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Abstract
The Indian summer monsoon is a complex climatic phenomenon with a large variability over the years. The climatic predic-
tors affecting the phenomenon evolve with time, and consequently new predictors have gained importance. Several statistical 
approaches are being explored in the literature to identify the potential predictors influencing the Indian summer monsoon. A 
complex network paradigm involving climatic variables at the grids over the globe has been proposed for predictor identifica-
tion and monsoon prediction. The approach initiates with the identification of communities in the climate network consider-
ing mutual similarity and the influence of climate variables of grids on the Indian summer monsoon. Spatial clustering is 
performed over the communities to identify the geographical regions of significance. The climatic predictors extracted from 
variables of these regions are evaluated in terms of their correlation with the monsoon as well as their forecasting skills in 
predicting the summer monsoon of the country. The newly identified predictors forecast monsoon with an error of 4.2%, 
which is significant for the prediction of the complex phenomenon of monsoon.

1 Introduction

Analyzing the climate dynamics as an interacting complex 
network yields valuable insights into several climatic phe-
nomena. A multiple number of climatic predictors influence 
the state and dynamics of the climatic phenomenon. The 
monsoon is a prime and interesting climatic phenomenon 
that is widely studied (Rajeevan 2001; Gadgil 2003; Gadgil 
et al. 2005; Guhathakurta and Rajeevan 2008; Wang et al. 
2015; Saha et al. 2016b; Saha and Mitra 2016). The dyna-
mism of the monsoon phenomenon results from its depend-
ence over a number of global climatic variables. The varia-
tion in the quantity and distribution of monsoon are high. In 
addition, the influencing predictors of monsoon also evolve 
over time. Thus, it is important to reconsider the monsoon 

predictors and explore different climatic variables over the 
world affecting the complex monsoon phenomenon. We 
concentrate our study on the Indian summer monsoon and 
in a complex network paradigm to explore and identify new 
climatic predictors influencing the phenomenon.

The use of climatic network in earth science is an emerg-
ing direction toward analyzing and understanding the cli-
matic phenomena. Tsonis and Roebber (2004) suggested the 
concept of climatic network and represented the phenomena 
as a network of dynamic processes. They revealed that the 
overall dynamics result from interactions of two subsystems, 
one working in the higher latitudes and other in the tropics.

The climate networks are also built using complex 
networks-based concepts and they are utilized to figure 
out the interesting patterns present in the climatic system 
(Donges et al. 2009a, b). Steinhaeuser et al. (2011) pro-
posed the analysis and modeling of the climatic events 
using a complex network-based approach. Clusters 
derived by a complex network approach are proven to 
be superior predictors than one obtained from the tradi-
tional clustering approach. Clustering methods are also 
used widely to detect the region of importance in the 
climatic network (Noor and Awan 2005; Steinbach et al. 
2003). Steinhaeuser et al. (2010) detected the communi-
ties within the climatic system, and the approach was 
used for the potential predictors’ identification in the 
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climatic network. The new predictors elucidate reasons 
behind the changing climatic phenomenon and assist in 
analyzing the causes behind the phenomenon. Tsonis and 
Swanson (2008) have built networks for La-Niña and El-
Niño. They have shown that the latter network (for El-
Niño) is less stable and validated a better predictability 
of La-Niña event. Major climatic shifts as the transition 
between different equilibria of oscillators are explained 
using the climatic network (Tsonis et al. 2007).

The proposed work is focused in two main directions—
(1) identification of new monsoon predictors utilizing 
community detection approach and density-based cluster-
ing, and (2) predicting the Indian summer monsoon (ISM) 
by the identified predictors.

In the proposed approach, climatic networks are built con-
sidering the spatial grids of the world as nodes of the network. 
The nodes are attributed with climatic variables and weighted 
edges are added by considering the similarity between the 
nodes. After the building of networks, communities are 
detected from the networks for identification of significant 
climatic regions. The community detection-based approach 
achieves higher performance in detecting similar groups as 
compared to the clustering method because unlike the cluster-
ing approach, the community detection method also focuses 
on the architecture of the network in addition to the attributes 
of the nodes. Finally, the density-based clustering is applied to 
the detected communities to obtain spatially localized regions, 
which are representative for the new monsoon predictors. The 
identified predictors are observed to be more correlated to the 
ISM than the existing predictors of the monsoon. Lastly, the 
prediction of Indian summer monsoon is performed utilizing 
the identified correlated monsoon predictors with ensemble 
regression model. The identified predictors establish their 
superiority in forecasting the Indian summer monsoon.

