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Abstract
In this article, we formulate Monin–Obukhov similarity theory (MOST)-based relationships, for normalized standard devia-
tions of wind velocity components under the local scaling framework, and investigate their applicability under stable and 
highly stable atmospheric conditions. We used the fast response data collected using an ultrasonic anemometer over a flat 
terrain of Kalpakkam in India and a complex hilly terrain at Cadarache, France, for arriving at these formulations. The study 
shows that after filtering of the submesoscale motions from the sonic anemometer data, the turbulence diffusion relationships 
follow local scaling, under stable conditions. The study further indicates that these relationships follow similar behavior for 
the sites taken for this study. At neutral conditions, the values of the scaled standard deviations are found to be 1.9 ± 0.07, 
1.8 ± 0.06 and 1.3 ± 0.02, for longitudinal, crosswind and vertical component, respectively, for the complex terrain and 
1.8 ± 0.03, 1.9 ± 0.06 and 1.1 ± 0.04, respectively, for the flat terrain. The research also investigates the effect of the new 
diffusion relationships in simulating atmospheric dispersion, using the Lagrangian particle dispersion model FLEXPART-
WRF. Simulations using these new diffusion relationships show a higher dose estimate relative to the model default Hanna’s 
method, in the case of radioactivity dispersion. Detailed comparisons of the simulated dose rate estimates against measure-
ments using Environmental Radiation Monitors (ERM) indicate that the new relationships give better correlation (r2 = 0.62) 
under stable conditions over model default relationships (r2 = 0.50).

Keywords  Monin–obukhov similarity theory · Local scaling · Multi-resolution decomposition · WRF · FLEXPART​ · 
Dispersion modeling

1  Introduction

The Monin–Obukhov similarity theory (MOST) (Monin 
and Obukhov 1954; Businger et al. 1971) is a widely used 
framework, to obtain turbulent fluxes in the atmospheric 
surface layer, as a function of the standard scaling variable 
such as friction velocity u*, surface roughness z0, bound-
ary layer height zi, and Monin–Obukhov length L. Follow-
ing the MOST, the turbulent fluxes of wind, temperature, 

and moisture in the surface layer are related to the vertical 
gradients of their mean quantities by an eddy diffusivity 
coefficient, Kz (Garrat 1994). Many boundary layer mod-
els use the MOST, for obtaining the mean meteorologi-
cal variables in the lower turbulent layer and wind power 
meteorology (Businger and Arya 1974; Wyngaard 1975; 
Petersen et al. 1998; Lange and Focken 2005; Monteiro 
et al. 2009; Emeis 2010, 2013). However, under very stable 
atmospheric condition, the application of the MOST was not 
successful in representing the turbulence and the stability 
functions, realistically due to the sensitivity to frequently 
observed submesoscale phenomena-like gravity waves, 
meandering motions, radiative divergence, intermittency, 
etc. (Mahrt 1999; Mahrt and Vickers 2006; Vande Wiel 
et al. 2003; Mahrt 2011, 2014). The non-turbulent sub-
mesoscale motions are the horizontal fluctuations on the 
scale of 0.02–2 km (Metstayer and Anquetin 1995; Belusic 
and Mahrt 2008). Nieuwstadt (1984) introduced the local 
scaling, based on second-order closure equations using 
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Cabauw data, and showed the existence of z-less stratifica-
tion and properties of turbulence under highly stable condi-
tions. The hypothesis implies that dimensionless combina-
tions of variables such as gradients, fluxes, etc. measured at 
the same height can be expressed as universal functions of 
the stability parameter (z/Λ ), where Λ is the local Obukhov 
length. Smedman (1988) used data from the Marsta site in 
Sweden and showed the universality in the turbulence inten-
sity using measurements from two different heights. Dias 
et al. (1995) showed that apart from second-order moments, 
third-order moments also followed the z-less stratification 
under highly stable conditions. Sorbjan (1986a, b) developed 
local similarity functions based on dimensional analysis and 
similarity approach. Each of these methods had its merits 
over the MOST when applied to the stably stratified bound-
ary layer, but it failed when the surface layer became highly 
stable. Sorbjan (2010) further explored alternative forms 
of similarity scales and examined the resulting similarity 
laws in the stably stratified boundary layer. In contrast to the 
‘flux-based’ MOST approach, the ‘gradient-based’ similar-
ity relations worked well when the stable atmospheric layer 
was divided into four regimes, using the Richardson number. 
Overall, it is reported that the generality of any scaling law 
under extremely stable conditions is problematic.

Apart from atmospheric boundary layer models, another 
vast area of application of similarity relationships is in air 
pollution models. The air pollution models use the turbu-
lence statistics of the wind components based on similarity 
relationships for the simulation of pollutant transport and 
dispersion (Hanna 1982; Kantha and Clayson 2000; Rakesh 
et al. 2013; Prasad et al. 2015). Functional relationships 
for wind velocity standard deviations, based on the MOST, 
are widely used in dispersion models to parameterize the 
diffusion. A few studies are available in the literature that 
addresses the behavior of normalized standard deviations 
of wind velocity fluctuations, especially horizontal compo-
nents, under highly stable atmospheric conditions. Mahrt 
(1999) reported that decoupling of turbulence at higher 
levels with that at the surface and the motions like mean-
dering led to the breakdown of the similarity theory, under 
highly stable conditions. Pahlow et al. (2001) also showed 
that except normalized standard deviations of temperature, 
normalized standard deviations of wind velocity fluctuations 
did not follow the similarity theory as well as the concept 
of z-less stratification, under highly stable conditions. Like 
Mahrt (1999), Baas et al. (2006), Klipp and Mahrt (2004), 
and Sorbjan (2006, 2010) pointed out that self-correlation 
played a crucial role in highly stable conditions, in predict-
ing the success of similarity theory. This self-correlation 
is because the similarity theory contains shared variables 
on both sides of the equation leading to self-correlation. 
Under stable conditions, the self-correlation has the same 
sign as that of the expected physical correlation, leading 

