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Abstract
Accurate simulation of meteorological variables is a prerequisite for numerous downstream applications such as air quality 
modeling and weather forecasting. Weather Research and Forecasting (WRF) model is widely utilized to simulate various 
prognostic meteorological variables across multiple spatial scales. The suitability of the WRF-v3.9 model in simulation of 
surface meteorological variables and vertical thermodynamic profile is tested with available in situ surface and radiosonde 
observations collected from the locations representing rural, semi-urban, and urban environments of the central Indian 
region. Nested domains with 12 and 4 km grid spacing having 28 vertical layers are set up during the fair weather days of 
January and March 2018. The model sensitivity is tested by varying two non-local (Yonsei University, YSU and Asymmetric 
Convective Model, ACM2) and one local (Mellor-Yamada Eta, MY-E) closure Planetary Boundary Layer (PBL) schemes. 
Results indicate that no particular PBL scheme simulates best for all meteorological variables at different land uses. Overall, 
thermodynamic variables (temperature and relative humidity) are more accurately simulated than the dynamic variables 
(wind speed and direction). YSU and MY-E schemes have relatively better accuracy in simulating surface temperature in 
rural and semi-urban locations, while ACM2 performed better in the urban location. MY-E is relatively better in simulating 
relative humidity and wind speed in rural and semi-urban locations, while it poorly performed in the urban location. The 
vertical thermodynamic profile is perfectly correlated with radiosonde observations over the urban location during January 
and with a reasonably good fit during March. The study provides a comprehensive evaluation of boundary-layer meteoro-
logical variables simulated by the WRF model in Central India.

1  Introduction

Atmospheric processes in the troposphere directly impact 
human well-being. The thermodynamical variables (sur-
face temperature, T and relative humidity, RH), dynamical 
variables (wind speed, WS and direction, WD), and thermo-
dynamic structure of shallow atmosphere (mixing height) 
govern the transport of contaminants. T and RH directly 
influence thermal comfort at the workplace, thereby affects 

economic growth, and also plays a vital role in smart agri-
cultural management. The sensible and latent heat fluxes 
from various land use categories influence the near-surface 
T and RH and directly affect the evolution of the atmospheric 
boundary layer (ABL). The ability of the pollutant disper-
sion is greatly affected by the mixing depth of ABL. WS and 
WD play a significant role in the advection of pollutants. 
Photochemical reactions and photolysis rates of pollutants 
are affected by the radiation balance and cloud cover. Given 
the dynamic nature of various feedbacks that influence the 
transportation of air pollutants, it is necessary to more accu-
rately model the meteorological variables for applications in 
air quality modeling (Boadh et al. 2016; Sathyanadh et al. 
2017) and heat mitigation studies (Kadaverugu et al. 2021).

Air quality management has become a top priority in most 
countries as the latent health issues associated with poor air 
quality are conspicuous and pervasive. It is estimated that 
globally 90% of the children under 15 are exposed to particu-
late matter concentrations above the WHO permissible lim-
its (WHO 2018). Out of the estimated 9 million premature 
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deaths annually, 2.5 million are from India, and 1.8 million 
are from China (Landrigan et al. 2018). According to Green-
stone and Fan (2018), poor air quality reduces the life expec-
tancy by four years as a global average and it reaches as high 
as ten years in some metropolitan cities like New Delhi. 
In developing countries, air quality is measured through 
manual methods (which have poor temporal resolution) and 
also monitored through the network of automated sensors 
(but they are scanty). For instance, in India, the metro cit-
ies (area) like Delhi National Capital Region (1500 km2), 
Hyderabad (650 km2), Mumbai (600 km2), and Kolkata (205 
km2) have just 30, 6, 3 and, 4 automated monitoring stations, 
respectively, maintained by the Central Pollution Control 
Board (CPCB, https://​cpcb.​nic.​in/), as of 2020. The coarse 
spatial–temporal resolution of meteorological and air quality 
data is insufficient for studying the dispersion and mapping 
of non-attainment zones (Kadaverugu et al. 2019). To fill the 
gap and complement the existing monitoring networks, sev-
eral researchers have stressed the need for air quality mod-
eling at multiple scales ranging from regional to urban and 
then to building scale (Kadaverugu et al. 2019). The need for 
improved air quality models can only be satisfied with the 
more accurate meteorological modeling. Hence, we aimed 
to study the widely used Weather Research and Forecasting 
(WRF) model’s suitability and tested the model performance 
in the central Indian region.