Section 2 of the article describes the data, the building 
of climatic networks, followed by the proposed predictor 
identification approach using the community detection and 
density-based clustering methods. The non-linear model 
for predicting the Indian summer monsoon is elaborated in 
Sect. 3. The concept of uncertainty and its association with 
the monsoon forecast is explored in Sect. 4. The detailed 
exploration of the monsoon predictors is provided with 
their predicting skills for the Indian monsoon in Sect. 5. 
Lastly, the article is concluded in Sect. 6.

2  Climatic network‑based approach 
for identifying the predictors of Indian 
summer monsoon

The proposed method for the identification of predictors 
influencing the summer monsoon of the sub-continent is 
shown in Fig. 1. It elaborates all the steps followed in the 

approach to identify novel monsoon predictors, and finally 
forecasts the summer monsoon of the country.

2.1  Data sources and preprocessing techniques

The climatic variable considered are surface pressure (SP) 
and zonal wind at 850 hPa (UWND), which are the well-
known influencing factors of the Indian monsoon phenom-
enon (Rajeevan et al. 2007; Saha and Mitra 2016; Saha et al. 
2017). Surface pressure values and zonal wind values are 
accumulated from the NCEP reanalysis data NOAA/OAR/
ESRL/ PSD (http://www.esrl.noaa.gov) (Kalnay et al. 1996), 
available at 2.5◦ × 2.5◦ resolution. Thus, considering the 
spatial resolution it boils down to 73 (180/2.5 + 1) latitu-
dinal and 144 (360/2.5) longitudinal grids, which assemble 
to 10,512 nodes (73 × 144) in the climatic network built 
for the variable surface pressure (Net_SP) and zonal wind 
(Net_UWND).

The other climatic variable examined is sea surface tem-
perature (SST), which has a high impact on the climatic 
phenomenon of monsoon (Rajeevan et al. 2004, 2007; Saha 
et al. 2016a, b; Saha and Mitra 2016). Sea surface tempera-
ture data are collected from NOAA_OI_SST_ V2 (http://
www.esrl.noaa.gov) (Reynolds et al. 2002) at 2◦ × 2◦ resolu-
tion. We have considered the SST data at 4◦ × 4◦ grid points 
to reduce the computational overhead and this network of 
sea surface temperature (Net_SST) has 4050 (180/4 × 360/4) 
nodes. These are the initial grid location where sea surface 
temperature values are examined. Many of these locations 

Fig. 1  Climate network-based method for identifying monsoon pre-
dictors and predict the Indian summer monsoon

http://www.esrl.noaa.gov
http://www.esrl.noaa.gov
http://www.esrl.noaa.gov
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are over the land and values of sea surface temperature are 
not available over the land surfaces. Thus, the post-process-
ing method includes the selection of grids over the sea with 
consideration of nodes having less than 20% as null values 
over time. The method also comprises the addition of links 
between the nodes considering the similarity measure. These 
are elaborated in Sect. 2.2. It is noted that the final networks 
for SP, UWND, and SST have fewer nodes as compared to 
the initial nodes. SP, UWND and SST data are examined for 
the period 1948–2018 on monthly scale for the study.

The prediction of the Indian summer monsoon (ISM), 
which accounts for total rainfall in June–September is the 
primary focus of the study. Rainfall data are collected from 
the India Meteorological Department (IMD: http://www.
imdpu ne.gov.in), for the period 1948–2017. The long period 
average (LPA) rainfall over the span is 890.1 mm.

As a preprocessing step, the SP, UWND and SST anom-
aly values are evaluated by deducting the monthly mean 
from the respective month values of the variables (Eq. 1).

where realDatay
m

 denotes the value of the variable for mth 
month of yth year. The mean ( realDatam ) signifies the aver-
age value of all years under study for the mth month.

2.2  Design of climatic network and link 
thresholding

The introductory step of the proposed approach involves the 
creation of climatic networks for variables, namely, surface 
pressure, zonal wind at 850 hPa, and sea surface tempera-
ture. The spatial grids at a resolution of 2.5◦ × 2.5◦ for SP 
and UWND, and 4◦ × 4◦ for SST over the world are consid-
ered as nodes in the respective networks. The network built 
for SP and UWND have 10512 nodes, and that for SST has 
4050 nodes at the initial phase. The latitude, longitude, and 
the variable values over time at grid points characterize the 
nodes of the network. The values of the variable SST over 
the land surface are null. Such null nodes are eliminated 
from the network in the post-processing phase. The weighted 
edges are inserted considering the similarity between every 
node pair in terms of normalized euclidean distance (NED). 
The NED is calculated as shown in Eq. (2).