to an ambiguous interpretation of the results (Mahrt 2014). 
However, Anderson (2009) circumvented the problem of 
self-correlation, by fitting the relationships between indi-
vidual variables, and then substituting these relationships 
into the ratios of interest (Mahrt 2014). Given the issues 
described above, we would like to examine the application 
of the MOST under the local scaling framework, for the 
stable atmospheric condition. We propose new turbulence 
diffusion relationships, by filtering the non-turbulent sub-
mesoscale motions from the sonic anemometer data, under 
stable conditions for different sites, and investigate its influ-
ence on pollutant dispersion. The functional relations have 
new coefficients, obtained using the method of least squares 
regression. Before proceeding to the objective of the article, 
we will first briefly discuss local similarity theory based on 
turbulence statistics.

2 � The local scaling in brief

According to the local scaling hypothesis, the dimensionless 
combinations of all turbulence quantities measured/com-
puted at the same measuring heights z can be expressed as 
universal functions of stability parameter, � = z∕Λ . Pahlow 
et al. (2001) used a functional form which is given by

where i = u, v,w, and A, B, and C are empirical constants. 
The current study adopts the test function by Pahlow et al. 
(2001).

The theory and the functional relations hold good for neu-
tral, and slightly stable regimes of the atmosphere as tested 
by many researchers (Dyer 1974; Hogstrom 1988).

However, investigation under the highly stable regime 
was not promising. The curve fit of sonic anemometer data, 
for normalized turbulence variables (Smedman 1988; De 
Bruin et al. 1993; Chu et al. 1996; Hseih and Katul 1997; 
Pahlow et al. 2001; Babic et al. 2016), showed that the curve 
of �i

u∗
 is almost constant up to � = 1 . The curve turns upwards 

and steeply rises, for high � values. This upward shift in the 
curve indicates that the normalized turbulence quantities 
continue to increase and leads to more scatter under highly 
stable conditions. The reasons for this trend are partly due 
to the intermittency of turbulence that occurs during highly 
stable conditions (Kunkel and Walters 1981; Fernando 2003, 
Pardyjak et al. 2002). Additionally, the observations are sen-
sitive to meandering (Mahrt 1998), gravity wave motions, 
drainage flows, and surface heterogeneity.

De Franceschi et al. (2009) reported a list of turbulence 
relationships proposed by various authors. In the z-less 
regime, when Λ is very small, the turbulence in the surface 

(1)
�i

u∗
= A + B

(

z

Λ

)C
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layer is decoupled from the surface, as mentioned earlier. 
However, functional Eq. (1) is still valid, if locally meas-
ured scaling parameters (at the same height, where wind 
and temperature are measured) are used (Nieuwstadt 1984). 
However, when � becomes very large, even this local scaling 
seems to break down, giving way to buoyant oscillations due 
to gravity waves. Caughey (1977) reported such oscillations 
in the frequency spectrum of the wind as waves with peri-
ods varying from a few minutes to an hour. Mahrt (1998) 
reported that reducing the averaging time eliminates the 
influence of non-turbulent motions such as gravity waves, 
etc., particularly under very stable conditions, but the reduc-
tion in averaging time can introduce flux sampling errors. To 
circumvent this problem, Howell and Sun (1999) introduced 
the multi-resolution decomposition (MRD) of the high-
frequency data, to filter out non-turbulent submesoscale 
motions from the sonic anemometer dataset, without com-
promising with errors in flux estimation.

The objective of this study is twofold. One is to establish 
turbulence diffusion relationships, with new coefficients, 
for the functional form given in Eq. (1), for the normalized 
standard deviations of wind velocity components, and test 
their applicability under stable to highly stable conditions. 
Fast response sonic anemometer data collected from two 
different sites, i.e., a hilly site Cadarache, France in the mid-
latitudes, and a flat tropical coastal site Kalpakkam, India, 
are used for this study. The second objective is to study the 
dispersion of pollutants by incorporating these turbulence 
diffusion relationships in a Lagrangian Particle Dispersion 
Model, FLEXPART-WRF (Stohl et al. 2005). Further, as 
a case study, the gamma dose rate measured over the site 
Kalpakkam is used for comparison against the simulated 
dose rate using FLEXPART-WRF, with the new as well as 
the default (Hanna’s) turbulence diffusion relationships.

3 � Methodology

3.1 � Multi‑resolution decomposition

Howell and Sun (1999) proposed this method for calculating 
fluxes based on the relation between scale dependence of 
fluxes and associated flux sampling errors from time-series 
data. It is briefly described as follows.

