
minimum and maximum CDD is observed in Cfa and BWh 
climate zones with 33.08 and 184.15 days. The noteworthy 
point is that MSWEP_V220 and W5E5 data are consist-
ent with each other and with observation data to capture 
consecutive dry days in both the values and geographical 

distribution. The maximum of 187.96 and 180.77 days and 
the minimum of 36.89 and 35.16 days for BWh and Cfa cli-
mate zones were obtained (Fig. 9). There is also a great deal 
of consistency between MERRA-2 and the observation data 
in the BSk, BWh, and BWk climate zones for the CDD and 
CWD indices (Figs. 7 and 8). Accordingly, using MERRA-2 
data in the arid climate zone of Iran to determine dry and 
wet days provides good results. In contrast, the performance 
of MERRA-2 is drastically reduced in a temperate climate 
such as Cfa and Csa and in mountainous areas such as Dsa 
(Fig. 9).

One other dataset that we examined is CFSR, which 
shows Iran much drier in all except the Cfa climate zone. 
As we mentioned earlier, this dataset is not recommended 
for examining CDD and CWD in Iran (Figs. 7 and 8).

3.4  Intensity of extreme precipitation (SDII 
and Rx1day)

We used two intensity indices of SDII and Rx1day to quan-
tify the temporal variability of precipitation among different 
datasets (Figs. 10, 11 and 12). Figure 10 shows the maxi-
mum daily precipitation (Rx1day) for the long-term period 
(1980–2016) of 49 synoptic stations and seven gridded daily 
precipitation datasets in Iran. The result shows that all data-
sets except MERRA-2 are highly consistent in the geograph-
ical pattern. The Rx1day has not captured the correct pattern 
in central Iran in the observation figure (Fig. 10) because the 
density of observations in this area is scarce (Fig. 1). Six 
datasets of W5E5, EWEMBI, CFSR, MERRA-2, CHIRPS, 
and MRE3 estimated the amount of Rx1day in the southern 
Alborz Mountain chain to be the same as the eastern Caspian 
Sea, which is not an accurate estimation. A comparison of 
the MSWEP_V220 dataset with observation shows its high 
accuracy for estimating Rx1day over Iran.

The highest value of Rx1day is seen in the Cfa climate 
zone, with 113.52 mm, and the lowest value of this index 
is seen in the BWk climate zone, with an average value of 
22.96 mm. A comparison of Rx1day spatial distribution 
in the studied datasets shows an essential point about the 
CHIRPS dataset. This dataset, unlike others, shows consid-
erable underestimation in the value of Rx1day on the south-
ern coast of Iran. This may be because CHIRPS data relies 
on infrared information to retrieve precipitation, and this 
has been attributed to the indirect nature of the relationship 
between cloud-top temperature and surface precipitation 
(Scofield and Kuligowski 2003). Salio et al. (2015) showed 
that IR-based algorithms have difficulty retrieving maximum 
precipitation values. Similar results have been reported for 
underestimation in East Africa (Kimani et al. 2017) and Bra-
zil (Palharini et al. 2020).

Central Iran, along with the eastern parts of it -as men-
tioned earlier- are the driest regions of Iran. However, 

Fig. 2  Spatial distributions of Root Mean Square Error (RMSE: mm 
 year−1), Mean Bias Error (MBE: mm  year−1), Percentage of Bias 
(PBIAS: %  year−1), and Kling—Gupta efficiency (KGE) derived from 
MRE3ensemble, MERRA-2, CFSR, CHIRPS V2.0, MSWEP _V220, 
W5E5 and EWEMBI datasets concerning Synoptic stations data from 
1980 to 2016

◂
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Fig. 3  Evaluation metrics for the MRE3ensemble, MERRA-2, CFSR, CHIRPS V2.0, MSWEP _V220, W5E5, and EWEMBI datasets against 
observations in different climate classes of Iran; A KGE; B PBIAS and C RMSE

Fig. 4  The spatial distributions of the heavy precipitation (R10mm) of observation, W5E5, EWEMBI, CFSR, MERRA-2, CHIRPS, MSWEP, 
and MRE3ensemble datasets (Units: Day  year−1)
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MERRA-2 estimated the amount of Rx1day in these areas 
as the same as the northwestern Iran, which is not an 
accurate estimate of the intensity of the precipitation. The 
MERRA-2 performs well in estimating CDD and CWD in 
the BSk, BWh, and BWk climate zones. This good perfor-
mance is because the CDD and CWD indices only repre-
sent the occurrence of precipitation and do not take into 
account the absolute amount of precipitation.