The WRF model is widely used globally for multipurpose 
numerical weather predictions, which provides a platform 
for chemical transport modeling with the WRF-Chem model 
(https://​www.​mmm.​ucar.​edu/​weath​er-​resea​rch-​and-​forec​ast-
ing-​model). For instance, the WRF modeling platform is 
applied for studying aerosol impacts over the Mediterranean 
region (Georgiou et al. 2018), tropospheric ozone in Brazil 
(Gavidia-Calderón et al. 2018), and climate modeling in the 
USA (Yahya et al. 2017). Also, the WRF model in comple-
ment with other air quality models is used for source appor-
tionment studies (Wu et al. 2018) and air quality mapping 
due to forest fires (Jose et al. 2017). Several studies using the 
WRF model are also reported from India on the spatial–tem-
poral variation of O3 over Hyderabad (Sheel et al. 2016), 
characterization and source apportionment in Delhi (Sharma 
et al. 2016), and source apportionment in Visakhapatnam 
(Police et al. 2016). Although a WRF-Chem model is the 
most advanced mesoscale model featuring atmospheric 
dynamics, physics, and trace gas chemistry schemes (Kadav-
erugu et al. 2019), its relevance and suitability over various 
geo-climatic zones is not thoroughly understood. Model 
performance significantly varies with the choice of gaseous 
or aerosols schemes (Knote et al. 2015; Yang et al. 2018), 
planetary boundary layer (PBL) schemes (Perez et al. 2006; 
Cuchiara et al. 2014; Banks and Baldasano 2016), and grid-
ded emission inventory (Saikawa et al. 2017). Especially, 
the PBL parameterization schemes are significant from a 

meteorological point of view. The boundary layer processes 
due to surface forcing are represented through various PBL 
parameterizations in a numerical weather prediction model.

The effect of PBL schemes on the WRF model’s perfor-
mance is essential to be tested over diverse environments 
and geographical locations (Sathyanadh et al. 2017). Sev-
eral researchers have evaluated the performance of the WRF 
model on different Indian domains. For instance, Panda and 
Sharan (2012) have reported on rather poor performance 
of the WRF model with almost all PBL and land surface 
model (LSM) parameterizations over northern India, but 
they observed a relatively better model performance with 
Noah-LSM and MY-E (Mellor-Yamada Eta) schemes over 
the Delhi region. Madala et al. (2014) have observed that 
rainfall and surface pressure over the Gandaki region are 
under-predicted by many PBL schemes, except MY-E and 
Grell Devenyi. Mohan and Bhati (2011) reported that Pleim-
Xiu-ACM (Asymmetric Convective Model) and MM5-YSU 
(Multi-scale Model version5—Yonsei University) schemes 
suit best for the Delhi region in simulating temperature, rela-
tive humidity, and wind speed. The choice of PBL schemes 
also significantly affects the diurnal evolution of the mix-
ing layer (Hariprasad et al. 2014), thereby influencing the 
dispersion of pollutants and other meteorological variables 
(Banks and Baldasano 2016).

The three PBL schemes viz. YSU (Hong et al. 2006), 
ACM2 (Pleim 2007a, b), and MY-E (based on Mellor and 
Yamada 1982) are widely studied over Indian domains. YSU 
and ACM2 are first-order non-local schemes (See Xie et al. 
2012; Hariprasad et al. 2014), while MY-E is a one-and-half 
order local Turbulent Kinetic Energy (TKE)-based scheme 
and is also referred to as Mellor-Yamada Eta scheme (See 
Janjić 1994; Mesinger 1993a, b, 2010). Panda and Sharan 
(2012) observed that the WRF model with MY-E scheme 
coupled with Noah LSM produced better results than other 
PBL schemes over western Indian regions. According to 
Shrivastava et al. (2014), the mixing height is quite accu-
rately predicted over Mangalore City for both cold and 
dry seasons with the MY-E scheme combined with the Eta 
surface layer scheme (Mesinger 1993a; Janjić 1994, 1996). 
The WRF model applied in Rachi City, situated in the mid-
eastern part of India, showed that boundary layer variables 
are better simulated with ACM2 parameterization (Madala 
et al. 2015). Gunwani and Mohan (2017) showed that the 
WRF model with the ACM2 scheme produced better model 
performance over entire Indian climatic zones. The ACM2 
scheme also provides better meteorological forcing for mes-
oscale air quality modeling (according to Xie et al. 2012).

In the present study, we have analyzed the WRF 
model performance by varying the PBL schemes over 
three different geographical settings representing the 
rural, semi-urban, and urban environments of the cen-
tral Indian domain. We have further compared the model 

https://cpcb.nic.in/
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
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performance during January and March representing 
the winter and summer seasons. With this context, the 
objectives of the present study are (a) to understand the 
performance of the WRF model in capturing the diur-
nal variations, spatial variations among urban, rural, 
and semi-urban environments, along with the seasonal 
variations, and (b) to test the WRF model accuracy by 
varying the PBL schemes viz. ACM2, YSU, and MY-E. 
The WRF model-simulated meteorological variables (T, 
RH, WS, and WD) were compared with the observed data 
over the rural, semi-urban, and urban environments. The 
thermodynamic profile of upper air was validated with 
the radiosonde data measure over the urban location. The 
description of the study domain, monitoring locations, 
data sources for the WRF model, and settings used in the 
study are presented in Sect. 2. The results and discussion 
on the WRF model-simulated surface and vertical ther-
modynamic variables is provided in Sect. 3, followed by 
the conclusions in Sect. 4.