If a data record has 2I points, the data record can be 
divided into two sub-records, each with 2I−1 points. These 
sub-records are further divided until a sub-record contains 
individual datum (Howell and Sun 1999). For example, the 
covariance like vertical heat flux, with a cut-off scale of 2i , 
starting from (n − 1)2i to n2i − 1 is the average of the product 
of deviations, in this case, w′ and �′ , from their associated 
means, averaged over 2i points. The equation is given by

The associated means are as follows:

where C is any variable.
For a data record containing 2I points, we will have 

2I−i sub-records for flux estimation. Each sub-record has 
a cut-off scale of 2i points. For example, the vertical heat 
flux with a cut-off scale, 2i over the whole data record is 
computed by

The corresponding variance over the whole set of data 
points is given by

Assuming that 2I−i values of fluxes, with a cut-off scale 
of 2i over the 2I data points are random, following Stu-
dent’s t distribution, then an estimate of the random flux 
sampling error over the data record is equal to

where � is a constant parameter. This parameter is deter-
mined such that the probability that the true record aver-
aged heat flux falling within the interval [F� − e� ,F� + e�] 
is 2� − 1 (Howell and sun 1999). Assuming a confidence 
level of 90%, for a large number of samples (> 30), the 
Student’s t distribution converges to a normal distribution 
and the value of t

(

2I−i, �
)

 is approximately 1.3 if the con-
fidence level is 90%, i.e., (1-� ) from the t table.

3.2 � Model configuration

For the simulation of pollutant transport and dispersion, 
the current study uses a Lagrangian Particle dispersion 
model (LPDM) FLEXPART-WRF, with Hanna’s semi-
empirical parameterization, relating the turbulent statistics 
with boundary layer scaling parameters. The FLEXPART 
dispersion model uses the predicted meteorological vari-
ables by the Weather Research Forecast (WRF) model for 
simulating the pollutant dispersion.
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3.2.1 � Description of the weather model, WRF

The WRF model is a mesoscale atmospheric model based on 
the compressible non-hydrostatic Euler equations, casted in 
flux form on a mass-based terrain-following vertical coordi-
nate system. The model solves prognostic equations for the 
three Cartesian components of the wind velocity, various 
microphysical quantities, potential temperature, etc. A com-
plete description of the WRF modeling system is available 
in Skamarock et al. (2005)

WRF is configured with five nested domains over the 
Cadarache region, with a grid size ratio of 1:3:3:3:3 (Fig. 1). 
The grid resolution of the master domain is 27 km, and that 
of the innermost domain is 0.333 km. Every domain has 
100 × 100 grid cells.

The WRF uses terrain data from United States geologi-
cal survey (USGS) and land use from the moderate reso-
lution imaging spectroradiometer (MODIS). The model 
employs the Mellor–Yamada–Janjic (MYJ scheme (Mellor 
and Yamada 1982) for boundary layer diffusion, and Janjic 
Eta Monin–Obukhov for surface layer scheme. The model 
uses the Dudhia scheme for shortwave radiation, and rapid 
radiative transfer model (RRTM) for longwave radiation. 

WRF Single-Moment 6-Class (WSM6) microphysics and 
the NOAH land surface scheme are other configurations 
used in the model. For the cumulus option, the model uses 
the Grell scheme, for the 27 km domain. Each domain has 65 
vertical layers, with the model top at 50 hPa. Configuration 
of the vertical levels is such that twenty levels are within 
the first 100 m, with the first model layer approximately 3 m 
above ground level. The model takes data from the National 
Centers for Environmental Prediction (NCEP) global fore-
cast system (GFS) final (FNL) operational global analyses, 
for the initial and boundary conditions.

3.2.2 � Brief description of FLEXPART​

FLEXPART is an open-source LPDM for simulation of 
transport and dispersion of pollutants in the atmosphere. It 
is a Lagrangian particle model that uses the meteorological 
fields predicted by the weather prediction model WRF. The 
coupled FLEXPART-WRF computes particle trajectories 
by releasing large amounts of particles to simulate parti-
cle transport and dispersion (Stohl 2005). This model has 
been widely used to investigate particle transport paths and 
mechanisms (Wei et al. 2011; Srinivas et al. 2012; Arnold 

Fig. 1   WRF simulation domain 
(“d” in the figure indicates the 
nested domain and d05 repre-
sents the innermost domain)



913Formulation of turbulence diffusion relationships under stable atmospheric conditions and…

1 3

et al. 2015; Geng et al. 2017; Zhu et al. 2018). The theory 
employed is briefly described below.

The position vector of the particle at X(t + Δt) after a 
time t + Δt is given by

where u(t) is the mean and u�(t) is the fluctuating part of the 
wind velocity vector. The fluctuating part of the wind veloc-
ity vector, u�(t) is obtained from the Langevin equation as

where �L is the Lagrangian time scale, and �(t) is the Gauss-
ian random number with zero mean and unit variance. σu is 
the standard deviation of the u component of the wind. A 
similar relationship applies to the v component of the wind. 
In the case of vertical wind component, to take in to account 
the density stratification and well-mixed criterion, density 
and drift correction terms are incorporated equation. The 
equation used for w′ in FLEXPART is as follows.

where � is the air density, and dW is the incremental compo-
nents of the Weiner process with mean zero and variance dt . 
The second and third terms in Eq. (4) are the drift correction 
and density corrections, respectively.