(1)anomalyDatay
m
= realDatay

m
−mean(realDatam),

(2)

NED(n,m) =
(

ED(n,m) −
(

∀(x,y)∶x,y∈G,x≠ymin
(

ED(x,y)

)))

÷
[(

∀(x,y)∶x,y∈G,x≠y max
(

ED(x,y)

))

−
(

∀(x,y)∶x,y∈G,x≠y min
(

ED(x,y)

))]

,

ED(n,m) =

√

√

√

√

t
∑

i=1

(

ni − mi

)2
,

where (n,m) denotes an edge between the nodes n and m, 
G denotes the set of nodes, ED(n,m) denotes the Euclidean 
distance between the climatic variable’s time series at nodes 
n and m; and t denotes the length of variable time series.

An edge is added between two nodes if the normalized 
Euclidean distance between nodes attains the threshold, 
computed in the following manner. The range of NED 
between all pairs of nodes is divided into 100 intervals and 
the occurrence frequency of weights in all the intervals are 
plotted. The sharp descent of the graph plot is ascertained 
as threshold and edges having NED less than the threshold 
(lesser the NED, closer are the nodes) are added (Fig. 2). 
The threshold NED values for Net_SP, Net_UWND, and 
Net_SST are 0.05, 0.03, and 0.02, respectively. We also var-
ied the threshold around the ascertained threshold value and 
repeated the proposed approach. The changes in accuracy 
with the varying thresholds are observed to be comparable. 
Thus, we considered the ascertained threshold for building 
the edges of the climatic network.

Lastly, the networks are post-processed by removing 
the isolated nodes for building the connected network. 
After the post-processing and link addition, the final net-
work built with the surface pressure variable has 9614 
nodes and 196,606 edges, that for the zonal wind at 850 
hPa has 7464 nodes and 10,416 edges, and finally, for 
the sea surface temperature variable has 1543 nodes and 
1,094,514 edges. It is noted that the network for SST is 
immensely dense, which signifies that the variation of 
sea surface temperature between spatial grids is less as 
compared to that of sea level pressure.

Fig. 2  The frequency of edge weights at various intervals to calculate 
the threshold for surface pressure variable

http://www.imdpune.gov.in
http://www.imdpune.gov.in
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2.3  Community detection followed 
by the density‑based clustering for identifying 
the monsoon predictors

The proposed approach consists of three major steps, 
which are discussed in the following section.

(a) Identifying the communities of the climatic network.
(b) Filtering and the selection of the detected communities.
(c) Identifying the geographically localized regions of 

interest from the communities.

The fast-greedy community detection method (Clauset 
et al. 2004) is applied over the climatic network to detect 
communities. Communities aid to identify new potential 
climatic predictors influencing the Indian summer mon-
soon. The algorithm is selected considering the follow-
ing properties—(1) utilization of the edge weights of the 
network, (2) high suitability for the intense and dense 
networks, and (3) computational efficiency in finding the 
communities within the network.

The fast-greedy is a hierarchical agglomeration method 
which optimizes the modularity of the network. It per-
forms greedy optimization starting with the individual 
vertex being the community of single dimension. Any 
two different communities are constantly joined into a 
single community, whose combination produces the high-
est improvement in the modularity of the communities. 
The stopping criterion for the algorithm is the time when 
there is no further improvement in the modularity.

The communities by fast-greedy community detection 
are filtered by scrutinizing the density of nodes in the 
communities. This value is selected empirically.

The obtained communities may be sparsely located, 
which are processed to obtain geographically localized com-
munities using density-based spatial clustering (DBSCAN) 
(Ester et al. 1996). The algorithm is used because it is a 
spatial clustering technique which aids in extracting a local-
ized set of grids. Other supplementary reasons include—(1) 
number of clusters is not required a priori, (2) capability in 
detecting arbitrarily shaped clusters, (3) it is one scan, and 
(4) the approach is robust to outliers.

The latitude and longitude of grids in the communities 
are fed to DBSCAN to obtain a set of spatially localized 
dense clusters, which are representative for the potential 
monsoon predictors.