2 � Methods

2.1 � Study area

The study area occupies 69,389 km2 (shown as Domain-2 
in Fig. 1A) in the eastern part of Maharashtra state (also 
known as the Vidarbha region) of central India. It extends 
between 19.25–21.76° N and 77.41–79.78° E with an alti-
tude varying from 13 to 1000 m above the mean sea level. 
The region experiences a hot tropical climate with tempera-
tures ranging between 3.5–11.6 °C (minimum in winter, 
from November to February) and 43–47 °C (maximum in 
summer, from March to May). It receives an annual rain-
fall of 1200 mm (from June to August) during the south-
west monsoon. Around 77.7% of the area is under cultiva-
tion, 17.5% area is covered with forest, 2.7% is covered by 
shrubs/grasslands, and built-up area occupies nearly 0.8% 
(Fig. 1B) (derived using land cover maps having 300 m reso-
lution from CRDP (http://​www.​esa.​int/​ESA). Almost 90% 
of the soil in the study area is Vertisols, followed by 3% 

(A) (B)

Fig. 1   A WRF model nested domains (D1 and D2) overlaid over 
digital elevation model map of India, B Land use land cover over the 
inner domain representing the study area is shown. The thick black 

dots represent the meteorological monitoring locations (https://cpcb.
nic.in/). S1: rural, S2: semi-urban, and S3: urban environment

http://www.esa.int/ESA
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of Luvisols as per the FAO system (derived from 250 m 
resolution soil cover map downloaded from www.​soilg​rids.​
org). The domain envelopes the administrative boundaries 
of 5 districts (Nagpur, Wardha, Yavatmal, Chandrapur, and 
Amaravati) of Maharashtra state, two districts (Betul and 
Chinndwara) of Madhya Pradesh state (towards North), and 
partially covers Adilabad district of the neighboring state 
of Telangana (towards South). Nearly 15.3 million popula-
tion lives in the study domain, out of which 38% reside in 
urban areas, which is higher than the national average of 
30% (Census 2011).

The central Indian region envelops notable cities, includ-
ing Nagpur, Chandrapur, Amravati, Yavatmal, and Nanded. 
The first two cities are especially loci for thermal power 
plants and mining activities. More than 65% of the ther-
mal power generated in Maharashtra (10,170 MW) is from 
three power plants located in the study area, one at Chan-
drapur, and the remaining two are near Nagpur (at Koradi 
and Khaparkeda) (Mahagenco 2019). Chandrapur city is also 
a hub for many large-scale industries such as opencast coal 
mining and cement industries. India’s Maharashtra state is 
one of the top economic and industrial powerhouses having a 
growth rate of 10% during 2016–2017 (DES 2018). The state 
in general and specifically the study area has been drawing 
attention from the investors due to the ’ease of doing busi-
ness’ policies (DES 2018) and rich mineral wealth (DGM 
2016). Also, by virtue of its location at India’s geographical 
center, the region has a potential for multi-modal connectiv-
ity, which is accelerating economic development.

Three locations representative of rural (S1), semi-urban 
(S2), and urban (S3) environments are considered within 
the Domain-2 of the study area (Fig. 1B). Agricultural fields 
and forest areas surround the S1 location. The semi-urban 
environment and agricultural fields surround the S2 location. 
The S3 is in the heart of the urban built-up area situated in 
Nagpur City (discussed in Sect. 2.3).

2.2 � WRF V3.9 model

The Advanced Research WRF-v3.9 (ARW) core of the 
model was used in the present study. It employs Arakawa-C 
grid format upon which the governing equations depicting 
conservation of mass, momentum, and energy are discre-
tized and solved using 2nd- and 3rd-order Runge–Kutta 
schemes for time integration and higher-order schemes for 
advection (Skamarock et al. 2008). Some of the prognostic 
variables solved by the model are 3D wind fields, perturba-
tion potential temperature, surface pressure, geopotential 
pressure, turbulent kinetic energy, etc.

Two computational domains were set up, namely outer 
domain (D1) and inner domain (D2) covering the Indian 
peninsular region and the study area (eastern Maharashtra of 
Central India/Vidarbha region), respectively. These one-way 

nested domains D1 and D2 have grid resolutions of 12 and 
4 km, respectively, and the former domain consists of 100 
and 64 grid points in the east–west direction, and the latter 
domain consists of 132 and 76 grid points in the north–south 
direction (Fig. 1A). Both domains have 28 vertical terrain-
following hybrid-sigma levels up to 60 hPa extending to an 
altitude of ~ 18.5 km from the ground level. National Center 
for Environmental Prediction (NCEP) final analysis (FNL) 
6-hourly meteorological gridded data of 1° spatial resolution 
were downloaded (NCEP FNL 2000) and used for provid-
ing initial and boundary conditions. Land use land cover 
static layer classified by the United States Geological Survey 
(USGS) having 24 categories was used in the study. The 
WRF model parameterizations depicting various physical 
phenomena used in the study are summarized in Table 1.

Spatio-temporal profiles of the prognostic meteorological 
variables were simulated in the study region during January 
and March 2018. A duration of one week in both months was 
selected that has fair weather and without any significant 
synoptic activity viz. 11–18 January 2018 and 4–11 March 
2018. The first 24 h was treated as spin-up duration.