For the current study, the model generates 1,000,000 ran-
dom numbers for transport and dispersion calculations for 
the whole simulation period. The time step of computation 
is small, and it is within the Lagrangian time scale for the 
detailed description of turbulence. By default, the model 
employs the Hanna’ scheme (Hanna 1982) for the computa-
tion of the average standard deviation of the wind velocity 
vector. The WRF model supplies inputs such as wind fields, 
and other variables to FLEXPART every 5 min interval, to 
reduce the temporal interpolation errors.

4 � Brief description of the observation site 
and measurements

Fast response sonic anemometer data over flat terrain, as 
well as over complex terrain, has been collected for a consid-
erable period of a few days when the atmospheric condition 
is mostly stable. The study uses data from two sites with 
different terrain characteristics. One is a flat tropical sta-
tion, Kalpakkam (12° 30′ N; 80° 10′ E), situated in southern 

(7)X(t + Δt) = X(t) + Δt
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India, and the second is a hilly terrain, Cadarache (5° 44′ E, 
43° 42′ N) in southeastern France.

4.1 � Kalpakkam dataset (Case‑I)

The Kalpakkam site is a coastal station, with terrain ele-
vation varying from 6 m above mean sea level (m.s.l) at 
the coast to 20 m at 10 km inland. The vegetation cover 
comprises mainly dry, seasonally irrigated croplands and 
grass. The land–sea breeze circulation influences the site 
throughout the year. Fast response measurements use a 
sonic anemometer (Young make) mounted at the height of 
10 m on a meteorological tower, situated about ~ 1 km away 
from the coast. The tower is located on a terrain with an 
unobstructed fetch of 300–400 m in all directions, with no 
buildings and obstacles around. The data-sampling rate is 
10 Hz. The present analysis uses data collected for ten stable 
nights during November 2013. The Sonic anemometer was 
operational during the period 12th November–22nd Novem-
ber 2013, and data are archived every 30 min. The current 
analysis uses data collected after the sunset with positive 
� . During this period, the wind direction is predominantly 
northeast over this site. The site also has a 50 m meteoro-
logical tower with five levels of measurements of the mete-
orological parameters such as wind speed, wind direction, 
humidity, and temperature. Figure 2 shows the site map. The 
data are collected during clear sky days, free from synoptic 
disturbances.

4.2 � Cadarache dataset (Case‑II)

The Cadarache site in the Alpine foothills is topographi-
cally complex, with hills and valleys of various sizes. The 
area around Cadarache is heterogeneous in land use, with 
some agricultural fields on the Durance riverbanks, forest or 
bush on the hills, and a 1.3 km2 lake situated northwesterly 
from the site. The Durance Valley (DV) is 5 to 8 km wide, 
with an average depth of 200 m. The portion of the DV that 
lies between Sisteron and the Clue de Mirabeau is 67 km in 
length, with a mean slope angle of 0.2° along the valley axis 
(Duine et al. 2017). The valley is oriented about 30° North 
(Fig. 3a). At the Clue de Mirabeau, the valley width varies 
from 5 km to 200 m. The Cadarache Valley (CV) is along 
the SE–NW direction. The width of the valley is 6 km long, 
and the width is about 1 to 2 km, with a slope angle of 1.2° 
along the valley.

Northeast of Cadarache is the Southern Alps, located 
around 70 km with a height of at least 1500 m m.s.l and up 
to 3000 m at a distance of 140 km. Two east–west orien-
tated mountain ridges viz-a-viz the Luberon and the Sainte 
Victoire are at a moderate distance from the site. Both have 
maximum heights of 1000–1100 m. The measurement loca-
tion is a flat area with bushes in the south, and a few distant 
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low buildings (1 or 2 storeys) in the north and northwest sec-
tor. The fetch is 400 m along the small Cadarache valley axis 
and about 200 m crosswise the valley. The measuring mast 
is installed right in the middle of this open prairie. The near-
est buildings are 120 m away from the measurement loca-
tion. The winds from north and northwest, like Mistral or 
summer sea breeze, are generally associated with neutral to 
unstable conditions. Therefore, the analysis does not include 
the data recorded during the north and northwesterly winds. 
We make use of an intensive observation period (IOP) data-
set collected during the KASCADE experiment (KAtabatic 
winds and Stability over Cadarache for the Dispersion of 
Effluents) (Duine et al. 2017). Concerning the purpose of 
the field measurement campaign, the most favorable weather 

conditions occur when clear skies are present, and when 
the influence of synoptic systems on the local wind field is 
weak. As it is very likely to have these conditions during the 
winter months in the region, it was decided to follow a nega-
tive warning concept, i.e., when low-pressure systems are in 
the vicinity or Mistral will occur; the planned IOP’s will not 
be conducted. The current study uses the data from sonic 
anemometer (Young make) collected at 10 m above ground 
level, for a few stable nights, with clear sky in February 2013 
(10th February to 20th February), free from synoptic distur-
bance. The sampling rate is 10 Hz. The site also has a sonic 
anemometer mounted at a height of 2 m above ground level. 
The stable boundary layer (SBL) height varies between 13 
and 27 m during this period. The SBL height is estimated 

Fig. 2   The site map of Kalpakkam. The red circle shows the location of the meteorological tower and sonic anemometer. The balloon with a star 
shows the locations of environmental radiation monitors  (Courtesy: Google Maps)
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using the formulations listed in Zilitinkevich and Baklanov 
(2002). The location of the sonic anemometer is shown as 
M30 in Fig. 3b. The data cover a wide range of stable atmos-
pheric conditions, including highly stable conditions with a 
� value of 10. The raw data are archived every 30 min. Each 
night contains varying hours of stable conditions. Further, 
tether sonde (TS) observations available during the period 
February 17th to February 19th, 2013 were used for vertical 
profile comparison of simulated wind speed and wind direc-
tion, using WRF. The location of the TS is marked as VER 
in Fig. 3b. The maximum height of TS achieved was 250 m 
above ground level during this period.