2.4  Identification of the climatic predictors 
from the clusters

The spatially localized clusters are considered to evaluate the 
new monsoon predictors. Each cluster consists of a number 
of grid points. For a specific cluster, the mean time series 

is evaluated over all the series of grids within the cluster. 
This mean time series represents the newly identified poten-
tial predictor. The evaluation of predictor variable is shown 
in Eq. (3). Thus, each cluster represents a newly identified 
potential monsoon predictor. A few identified predictors sig-
nify well-known monsoon predictors, symbolizing for the 
validation of our proposed method of identifying the mon-
soon predictors, while the others represent new localized 
geographical regions, which are significant for the phenom-
enon of the Indian monsoon.

where Pi denotes climatic variable time series of the ith grid 
of localized cluster, and k is the number of grid points within 
a localized cluster (representative of identified predictor).

3  Prediction model with identified monsoon 
predictors

Fitted ensembled regression tree model with bagging algo-
rithm (RegTreeB) (MATLAB 2012) is used as the prediction 
model, which assembles a number of weak learner-trained 
models to provide the forecast. The model predicts the 
ensemble response by aggregating the predictions obtained 
from the trained weak learner regression models. The bag-
ging method is utilized for building and training the regres-
sion tree weak learners of the ensemble model.

The prediction model is built using this algorithm for 
the following reasons—(1) it uses the bagging, a bootstrap 
aggregating method improvising estimation, (2) it assists in 
increasing the predictive ability of the underlying regression 
tree, and (3) the algorithm can work with a large number of 
training instances and high dimensional data.

4  Uncertainty associated with monsoon 
prediction

Ascertaining uncertainty involved in the forecast of the mon-
soon has a significance. Decision makers need to analyze the 
uncertainty involved in the monsoon to propose justifiable 
strategies. Uncertainty should be appreciably communicated 
or it may lead to a false certainty sense, improper decision-
making, and overall reduced performance in the forecast. 
Uncertainty in the forecast arises from the probabilistic fore-
cast of the phenomenon.

The uncertainty arises from different sources and it may 
be first-order or second-order uncertainty. The first-order 
uncertainty points toward the likelihood of a phenomenon 
occurring in accordance with a particular forecast or the risk 

(3)identified predictor =

∑k

i=1

�

Pi

�

k
,
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involved in it, whereas the second-order uncertainty is cited 
as ‘uncertainty about uncertainty’. It results from how well 
the model has adapted to forecast or it highlights the model 
errors in execution. It is represented as a measure of reliability.

Taylor et al. (2015) propose propagating the uncertainty 
in the climate forecast in a preferable receiving format. 
They utilize surveys from user needs conducted on different 
organizations. Azad et al. (2015) showed that the uncertainty 
in predicting the monsoon of India is reduced. The perfor-
mance is improved by treating the periodic and random part 
of the time series data separately with wavelet and neural 
network, respectively. We explain the uncertainty in the pre-
diction of monsoon using measures like root mean square 
error, bias, correlation coefficient, and Willmott index, 
which define the uncertainty involved with the model or they 
give a measure of explaining how well the forecasts have 
satisfied the actual values.

5  Experimental results and analysis

The proposed climate network-based approach to identifying 
the monsoon predictors is judged by the measure of per-
formance of identified predictors in forecasting the Indian 
monsoon.

5.1  Identified monsoon predictors

A correlation investigation of new monsoon predictors is 
performed with the prime monsoon period of India (i.e., the 
total rainfall during June–September) by considering a lead 
of 1–12 months. The lead months are considered to evaluate 
the best correlated month (a lead of one represents the month 
of May in the same year of predictor influencing monsoon 
of the year (monsoon starts in June), a lead of 2 represents 
April of the same year influencing the monsoon of the year, 
and finally a lead of 12 represents June of the previous year 
influencing the present year’s monsoon). Pearson correlation 
( � ), shown in Eq. (4), is used for the purpose. The best lead 
month corresponds to the month of identified climatic pre-
dictor which has the highest correlation with the monsoon 
of India. The variable value of the best correlated month are 
used for further forecast. Top correlated identified predictors 
are filtered for all three variables, and are shown in Table 1. 
The table highlights the location of identified predictors 
along with their correlation values and the best correlated 
month with the Indian summer monsoon.