2.3 � Surface and radiosonde observations

The surface meteorological variables were validated with 
available in situ data, maintained by the CPCB. The hourly 
observations of meteorological data (Temperature, Relative 
Humidity, Wind Speed, and Direction) from the monitoring 
stations (Fig. 1B and Table 2) were downloaded from the 
web portal (http://​cpcb.​nic.​in/). Monitoring stations located 
at S1, S2, and S3 represent three different environmental 
settings: rural, semi-urban (having industrial complexes), 
and urban contexts. The timestamps of the observed data 
were corrected to represent the UTC (Local Time—0530 h) 
to match the WRF model simulations.

Validation of upper air meteorological simulations with 
radiosonde data is a well-established method (Boadh et al. 
2016). The radiosonde data for Nagpur station (id: 42867) 
falling in the study domain were obtained from the Univer-
sity of Wyoming (http://​weath​er.​uwyo.​edu/​upper​air/​sound​
ing.​html) portal. The observation site is at Nagpur City’s 
airport, represented by the S3 location (urban setting). The 

Table 1   The parameterization schemes used in the WRF model

Physics mechanism Parameterization scheme

Longwave radiation and shortwave 
radiation scheme

RRTM scheme
Dudhia scheme

Microphysics scheme Kessler scheme
Surface physics Unified Noah land surface 

model
Cumulus parameterization Grell 3D ensemble scheme
Planetary boundary layer schemes ACM2, YSU and MY-E

http://www.soilgrids.org
http://www.soilgrids.org
http://cpcb.nic.in/
http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
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vertical meteorological profile is measured twice a day at 
0000 and 1200 UTC by the India Meteorological Depart-
ment (IMD). The WRF model-simulated meteorological 
variables (Potential Temperature, Virtual Temperature, 
Temperature, Relative Humidity, and Wind Speed) were 
compared with the radiosonde data to determine the model 
performance in depicting the vertical meteorological profile 
over the urban location.

2.4 � Model performance indicators 
and post‑processing

The WRF model accuracy in simulating the surface mete-
orological variables was tested with model performance 
metrics such as mean bias (MB), normalized mean bias 
(NMB), mean gross error (MGE), normalized mean gross 
error (NMGE), and Pearson’s correlation coefficient (r). 
The mathematical definition of the metrics is presented in 
Appendix A. The positive MB indicates the over-prediction 
of the variable by the model and vice versa. MGE indi-
cates the sum of absolute differences between modeled and 
observed values, which indicates the level of deviation. The 
normalized metrics NMB and NMGE indicate the relative 
deviations with respect to the observed values. The cor-
relation coefficient, r, indicates the strength of the linear 
relationship between the modeled and observed variables. 
A perfect model would have r = 1, and MB, NMB, MGE, 
NMGE = 0. Several researchers have also used these model 
evaluation metrics (for example, Gunwani and Mohan 2017; 
Georgiou et al. 2018). One-way ANOVA (analysis of vari-
ance) was performed to identify whether there exists any 
significant difference among the mean of variables simu-
lated by choosing three PBL schemes. January 11th and 
March 4th days representing the first 24 h (spin-up time) 
of the simulation were not considered in the calculation 
of model evaluation metrics. We used the openair (http://​
www.​opena​ir-​proje​ct.​org) library of R statistical program-
ming language to calculate the performance metrics and to 
develop the graphical representation of the data. The soccer 
plot between the NMB and NMGE model metrics classifies 
the model performance with respect to different goalposts. 
These metrics were calculated for all variables at three dif-
ferent locations in both seasons. The inner goalpost has less 

bias and minor error, while the outer-most goal post has high 
bias and high error. Model accuracy in simulation of upper 
air meteorological variables was assessed using Pearson’s 
correlation coefficient (r). Before the correlation analysis, 
the values were interpolated to match the same vertical lev-
els for both modeled and measured data. NCL-v6.3 (https://​
www.​ncl.​ucar.​edu/​index.​shtml), QGIS-ver-2.18 (https://​qgis.​
org/​en/​site/) and R-v3.4.3 (R Core Team 2017) were used to 
develop the graphics.

3 � Results and discussion

3.1 � Surface variables

In brief, the results obtained according to the parameteri-
zations and configurations used in the study conclude that 
the WRF model performed better in simulating the thermo-
dynamical variables (T and RH) compared to the dynami-
cal variables (WS and WD at 10 m). Gunwani and Mohan 
(2017) also reported similar observations over different cli-
matic zones of India. The model has captured the diurnal 
variations in T and RH (at 2 m), but with a slightly warm 
and cold bias in T and consistently negative bias in the RH 
simulations. The differences in surface variables simulated 
at S1, S2, and S3 representing three different environmental 
contexts: rural, semi-urban, and urban settings, respectively, 
are also significant. We have also observed instances of sta-
tistically significant differences in the modeled variables 
according to the choice of PBL schemes considered in this 
study.