5 � Data analysis

The data used for the analysis are quality checked. The data 
are visually inspected to check the presence of spikes by plot-
ting the time-series data. Then, the data are de-trended, and 
the coordinate system is rotated relative to the streamline 
direction, using double rotation and tilt correction. Under the 
highly stable condition, to avoid the inadvertent capture of 
non-turbulent motions in the calculation of standard deviation 
of wind velocity components (Smedman 1988; Mahrt et al. 
1998; Mahrt 1999), the averaging time is chosen based on the 
MRD method. The analysis considers only data points that 
comply with the Taylor hypothesis. Many researchers (Stull 
1988; Pahlow et al. 2001) suggested that the Taylor hypothesis 
is valid when the turbulence intensity is smaller than the mean 

wind speed. This condition is satisfied by computing the turbu-
lence intensity, �u

U
 , and applying the criterion that the data with 

𝜎u

U
> 0.5 is rejected (Pahlow et al. 2001). The data points after 

the rejection are reduced to 473 from 532 for the Cadarache 
dataset and 348 from 403 for the Kalpakkam dataset.

Given below are the various scaling parameters required 
for the computation of turbulence intensity in the framework 
of the local similarity theory.

The local Obukhov length is given by

The expression for the shear stress is given by

where � is the air density.
The prime quantities refer to the turbulence fluctuations 

about the mean. � is the Von Karman constant accepted as 0.4.
The normalized wind velocity standard deviations 

(

�i

u∗

)

 , 

where i being u, v,w, and the stability parameter 
(

z

Λ

)

(where z 
is the measurement height), are computed using the scaling 
variables u∗ and Λ . Equation (1) shows the profile relation for 
normalized components of wind velocity standard deviations, 
for the stable condition based on the local similarity theory. 
The study uses the method of least square regression for fitting 
values of 

(

�i
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)
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(

z

Λ

)

.
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Fig. 3   a provides study area in lower left frame, b is the enlargement 
of the green rectangle in (a). The red lines show the Durance (DV) 
and the Cadarache (CV) valleys, respectively. Black dots indicate the 

measurement locations. Courtesy: The Royal Meteorological Society 
(Duine et al., 2017, Quarterly Journal of Royal Meteorological Soci-
ety)
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6 � Results

6.1 � Results of multi‑resolution decomposition

6.1.1 � Multi‑resolution decomposition on Kalpakkam 
datasets

This analysis uses sonic anemometer data from ten stable 
nights. Figure 4 shows the MRD spectrum following the 
algorithm, suggested by Howell and Sun (1999) for heat 
and momentum flux. Here, ΔF is the change in flux of heat 
or momentum between adjacent cut-off scales, F is the 
flux of heat or momentum, and Δe is the flux error. The 
flux error, Δe is calculated by assuming that the heat flux, 
with different cut-off scale, follows Student’s t distribution 
(Howell and Sun 1999).

Figure 4a as well as Fig. 4b indicates that above the cut-
off scale of ~ 15 min, the flux sampling error ( Δe ) is more 
than the change in fluxes ( ΔF ) between successive cut-off 
scales. In this case, it implies that choosing a time record 
length, spanning more than 15 min, will introduce errors in 
the flux estimates. Using this result as guidance, and taking 
in to account of variations in the cut-off scale for different 
sub-record, we choose 15 min as the time scale for each sub-
record, for the estimation of fluxes. The cut-off scale is the 
record length of the data, that can be used for flux estimate 
with confidence, without any flux sampling errors. Further, 
the fluxes for each sub-record are estimated by finding out 
the cut-off scale within each sub-record and averaging the 
fluxes for these sub-records. The cut-off scale, within each 
sub-record, is estimated at the point where Δe < ΔF in the 
flux-error curve, similar to Fig. 4. Different sub-records 
show different cut-off scales. The minimum cut-off scale 
was found to be ~ 1 min for flux computation. The fluxes thus 
estimated are used for the computation of the local Obukhov 
length, Λ and subsequently for estimation of shear stress. 
The shear stress and the Obukhov length are further used 
for estimating scaled standard deviations as a function of � . 
Figure 5 shows the normalized standard deviation of hori-
zontal and vertical components of the wind velocity, calcu-
lated with and without MRD.