(4)� =

∑N

i=1

�

Xi − X
��

Zi
m
− Zm

�

�

∑N

i=1

�

Xi − X
�2

�

∑N

i=1

�

Zi
m
− Zm

�2

,

where Xi and Zi
m

 represent the Indian summer monsoon 
rainfall (total rainfalls for June–September) at ith year and 
identified climatic predictors of mth month at the ith year, X 
is the averaged monsoon rainfall and Zm is the averaged cli-
matic predictor for mth month, and N is the total years. The 
identified predictors are ordered by their correlation with the 
Indian summer monsoon (the first predictor having the high-
est correlation and the last having the lowest). The identified 
predictors of surface pressure, sea surface temperature, and 
zonal wind are shown in Fig. 3a–c, respectively.

The identified predictors by the proposed climate net-
work-based approach can be classified into two classes. 
Firstly, one class consists of the predictors belonging to 
regions which are well-known monsoon predictors. Identify-
ing the established predictors supports our proposed method. 
Secondly, the ther class consists of predictors belonging to 
the new geographical regions whose impact on the Indian 
summer monsoon are not studied in literature. They are pre-
sented as a new set of monsoon predictors of the country.

Re-identification of the influencing monsoon predictors 
include surface pressure of the Equatorial South-Eastern 
Indian Ocean (S2), and the disturbance of this region affects 
the tropical climate (Achuthavarier et al. 2012). The region 
of the Pacific Ocean around Indonesia and Malaysia (S5) 
are studied to be influencing the summer monsoon of India 
(Rajeevan et al. 2004). The South-Eastern Equatorial Indian 
Ocean is shown to be tele-connected with the tropical Indian 
Ocean influencing the monsoon. It is notified that the change 
in sea surface temperature over the band stretching around 
the Equator over the Pacific Ocean (T2) influences the Indian 
summer monsoon (Rajagopalan and Molnar 2012). The sea 
surface temperature of the Equatorial East Pacific Ocean 
corresponds to the El Nĩno region, a known regulating fac-
tor for the Indian summer monsoon (Cherchi and Navarra 
2013). Regarding 850 hPa zonal wind, Central North–South 
Pacific Ocean (U1) is also considered as an important mon-
soon predictor by the India Meteorology Department for pre-
dicting monsoon (Rajeevan et al. 2007). Moreover, North 
Pacific Ocean–Gulf-of-Alaska 850 hPa UWND (U3) and 
Equatorial North Pacific Ocean 850 hPa UWND (U4) shared 
similar regions of the North Pacific Ocean, which is a well-
known monsoon predictor of India (Rajeevan et al. 2004, 
2007). Finally, the Southern Indian Ocean 850 hPa UWND 
has evolved as an important predictor which is also used by 
Rajeevan et al. (2004) to forecast the Indian monsoon.

Newly identified climatic predictors include surface 
pressure of the Southern Indian Ocean (S1), the Tasma-
nia–Southern Ocean (S3), and the region of Southern Ocean 
(S7). Other new predictors are the sea surface temperature 
of the Solomon Islands–Fiji–Pacific Ocean (T1), the Tas-
mania–South Indian Ocean (T3), the Philippine Sea (T5), 
the region of Southern Ocean (T6), and the South Pacific 
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Table 1  Identified monsoon predictors (Pred.) for surface pressure, sea surface temperature, and zonal wind with geographical location, absolute 
correlation (Corr. value) and correlated month (Corr. month) (0 signifies the same year and − 1 signifies the previous year)

Pred. Predictor name Location Corr. value Corr. month

SP S
1

Southern Indian Ocean SP 42◦S–48◦ S, 50◦E–80◦E 0.352 Mar (0)
S
2

Equatorial South-Eastern Indian Ocean SP 15◦N–12◦ S, 75◦E–100◦E 0.341 May (0)
S
3

Tasmania–Southern Ocean SP 45◦S–48◦ S, 115◦E–130◦E 0.333 Sep (− 1)
S
4

Madagascar Equatorial South -Western Indian Ocean SP 0◦–10◦ S, 45◦E–70◦E 0.298 May (0)
S
5