The WRF model has simulated T-2 m with correlation 
values in the range of 0.85–0.95 at urban (S3), 0.93–0.96 
at semi-urban (S2), and 0.21–0.72 at rural (S1) stations 
inclusive of both months. The high degree of correlation 
in predicting the surface temperatures is also reported by 
Hariprasad et al. (2014) and Boadh et al. (2016). Despite 
the high correlation, the modeled surface temperatures are 
slightly lower than the observed values with a marginal 
negative MB, except at rural station (S1) during March. 
The NMB and NMGE values have consistently remained 
in the range of − 0.01 to 0.01, which indicates that the ratio 
between the deviated and observed values is relatively low 

Table 2   Surface monitoring 
stations in the study area 
for meteorological variables  
(source: https://cpcb.nic.in/)

Staion code Station type Location

S1 Rural environment (Chandrapur Division) 19.64° N, 77.63° E
S2 Industrial complexes in semi-urban environment, Khutala, 

 Chandrapur (Chandrapur Division)
19.98° N, 79.23° E

S3 Urban environment, Civil lines, Nagpur (Nagpur Division) 21.15° N, 79.05° E

http://www.openair-project.org
http://www.openair-project.org
https://www.ncl.ucar.edu/index.shtml
https://www.ncl.ucar.edu/index.shtml
https://qgis.org/en/site/
https://qgis.org/en/site/


1384	 R. Kadaverugu et al.

1 3

(an indication of quite a good model performance). Fur-
ther, the results indicate no significant difference among 
the model predictions by varying the PBL schemes dur-
ing March. However, a significant variation (p  <  0.01) is 
observed with ACM2 during January for S1 and S2 stations. 
The application of ACM2 has produced relatively higher 
ME at S1 and S2 stations for both months. In contrast, it 
showed lower ME at S3 station. Overall, the model error in 
simulating T is relatively higher at S1 location for all three 
PBL schemes. Regarding the trends in diurnal and seasonal 
variation in T, the differences in average values are also well 
captured in the model (Fig. 2). During March (summer), the 
range of T at S1 and S2 varied between 290 and 310 K, and 
at S3 it ranged between 295 and 310 K. While, in January 
(winter), the range of T at S1 and S2 varied between 280 and 
305 K, and at S3 it varied between 287 and 305 K. The range 
of T is lower in January than March, and relatively higher 
minimum T is simulated at the urban station (S3) (Fig. 2). 
Slight warm bias in daytime temperatures and moderate cold 
bias in nighttime temperatures is observed at S1 and S2 sta-
tions using the ACM2 scheme. Similar biases are reported 
by Hariprasad et al. (2014) and Madala et al. (2015) using 
ACM2 and all three schemes, respectively. Mohan and Bhati 
(2011) have also reported over-forecasting of T during day-
time and under-forecasting during nighttime over the Delhi 
region. They have suggested for selection of different land 
surface models according to the intended application of the 
model.

Although the WRF model in this study has simulated RH-
2 m with a moderate degree of correlation with the r values 
in the range of 0.55–0.76 at rural (S1), 0.63–0.79 at semi-
urban (S2), and 0.54–0.70 at urban (S3) stations inclusive 
of both months, the values of MB are consistently negative. 
The NMB during March varied from − 0.41 to -0.53 inclu-
sive of all stations, which indicates that the simulated values 
are under-forecast by roughly 41 to 53%. While, during Jan-
uary, the NMB varied from − 0.07 to − 0.39 inclusive of all 
stations, which indicates an under-forecasting of the model 
by 7–39%. The results suggest that the model performed 
considerably better in simulating RH during January than 
in March. Similar observations are reported by Hariprasad 
et al. (2014) in India, Misenis and Zhang (2010) over Missis-
sippi, Wang et al. (2019) over China, and Garcia-Diez et al. 
(2013) over Europe using the PBL schemes viz. ACM2, 
YSU, and MY-E. Studies by Sathyanadh et al. (2017) and 
Mohan and Bhati (2011) over the Northern Indian region 
have also reported an under-forecasting of the RH, espe-
cially during the summer season. While Hu et al. (2010) 
have reported an over-prediction of RH over the USA using 
ACM2 and MY-E PBL schemes. The diurnal variability 
and seasonal differences in the values are better captured in 
all stations (Fig. 3). The RH values in March (10–40%) are 
captured to be lower than the January values (20–75%), as 
March is the beginning of the hot and dry summer season 
in central India (Boadh et al. 2016). The YSU scheme is 
observed to be significant (p  <  0.001) during January at 

Fig. 2   Time series plot (in UTC) of measured and simulated Temperature (T in Kelvin, at 2 m from surface) at three stations (S1, S2, and S3). 
Lines represent the simulated values, while black dots represent surface measured data. S1: rural, S2: semi-urban and S3: urban environment
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all stations and influenced S3 (p  <  0.001) during March. 
Overall, the MY-E scheme has performed relatively better 
than other schemes (having lower ME), and the urban station 
has higher ME than the rest. Dang et al. (2016) observed 
a significant negative correlation (r = − 0.34 at p  <  0.05) 
between the surface RH and the height of the planetary 
boundary layer. As the PBL height increases, water vapor 
dilution is predominant unless the release of water vapor 
from the earth’s surface is significant (Wang et al. 2016). 
Especially in hot summer seasons over Central India, the 
sensible heat fluxes from the land surface drive the higher 
mixing heights (see Sect. 3.30), which thereby cause a con-
sistently under-forecasting of RH-2 m in the study area.