The figure indicates that the scatter in the data of normal-
ized turbulence components for stable conditions is less with 
the MRD over the one without MRD. Basu et al. (2006) also 
obtained similar results. The figure also indicates that rela-
tionships without filtering show an increasing trend for 
� ≈ 0.5 . Pahlow et  al. (2001) and Mahrt et  al. (1998) 
reported the constancy in the value of the horizontal wind 
component up to � ≤ 0.1 . Smedman (1988) and Babic et al. 
(2016) reported the constancy up to � ≤ 0.5 . Similarly, De 
Franceschi et al. (2009) reported the constancy up to � ≈ 1 
after applying the appropriate filter. Many researchers 
(Smedman 1988; De Bruin et al. 1993; Chu et al. 1996; 
Hsieh and Katul 1997; Pahlow et al. 2001) reported the 
increase in the value of �i

u∗
 , for high � . A few studies in the 

tropical and coastal areas (Dharamaraj et al. 2009; Prasad 
et al. 2015, 2018) also show an increase in the value of nor-
malized turbulence quantities, under stable conditions. How-
ever, this increase in the value of �i

u∗
 is not conspicuous, after 

filtering out the non-turbulent motions from the dataset, in 
this case by MRD. The figure indicates that the rise in the 
value of normalized turbulence quantities, with the MRD, is 
lesser at the highly stable regime, compared to that estimated 
without MRD. Further, the figure shows that the number of 
data points is meager in near-neutral and neutral conditions. 
The less number of data at near-neutral conditions is 
because, at Kalpakkam, the number occurrences of near-
neutral and neutral stability conditions are not frequent. Fig. 4   a The multi-resolution decomposition plot for momentum. b 

The multi-resolution decomposition plot for Heat
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Extrapolation of the fitted curve (Fig. 5b, d, f) of normalized 
standard deviation against � , to neutral conditions, shows a 
value of 1.8 ± 0.03 , 1.9 ± 0.06 , and 1.1 ± 0.04 for the empiri-
cal constant A, for normalized horizontal (u and v compo-
nents) and vertical standard deviations, respectively, with 
95% confidence level. Pahlow et al. (2001) reported the 
value of the constant A as 2.3, 2, and 1.1, respectively, for 
u, v, and w component of the normalized wind velocity 
standard deviations. Similary, Smedman (1988) reported the 
value of A as 2.3, 1.7, respectively, for u and v velocity 
standard deviations. Further, Panosfsky and Dutton (1984) 
reported this value as 2.4 and 1.9, respectively, for u and v 
velocity standard deviations. De Franceschi et al. (2009) 
reported this value for along-valley wind as 1.92 ± 0.02 and 
1.71 ± 0.02 , for u component and v component of the stand-
ard deviations and 1.32 ± 0.01 , for w component of the 
standard deviation. Similarly, for cross valley winds, they 
reported these values to be 1.90 ± 0.09 , 1.89 ± 0.08 and 
1.38 ± 0.05 , for u, v, and w component of the standard devia-
tions. Babic et al. (2016) reported these values for different 
heights over industrial town Kutina in Croatia, under win-
tertime nocturnal conditions.

Our estimates of the constant B for horizontal and vertical 
components of turbulence are 0.4, 0.2, and 0.4, respectively, 
with a 95% confidence level. The value of C is 0.3, for all 

the components. The increase in the value of normalized 
turbulence, for high � is not observed in this case, due to the 
filtering of non-turbulent motions. The constancy of the val-
ues of �i

u∗
 , at the stable regime indicates that the relationships 

derived for the Kalpakkam site, follow local similarity the-
ory, under stable atmospheric conditions. The next section 
discusses the results of a similar analysis carried out for the 
Cadarache data.

6.1.2 � Multi‑resolution decomposition of Cadarache dataset

Similar multi-resolution decomposition to the Cadarache 
data shows the cut-off time scale as 10 min instead of 15 min 
as the case of the Kalpakkam site (Figure not shown). Analy-
sis of different data records for the Cadarache region shows 
a minimum cut-off scale of ~ 1 min, similar to Kalpakkam. 
Figure 6 shows the normalized standard deviations, with and 
without multi-resolution decomposition.

The Fig. 6 indicates that without MRD, more scatter 
is observed in the value of the normalized components, 
and shows an upward trend in the curve for 𝜁 > 1 (Fig. 6a, 
c, e). The rise in the curve (left panel), for higher values 
of ζ, shows the influence of the non-turbulent motions, 
on the normalized standard deviations of wind velocity. 

Fig. 5   The Normalized standard 
deviation of horizontal and 
vertical wind components 
without (left panel) and with 
(right panel) multi-resolution 
decomposition
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The figure also conveys that the slope of the curve in the 
left panel is higher than the slope noticed in the case of 
Kalpakkam data. On the other hand, the values of normal-
ized standard deviations did not show such scatter and 
upward trend after filtering of the non-turbulent motions. 
The extrapolation of the fitted curve of values of normal-
ized standard deviations (Fig. 4b, d, f) to neutral condi-
tions shows a value of 1.9 ± 0.07 , 1.8 ± 0.06 , and 1.3 ± 0.02 
for the constant A for horizontal and vertical components, 
respectively, with 95% confidence level, which is closer 
(less than 10%) to the values obtained for the Kalpakkam 
dataset, except for the vertical component (less than 20%). 
Many researchers (Nieuwstadt 1984; Smedman 1988; De 
Bruin et al. 1993; Chu et al. 1996; Mahrt et  al. 1998; 
Pahlow et al. 2001; Babic et al. 2016) analyzed the w com-
ponent of wind velocity standard deviation. In a review of 
turbulence statistics, Dias and Brutsaert (1996) reported 
the value of A from several works and mentioned that it 
centers around 1.3. Similarly, for the constant B, the curve 
fit shows a value of 0.2, 0.3, and 0.03, respectively, for 
horizontal and vertical turbulence intensities, with a 95% 
confidence level. The value of C is 0.4 for longitudinal and 
vertical components, and 0.3 for crosswind components. 
Table 1 summarizes the empirical formulation for nor-
malized wind velocity standard deviations obtained from 
both sites.