Another index that is used to investigate precipitation 
intensity is SDII (Fig. 11). Examining the SDII in climate 
zones, the maximum precipitation intensity is related to 
the Cfa zone with 16.32 mm/day, and the minimum one 
is related to the BWk zone with 5.49 mm/day (Fig. 12), 
based on observation.

The intensity of precipitation is very high on the north-
ern and southern coasts of Iran and the western part of it 
over the Zagros mountains. All of these areas have a high 

Fig. 5  The spatial distributions of the very heavy precipitation (R20mm) observation, W5E5, EWEMBI, CFSR, MERRA-2, CHIRPS, MSWEP, 
and MRE3ensemble datasets (Units: Day  year−1)

Fig. 6  Area-averaged heavy and very heavy precipitation (R10mm 
and R20mm) for the MRE3ensemble, MERRA-2, CFSR, CHIRPS 
V2.0, MSWEP _V220, W5E5, and EWEMBI datasets against obser-

vation in different Köppen-Geiger climate classification over Iran 
(Units: Day  year−1)
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Fig. 7  The spatial distributions of the Consecutive Dry Days (CDD) of observation, W5E5, EWEMBI, CFSR, MERRA-2, CHIRPS, MSWEP, 
and MRE3ensemble datasets (Units: Day  year−1)

Fig. 8  The spatial distributions of the Consecutive Wet Days (CWD) of observation, W5E5, EWEMBI, CFSR, MERRA-2, CHIRPS, MSWEP, 
and MRE3ensemble datasets (Units: Day  year−1)
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potential of being flooded during extreme precipitation 
events. The minimum precipitation intensity of less than 
5 mm per day is observed in central parts and southeastern 
Iran. Looking into the intensity of precipitation in climate 
zones, all datasets estimated it with only a 1 to 2 mm/
day difference with observation, except for the Cfa climate 
zone. According to observational data, the precipitation 
intensity in the Cfa climate zone is 16.32 mm/day.

The CFSR and MRE3 estimated this at 7.69 and 
6.28 mm/day, respectively. Even MSWEP_V220, which 

showed the highest performance in Iran, estimated the 
precipitation intensity as 10.85 mm/day in the Cfa cli-
mate zone, which is 5.47 mm/day less than observed. In 
contrast, W5E5, with an estimated 14.58 mm/day, has the 
best performance for estimating precipitation intensity in 
the Cfa climate zone.

Fig. 9  Area-averaged consecutive dry and wet days (CDD and CWD) for the MRE3ensemble, MERRA-2, CFSR, CHIRPS V2.0, MSWEP _
V220, W5E5, and EWEMBI datasets against observation in different Köppen-Geiger climate classification over Iran (Units: Day  year−1)

Fig. 10  The spatial distributions of the Maximum amount of precipitation that falls in one day (RX1day) of observation, W5E5, EWEMBI, 
CFSR, MERRA-2, CHIRPS, MSWEP, and MRE3ensemble datasets (Units: mm  year−1)
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4  Conclusion

To clarify the strength and weakness of the global gridded 
daily precipitation datasets, we examined the performance of 
seven daily precipitation datasets. Examination of different 
datasets showed that the bias-correction datasets (EWEMBI 
and W5E5) and the MSWEP_V220 have better performance 
than the reanalysis and satellite datasets. The main findings 

of this study to evaluate the performance of datasets can be 
summarized as follows:

1. Comparing the satellite-based precipitation products and 
reanalysis datasets, satellite products perform better than 
the reanalysis data on average.

2.  Comparing the reanalysis data, MRE3ensemble showed 
acceptable performance; So the overall performance, of 
this ensemble dataset is equal to the CHIRPS product in 
Iran.

Fig. 11  The spatial distributions of the Simple Daily precipitation Intensity Index (SDII) of observation, W5E5, EWEMBI, CFSR, MERRA-2, 
CHIRPS, MSWEP, and MRE3ensemble datasets (Units: mm/day  year−1)

Fig. 12  The area-averaged intensity of extreme precipitation (SDII 
and Rx1day) for the MRE3ensemble, MERRA-2, CFSR, CHIRPS 
V2.0, MSWEP _V220, W5E5, and EWEMBI datasets against obser-

vation in different Köppen-Geiger climate classification over Iran 
(SDII Units: mm  year−1; Rx1day Units: mm/day)
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3.  Among the precipitation datasets produced using gauge 
data, the MSWEP-V220 represents better performance 
compared to MERRA-2. The very high performance of 
MSWEP-V220 is related to applying daily gauge cor-
rections and accounting for gauge reporting times (Beck 
et al. 2019a, b).