Unlike T and RH, WS is a highly dynamic variable, 
which is significantly influenced by local factors such as 
topographic features and building geometry. The model-
simulated wind speed at surface level is a representative 
value of WS in a control volume having dimensions of 4 km 
by 4 km (an area of 16 km2). The results indicate that the 
WRF model-simulated WS (at 10 m) is not well correlated 
with the observed data (Fig. 4). The absolute value of the 
correlation coefficient varied in the range of 0.10–0.33 at 
rural (S1), 0.05–0.15 at semi-urban (S2), and 0.02–0.20 at 
urban (S3) station inclusive of both months. The majority of 
NMB and NMGE values are above 0.4 for all stations and 
months, which indicates an incorrect forecast and a poor 
match between the modeled and observed data. The meas-
ured values of WS are in the range of 0–2 m/s at all stations 

during both months, while the simulated values are in the 
range of 0–4 m/s, and in some instances, it has reached up 
to 6 m/s during March. The MY-E scheme at S3 has shown 
a relatively higher ME, while at S1, the scheme performed 
better than the rest. Further, the extreme values recorded at 
S3 during January might have also resulted in inadequate 
model validation.

Similarly, the results indicate a poor correlation 
between the modeled and observed wind direction (WD) at 
10 m above the ground (Fig. 5). The absolute value of the 
correlation coefficient varied in the range of 0.04–0.23 at 
rural (S1), 0.01–0.21 at semi-urban (S2), and 0.02–0.25 at 
urban (S3) stations inclusive of both months. The NMGE 
values are greater than 0.47 for all PBL schemes, months, 
and stations, indicating an absolute error > 47% in the 
model simulations. Overall observations suggest that the 
WS and WD are relatively less poorly simulated in March 
than in January. Over-forecasting of surface-level WS has 
been reported by several other studies carried over differ-
ent geographical settings (Hariprasad et al. 2014; Madala 
et al. 2015; Satyanadh et al. 2017; Ferrero et al. 2018). The 
WRF model with the settings used in this study has failed 
to capture the southeast winds during January and low-
intensity winds in almost all directions during March. The 
bulk shift in wind direction pattern is reported in earlier 
studies (Hariprasad et al. 2014; Madala et al. 2015) and is 
attributed to poor accounting of surface drag parameters 
and roughness factors. Especially the urban environments 

Fig. 3   Time series plot (in UTC) of measured and simulated Relative humidity (RH in %) at three stations (S1, S2, and S3). Lines represent the 
simulated values, while black dots represent surface measured data. S1: rural, S2: semi-urban and S3: urban environment
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are characterized by low wind speed conditions due to the 
complex surface interactions (Ferrero et al. 2018). How-
ever, over-estimation of WS by the model can be attributed 
to the inadequate representation of surface topography 

(Duan et al. 2018) and land surface processes in the model 
parameterizations. However, several studies indicated 
that MYNN2 (Mellor–Yamada–Nakanishi–Niino Level 
2.5) parameterization has the slightest error in simulating 

Fig. 4   Time series plot (in UTC) of measured and simulated Wind Speed (WS in m/s, at the surface level) at three stations (S1, S2, and S3). 
Lines represent the simulated values, while black dots represent surface measured data. S1: rural, S2: semi-urban and S3: urban environment

Fig. 5   Time series plot (in UTC) of measured and simulated Wind Direction (WD in degrees from North) at three stations (S1, S2, and S3). 
Lines represent the simulated values, while black dots represent surface measured data. S1: rural, S2: semi-urban and S3: urban environment
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surface variables over the Ganga region in Uttar Pradesh 
state of India (Satyanadh et al. 2017). Madala et al. (2015) 
reported that ACM2 is relatively better in simulating sur-
face meteorology over Ranchi, India.

The scatter plots between each variable’s modeled and 
observed values provide an overview that T is quite well 

forecasted with a relatively most negligible bias and error 
(Fig. 6). While, RH is under-predicted, and WS is over-
predicted. The Soccer plot provides a visual interpretation 
of NMB and NMGE percentages of all variables, PBL 
schemes, and seasons (Fig. 7).

Fig. 6   Scatter plot between the measured and the simulated meteorological variables–Temperature (T), Relative Humidity (RH), and Wind 
Speed (WS) cumulative data of all seasons and stations. The dashed line indicates the y = x line