6.2 � Simulation of dispersion using FLEXPART‑WRF

6.2.1 � Results of FLEXPART‑WRF simulation over Cadarache

The new turbulence diffusion formulations obtained for the 
Cadarache site are incorporated in the FLEXPART model, 
to study the effect of new functional relationships on disper-
sion. As already mentioned, the WRF provides inputs for the 
FLEXPART model. The WRF is initialized at 1200 GMT on 
17th February 2013, during one of the IOP and integration 
is continued until 1200 GMT on 19th February 2013. The 
FLEXPART simulation assumes a ground-level release with 
a release rate of 1 g/s. The main inputs to FLEXPART are 
three components of the wind velocity and the surface layer 
scaling parameters (u*, L, mixed layer height). The wind 
speed and direction simulated by the WRF are compared 
with observations at 10 m above ground level, starting from 

Fig. 6   The Normalized standard 
deviation of horizontal and ver-
tical wind without (left panel) 
and with (right panel) multi-
resolution decomposition
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Table 1   Normalized corrected wind velocity standard deviations 
under stable conditions

Site U direction V direction W direction

Cadarache
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1200 GMT 17th February 2013 for 48 h and is shown in 
Fig. 7.

The root mean square error (RMSE) for wind speed is 
1.35 m/s, and for the wind direction, it is 61.5°. The high 
value of RMSE is also reported by others as well (Seaman 
et al. 2012), especially under low wind speed. Moreover, at 
very low wind speeds, the observed wind directions are not 
very reliable (Soler et al. 2011). Further, Fig. 8a–d shows the 
comparison plot of the simulated vertical profiles of wind 
speed and wind direction with tethersonde observation, 
available during the IOP at 1600 GMT on 18th February 
2013, 2000 GMT on 18th February 2013, 0800 GMT on 
19th February 2013 and 2000 GMT on 19th February 2013, 
respectively.

The simulated vertical profiles at both the times are in 
good agreement with observation. The estimated RMSE for 
wind direction and wind speed are 21.71°, 1.35 m/s, 13.77°, 
0.47 m/s, 42.64°, 1.02 m/s, and 23.82°, 1.25 for Fig. 8a–d, 
respectively. Further, for dispersion simulation, the FLEX-
PART model is initialized at 1800 GMT on 18th February 
2013 and integrated till 1200 GMT on 19th February 2013 
so that the simulation covers the stable atmospheric condi-
tions. The study further compares the gamma dose rate sim-
ulated by FLEXPART, using the new relationships (Table 1) 
and the model default Hanna’s method (Hanna 1982). The 
model uses the point kernel method (Oza et al. 1999; Rakesh 
et al. 2015; Srinivas et al. 2017), for gamma dose rate com-
putation. The similarity relationships for normalized wind 
velocity standard deviations formulated by Hanna, for stable 
conditions are recalled below.

Here, h is the boundary layer height.
Figure 9 shows the color-shaded maps of relative dose 

patterns during 2 night hours (0023 GMT and 0000 GMT) 
under highly stable atmospheric conditions.

The analysis time corresponds to an atmospheric condi-
tion with positive values of � . The left panel shows the dose 
rate with the new scheme relative to the default Hanna’s 
scheme at 0023 GMT, and the right panel shows the same, 
but at 0000 GMT. From the figure, it is evident that the 
new scheme simulates a higher dose rate relative to the 
model default scheme. Spatially, the dose rate, with the new 
scheme, shows a variation between a factor of 1.2–2 relative 
to Hanna’s scheme. Moreover, the figure also shows that the 
relative dose rate is lower, 0.2–0.5, especially at the lateral 
boundary of the plume, i.e., the dose rate simulated using 
Hanna’s scheme is higher than the dose rate simulated with 
the new method. This lower relative dose is because Hanna’s 
scheme simulates higher diffusive velocity, and thereby more 
dispersion and broader plume.

On the other hand, the new scheme simulates less dis-
persion and narrower plume, thereby leading to a lower 
relative dose rate at the boundary of the plume. Seaman 

(13)�u = 2u∗

(

1 −
z

h

)

(14)�v = 1.3u∗

(

1 −
z

h

)

(15)�w = �v

Fig. 7   Comparison of simulated 
wind speed and wind direction 
at 10 m with observation
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et al. (2012) reported that high-resolution simulation using 
weather models like WRF could simulate submesoscale 
motions, only to some extent. However, in dispersion 
calculations, it is required to use the turbulent diffusion 

relationships free from such motions, for a conservative 
estimate of dispersion, especially while using high-resolu-
tion weather models like WRF. Otherwise, it leads to the 
accounting of such motions twice in dispersion estimates, 

Fig. 8   Comparison of the vertical profile of wind speed and wind direction at a 1600 GMT on 18th February 2013, b 2000 GMT on 18th Febru-
ary 2013, c 0800 GMT on 19th February 2013 (d) and 2000 GMT on 19th February 2013
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thereby underestimating the pollutant concentration. This 
is especially crucial in the case of radioactivity dispersion 
since the regulatory limits for nuclear power plant releases 
are fixed based on the simulated dose calculations using 
these types of dispersion models coupled with weather 
models.