4.  Bias-Correction precipitation data showed better per-
formance in providing Intensity, Frequency, and Dura-
tion than reanalysis and satellite-based data (meaning 
CHIRPS).

5.  The W5E5 dataset (ERA5 data, the bias was corrected 
with CRU TS4.03 and GPCCv2018) for all indices per-
formed better in most climate zones and average of Iran 
from EWEMBI dataset (ERA-Interim base data). The 
superiority of the W5E5, which uses the new version 
of ERA, reflects significant advances in climate system 
modeling and data assimilation data based on rain gauge 
stations, satellites, and sounding observations over the 
past decades.

6.  The MSWEP-V220 and W5E5 overall had the best per-
formance among all the datasets, although each has bet-
ter performance in different zones. The MSWEP-V220 
performed better in the climate zones (BWk and Dsa), 
while the W5E5 performed much better in the BSh, 
BSk, BWh, Cfa, and Csa climate zones.

The spatial distribution of extreme precipitation during 
the study period for MSWEP-V220 and W5E5 datasets in 
Iran has provided acceptable results; the MERRA-2 data-
set on KGE score showed the lowest performance among 
the datasets. The MERRA-2 does not provide an accurate 
estimate of heavy and very heavy precipitation and high-
intensity daily precipitation events in central and south-
eastern Iran, which are arid areas. In contrast, it demon-
strated high agreement with observational data in the BSk, 
BWh, and BWk climate zones for CDD and CWD indices. 
In addition, among the satellite data, CHIRPS underesti-
mated precipitation intensity, especially for the southern 
regions of Iran, because it relies on infrared precipitation 
estimates (Darand and Khandu 2020; Ghozat et al. 2021).

Based on precipitation gridded datasets, the results of 
estimating extreme precipitation in the climate zone of 
Iran are as follows:

 1.  All seven precipitation datasets underestimate the fre-
quency indices (R10mm and R20mm) and precipita-
tion intensity (Rx1day and SDII) in the rainy climate 
zones of Iran (Cfa, Csa, and Dsa);

 2.  The highest overestimation of intensity and frequency 
indices in the desert (BW) and semi-desert (BS) cli-
mate zones of Iran are seen in MERRA-2 and CFSR 
datasets, respectively;

 3.  Heavy precipitation (R10mm) in the two climate zones 
of BSh and BWh is underestimated compared to obser-
vational data;

 4.  Very heavy precipitation (R20mm) is underestimated 
in the BWh desert climate.

 5.  Consecutive dry days in Iran's two semi-desert climate 
zones (BSh and BSk) are overestimated in most data-
sets.

 6.  The MRE3 has overestimated the CDD index in cold 
semi-desert climate zones compared to the other data-
sets;

 7.  The significant difference between global precipitation 
datasets and observation data in estimating CDD and 
CWD in the arid interior of Iran is the lack of synoptic 
stations (Zarrin and Dadashi-Roudbari 2021) in these 
areas.

 8.  In the hot desert climate zone of Iran (BWh), consecu-
tive dry days are underestimated for Bias-Correction 
(W5E5 and EWEMBI), CHIRPS, and MRE3 datasets.

 9.  An interesting result is related to CHIRPS while 
retrieving consecutive dry and wet days in Iran; in all 
zones except Cfa, this dataset overestimated CDD and 
underestimated CWD; In other words, CHIRPS unre-
alistically shows Iran drier. Based on this, it is recom-
mended that infrared-based gridded data may be used 
more cautiously in arid area

 10.  Global daily precipitation datasets, in agreement with 
observational data, were showed the highest frequency 
of CDD in the southern and eastern regions of Iran; 
While the lowest values were, seen in the northern 
coasts of Iran (Cfa and Csa);

 11.  All datasets have a good performance in estimating 
dry and wet days (days with precipitation thresholds 
less than and more than 1 mm) and can reasonably 
identify the presence or absence of rainy days in Iran. 
What causes a significant difference in these data is the 
precipitation intensity indices (SDII and Rx1day).

In future studies, more precipitation datasets from vari-
ous climate regimes should be used to generalize the con-
clusions drawn from this study. In addition, the impacts of 
using different reanalysis-based, satellite-based, and “bias-
correction”-based datasets to calibrate the climate models 
also need to be investigated.
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