Fig. 7   Soccer plot between 
NMB (normalized mean bias, 
in %) and NMGE (normalized 
mean gross error, in %) derived 
from simulated and measured 
data of meteorological vari-
ables. S1: rural, S2: semi-urban 
and S3: urban environments
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The uncertainty and error in the model simulations might 
have percolated from the improper land use classification 
(Karlický et al. 2017) and inadequacies in the land surface 
processes. The physical effects of land surface elements and 
land use scenarios (for example, irrigation schedule of crops 
that affect the latent heat flux, T, RH, etc.) will also have to 
be accounted for while setting up a regional scale model. A 
decadal study over Delhi by Sati and Mohan (2017) indi-
cated that the increase in urban land use had increased sur-
face heat fluxes, thereby severely affecting the atmospheric 
dynamics. They also observed that increase in the built-up 
area has also resulted in lower surface winds and relative 
humidity. Further, inconsistencies in WS simulations might 
be mainly due to its dependency on local topography (Duan 
et al. 2018) and building geometry (Kadaverugu et al. 2019), 
which are nearly impossible to accommodate even in a 1 km 
resolution grid. Although the Urban Canopy Model (UCM) 
parameterizations are not included in the present study, its 
inclusion might improve the model performance, especially 
over urban locations (Bhati and Mohan 2016). It is also 
reported that there is further no significant improvement 
in the model accuracy due to refining the grid resolution 
from 4 to 1 km (Pay et al. 2014). Mohan and Bhati (2011) 
reported that the WRF model accuracy did not improve 
significantly by increasing the grid resolution from 18 to 
6 km to 2 km over the Delhi region, India. The WS and 
WD forecast might be improved by further downscaling the 
regional scale variables to building scale using the Compu-
tational Fluid Dynamics (CFD) models (Kadaverugu et al. 
2019). The local factors like building configuration, vegeta-
tion, and open spaces play a vital role in channelizing the 
urban surface wind flow, which are accounted for in the CFD 
modeling.

The rationale for the identification of monitoring loca-
tions is debatable. The air quality and meteorological moni-
toring equipments are usually located in easily accessible 
places such as next to roads and in public offices. They are 
generally prone to biases from the local factors and fail to 
represent the regional background. The inconsistencies also 
stem from the idea of validating the volume-averaged simu-
lated meteorological variables with the point measurements 
collected from surface monitoring instruments. The limita-
tions in forecasting dynamic variables like wind speed and 
direction are mostly inevitable. Further studies are required 
for exploring the need for downscaling the mesoscale wind 
flow simulations to building scale with the integration of 
localized CFD models depending on the need of the study.

3.2 � Vertical profile

The vertical profiles of the Temperature (T), Relative 
Humidity (RH), Wind Speed (WS), Potential Temperature 
(PT), and Virtual Temperature (VT) simulated by the WRF 

model at various vertical levels (0–18 km) were validated 
with the weather balloon radiosonde data at Nagpur City (S3 
urban location) for two different seasons—January (Fig. 8) 
and March (Fig. 9). The values at the same vertical level are 
averaged over the simulation period and are compared with 
the averaged values of the available radiosonde data meas-
ured at 0000 and 1200 UTC. As the radiosonde data for the 
bottom and top levels were not available during March, the 
data at overlapping vertical levels (between modeled and 
balloon heights) were used for computing the model perfor-
mance metrics. The model has quite accurately captured the 
stable boundary layer at early hours (0000 UTC/0530 LT). 
The evolution of the stable boundary layer into the mixing 
layer is also evident through the simulated gradients of T 
and RH at 1200 UTC. Similar observations for March could 
not be made as the measured data at the surface level were 
not available. Results show that the effect of PBL schemes is 
quite negligible in simulating the thermodynamic structure 
of the atmosphere. Hence, only one PBL scheme (YSU) is 
considered in correlation analysis with the measured data at 
overlapping vertical levels. The results indicate a high level 
of correlation > 0.85 for all the variables during January. 
There is a moderate degree of correlation varying between 
0.45 and 0.94 for all the variables during March. The results 
for January indicate that the model used in the study quite 
accurately predicted the vertical profiles of all variables 
(0.01 < NMGE < 0.12), except with a deviation by 20% 
over-forecasting in RH at higher altitudes (NMGE = 0.365). 
Although the surface WS is prone to high uncertainty, the 
vertical profile exhibited a high degree of correlation with a 
slight negative bias (0.12 < NMGE < 0.26 inclusive of both 
months). Further investigation is required for assessing the 
deviations in the model, especially during March. All three 
PBL schemes have quite accurately simulated the upper air 
profile over Nagpur City, but Boadh et al. (2016) mentioned 
that the YSU scheme performed relatively better than the 
rest.

3.3 � PBL/mixing layer height

Friction velocity and sensible heat flux are known to be 
responsible for the evolution of the planetary boundary layer. 
The WRF model in the study has reasonably captured the 
temporal evolution of the planetary boundary layer height 
(PBLH). The PBLH temporal variation for Nagpur City (S3) 
is shown in Fig. 10. The local time is UTC + 0530 h accord-
ing to Indian Standard Time (IST). The results indicate that 
PBLH begins to rise from 0800 IST, reaches the peak around 
1530 IST in the afternoon, and subsides by 1730 IST. During 
the late evening to early morning, the stable boundary layer 
height is observed to be 50–60 m in March and 40–60 m in 
January. The diurnal trend in PBLH is observed to be similar 
during both January and March. However, the mixing layer’s 
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depth is more during March (~ 3500 m) than in January 
(~ 1800 m). A deep mixing layer in summer and a relatively 
shallow boundary layer during winter is observed by Madala 
et al. (2015). The same trend for Nagpur City is noted by 
Boadh et al. (2016). The deep mixing layer might have 
resulted from the high surface heat fluxes (Satyanadh et al. 
2017) during the summer season, where the soil moisture 
is relatively lower than other seasons. The model-predicted 
maximum upward sensible heat flux values are in the range 
of 418.60–481.74 Wm−2 during March and in the range of 
324.78–364.71 Wm−2 during January (not plotted). In the 
present study, the ACM2 scheme is observed to simulate 
deeper convective layers compared to other schemes during 
March over S1 (rural) and S2 (semi-urban) stations. Saty-
anadh et al. 2017 also reported higher PBLH associated with 
ACM2. In contrast, MY-E has consistently simulated higher 
mixing layers during January over all three stations.