For the validation of the above dispersion calculations, no 
experimental tracer concentration data are available at this 
site, Cadarache. However, at Kalpakkam, the plume gamma 
dose rate is monitored using a network of environmental 
radiation monitors (ERM) around the Madras Atomic Power 
Station (MAPS). The plant (MAPS) releases trace quanti-
ties of radioactive Argon gas under normal operating condi-
tions, from a 100 m stack. The dose rate data collected using 
ERMs used further for comparison with the simulated plume 
dose rate, and the next section discusses these results.

6.2.2 � Comparison of FLEXPART simulation 
with observations over Kalpakkam

The site Kalpakkam has ERMs mounted at 1  m above 
ground level in each wind direction sector of 22.5° width. 
The detectors are arranged in a two-ring fashion, one ring at 
500 m away from the release point (MAPS), and the other 
ring at 1500 m. There are a total of 27 monitors around the 
release point. Figure 2 shows the pictorial representation of 
sampler locations. The ERMs record the gamma dose rate 
(nGy/h) due to normal operational releases from the reactor, 
using Geiger Muller counters. The details of the releases 
and the ERM network are available in Srinivas et al. (2017). 
The ERMs record the gamma dose due to normal releases 
from the power plant. The background radiation dose at a 
particular detector location is estimated when the radiation 

plume is not over that particular detector. The recorded dose 
rate by the detector is the total dose rate due to the natural 
background and the argon releases from the reactor. The 
actual dose due to releases from the power plant is obtained 
by subtracting the background at ERM location, from the 
total dose rate registered in the ERM. The current study uses 
the gamma dose rate data collected during November 2016, 
and during this period, the wind direction is predominantly 
northeast, and the impact of the radioactive plume is over the 
land. Further, during the nighttime, the atmospheric stabil-
ity ranges from Pasquill class “E” to “F” over this region. 
The present analysis uses 65 h of data of gamma dose rate 
collected under stable atmospheric conditions. For the simu-
lation of dose rates and further comparison with measured 
dose rates, the FLEXPART model uses input data from the 
meteorological tower for dispersion estimates. When the 
argon plume passes over the detector, the detector shows a 
spike in the time-series data of the dose rate. As the wind 
is from the northeast, the detectors in the southwest sector 
relative to the reactor show the increase in dose rate. Two 
detectors of the network captured the radioactive plume for 
the flow direction during these hours as the rest of them were 
away from the primary impacted sector. Figure 10 shows the 
correlation plot of the observed gamma dose rate against 
simulated values, with the new and Hanns`s method of com-
puting wind velocity standard deviations. Both the observed 
as well as simulated dose rate values are normalized with the 
observed maximum dose rate.

The figure indicates that the incorporation of the new 
relationships for turbulent intensities for stable atmospheric 
conditions in FLEXPART produces better results for the 
dose rate estimates compared to the model default Hanna’s 
method. Table 2 shows the error statistics.

Fig. 9   The relative (to Hanna’s 
method) gamma dose rate 
simulated using new turbulence 
diffusion method at 0023 GMT 
and 0000 GMT. The contour 
refers to the topographic height



922	 P. T. Rakesh et al.

1 3

Table 2 indicates that the new schemes perform better 
compared to the default scheme. Though the turbulence 
coefficients in the corresponding relationships are dif-
ferent, the difference is not very evident in the dose esti-
mates because of less number of data in the highly stable 
regime over Kalpakkam. It is challenging to get the coin-
cidence of highly stable conditions and the radioactive 
plume centerline over the detectors. For better statistics, 
it is necessary to analyze dose records under more events 

of stable conditions. Nevertheless, the present study 
indicates an improvement in dispersion estimates under 
highly stable atmospheric conditions.

7 � Conclusions

The present study shows that under stable conditions, the 
normalized standard deviation of the wind components fol-
lows local similarity theory if non-turbulent motions are fil-
tered. The study also indicates that the values of the empiri-
cal coefficients vary within 10%, in the case of horizontal 
wind and ~ 20% in the case of vertical wind velocity standard 
deviations, for the flat terrain of Kalpakkam and the hilly 
complex Cadarache terrain, considered for the study. The 
study used multi-resolution decomposition to filter the non-
turbulent motions from the fast response measurements. The 
simulation with new turbulence diffusion relationships in the 
FLEXPART model indicates that the simulated gamma dose 
rates are improved compared to the model default Hanna’s 
method. The results also show that new turbulence relation-
ships predict narrower plume and higher dose rate compared 
to the Hanna’ scheme under stable atmospheric conditions. 
The study used measured dose rate data from two detectors 
since they matched the requirement of the meteorological 
condition though it is inadequate for arriving at a statisti-
cally robust conclusion. Nevertheless, the study indicates 
that the new relationships show promising results in simulat-
ing the dispersion under highly stable conditions. The study 
is essential, especially in the context of radioactivity disper-
sion, since it warrants conservative estimates of radiological 
dose.
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Fig. 10   Comparison of observed and simulated gamma dose using a 
Hanna’s method, b new method for turbulence diffusivity. The inset 
shows the zoomed image between 0 and 0.2 nGy/h

Table 2   The dose rate error statistics with Hanna’s method and the 
new method

Error Hanna’ scheme New scheme

FB  − 0.06  − 0.06
NSME 1.18 0.77
MG 1.70 1.60
VG 3.40 3.10
FAC2 0.37 0.51
R2 0.50 0.62

https://kascade.sedoo.fr
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