4 � Conclusions

We emphasize for a more accurate meteorological modeling 
as an antecedent for good regional air quality modeling and 
weather forecasting. In this context, we have studied the 
Weather Research and Forecasting (WRF) model (over the 
Central Indian domain having an area of 69,000 km2 with a 
nested grid resolution of 12 km and 4 km). The surface and 
upper air meteorological variables simulated with different 
planetary boundary layer (PBL) schemes viz. ACM2, YSU, 
and MY-E over three different locations representing the 
rural, semi-urban, and urban settings and are validated with 
the observed data collected during January and March 2018. 
In this context, the present study addressed the questions: a) 
whether the meteorological variables simulated by the WRF 
model over the central Indian region are comparable enough 
with the measured data at rural, semi-urban, and urban set-
tings, and b) is there any significant difference in meteoro-
logical variables simulated by three different PBL schemes.

Fig. 8   Vertical profiles of Temperature (T in Kelvin), Relative Humidity (RH in %), Wind Speed (WS in m/s), Potential Temperature (PT in Kel-
vin) and Virtual Temperature (VT in Kelvin) during 11–18 January, 2018 at 0000 UTC and 1200 UTC over the Nagpur urban area
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Overall, the results indicate that the surface thermody-
namic variables (temperature and relative humidity) are 
more accurately simulated than the dynamic variables 
(wind direction and speed). Surface temperature and rela-
tive humidity are simulated with less bias and error at all 
three stations during both months. However, the results indi-
cated slightly cold and warm biases in the night and daytime 
temperatures, respectively. The surface wind speed is over-
predicted, and the wind direction is rather poorly correlated 
with the observations. These discrepancies in the simulation 
of wind speed and direction might be due to the inadequate 
representation of surface drag and roughness parameters 
in mesoscale models. The normalized mean bias and error 
metrics showed that all three PBL schemes have produced 
almost similar outcomes in wind speed and direction. The 
WRF model in the study with the YSU and MY-E schemes 
has simulated the surface temperature relatively better at 
rural and semi-urban locations for both seasons, and ACM2 
has shown relatively better performance at the urban loca-
tion. Overall, MY-E scheme has rather demonstrated bet-
ter performance in simulating the relative humidity values. 
Further, the MY-E scheme has performed relatively better 

in wind speed simulation at rural and semi-urban locations 
while poorly performed at the urban location. The perfor-
mance of three PBL schemes in simulating the surface wind 
speed and direction could not be evaluated due to the WRF 
model’s poor forecast within the settings used in the study.

The vertical thermodynamic structure (temperature, 
potential temperature, virtual temperature, relative humid-
ity, and wind speed) is more accurately simulated during 
January than March. The model has captured the diurnal 
trends and seasonal variation in the boundary layer mixing 
heights. Results show that the ACM2 has simulated the 
deep convective layers during March at rural and semi-
urban locations, while MY-E scheme has simulated the 
deep convective layer at the urban site. Overall, the MY-E 
scheme has consistently simulated the deeper mixing lay-
ers during January at all locations.

The results indicate the WRF model, within the choice 
of parameterizations and settings used in this study, is 
largely suitable in simulating the thermodynamic mete-
orological variables over different environmental contexts 
(rural, semi-urban, and urban). Further studies are required 
to understand the factors affecting the inconsistencies in 

Fig. 9   Vertical profiles of Temperature (T in Kelvin), Relative Humidity (RH in %), Wind Speed (WS in m/s), Potential Temperature (PT in Kel-
vin) and Virtual Temperature (VT in Kelvin) averaged during 04–11 March, 2018 at 0000 UTC and 1200 UTC over the Nagpur urban area
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capturing the surface wind speed and direction. The results 
are more encouraging towards the applications of the WRF 
model in agrometeorology and fog-related studies rather 
than for air quality studies owing to significant inaccura-
cies in the simulation of surface wind profile. The efficacy 
of dynamical downscaling of the wind flow using CFD 
models is to be tested for accurate air quality applications.

Appendix A

The metrics used for model evaluation in the study are 
defined as follows: where O is the observed value, P is the 
predicted value, n is the number of values, Ō and P̄ rep-
resent the average over the data set, and σ is the standard 
deviation.

Mean Bias (MB)

Normalized Mean Bias (NMB)

MB =
1

n

∑n

1
(P − O).

NMB =

∑n

1
(P − O)
∑n

1
O

.

Mean Gross Error (MGE)

Normalized Mean Gross Error (NMGE)

Pearson’s correlation coefficient (r)
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