Indonesia–Malaysia SP 8◦N–8◦ S, 102◦E–132◦E 0.282 May (0)
S
6

South-Eastern Equatorial Ocean SP 25◦S–38◦ S, 80◦E–115◦E 0.243 Sep (− 1)
S
7

Southern Ocean SP 55◦S–68◦ S, 40◦E–60◦E 0.218 Jul (− 1)
SST T

1
Solomon Islands–Fiji–Pacific Ocean SST 2◦S–15◦ S, 150◦E–180◦E 0.347 Oct (− 1)

T
2

North-West–Central Pacific Ocean SST 28◦N–13◦ S, 180◦E–210◦E 0.274 Dec (− 1)
T
3

Tasmania–Southern-Indian Ocean SST 40◦S–60◦ S, 140◦E–150◦E 0.269 Mar (0)
T
4

Equatorial East Pacific Ocean SST 18◦N–20◦ S, 210◦E–260◦E 0.267 Aug (− 1)
T
5

Philippine SST 5◦N–20◦ N, 130◦E–140◦E 0.265 Jun (− 1)
T
6

Southern Ocean SST 40◦S–68◦ S, 70◦E–85◦E 0.263 Jan (0)
T
7

South Pacific Ocean SST 50◦S–72◦ S, 230◦E–260◦E 0.247 Apr (0)
UWND U

1
Central North–South Pacific Ocean 850 hPa zonal wind 30◦N–35◦ S, 190◦E–200◦E 0.437 May (0)

U
2

Equatorial South Pacific Ocean 850 hPa UWND 8◦N–48◦ S, 225◦E–240◦E 0.394 May (0)
U

3
North Pacific Ocean–Gulf-of-Alaska 850 hPa UWND 30◦N–50◦ N, 194◦E–214◦E 0.364 May (0)

U
4

Equatorial North Pacific Ocean 850 hPa UWND 30◦N–10◦ S, 210◦E–228◦E 0.356 May (0)
U

5
United States–Mexico–Gulf-of-Mexico 850 hPa UWND 45◦N–0◦ , 250◦E–282◦E 0.280 Apr (0)

U
6

Southern Indian Ocean 850 hPa UWND 35◦S–55◦ S, 25◦E–50◦E 0.279 Sep (− 1)
U

7
South Pacific Ocean 850 hPa UWND 25◦S–75◦ S, 245◦E–280◦E 0.267 Apr (0)

U
8

North-Central Russia–China 850 hPa UWND 35◦N–65◦ S, 90◦E–100◦E 0.255 Feb (0)

Fig. 3  Identified climatic predictors for a surface pressure ( S
1
–S

7
 ), b 

sea surface temperature ( T
1
–T

7
 ), and c zonal wind ( U

1
–U

8
 ). Monsoon 

predictors are arranged in accordance with their correlation with the 

summer monsoon of India (i.e., S
1
 been most highly correlated and S

7
 

been the least)
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Ocean (T7). Newly identified zonal wind-based predictors 
include Equatorial South Pacific Ocean 850 hPa UWND 
(U2), United States–Mexico–Gulf-of-Mexico 850 hPa 
UWND (U5), South Pacific Ocean 850 hPa UWND (U7), 
North-Central Russia–China 850 hPa UWND (U8). These 
regions are shown to correlate the Indian summer monsoon 
at different lead months (refer to Table 1).

We have presented the top seven climatic predictors for 
surface pressure and sea surface temperature variables, 
and the top eight for zonal wind variable, corresponding 
to regions obtained from the proposed approach. Reasons 
behind presenting these predictors are—(1) correlation val-
ues of other identified predictors with monsoon are lower 
compared to the presented set, (2) it is observed in literature 
that the predictor set with five–six predictors performs supe-
riorly for the monsoon prediction (Rajeevan et al. 2007).

5.2  Prediction of monsoon with identified 
predictors

5.2.1  Predictor sets

The predictor sets are built considering the correlation of 
the identified predictors with the monsoon of India and their 
lead months of forecasting. Predictors are chosen in a way 
such that they forecast the monsoon in two different leads. 
D1_Y, D2_Y, D3_Y, and D4_Y denote the predictor sets 
(Y denotes either S for predictors of SP, U for predictors of 
UWND, T for that of SST, or S_U, S_T, U_T, and S_U_T 
for respectively combined predictors). Tables 2 and 3 show 
the identified predictors considered for individual predictor 
set along with the lead number of months, which possesses 
the best correlation with the monsoon. Finally, considering 
the lead months of the individual predictors, it declares the 
month for providing monsoon prediction. 

5.2.2  Prediction performance

A non-linear model named ensemble regression tree with 
the bagging method (Sect. 3) is considered to forecast the 
monsoon. The prediction model is trained in two ways. The 
first method segregates the total period under the study into 
a separate set of training and test years, and the model is 
trained only once with the set of training instances, and 
tested over test instances. The second method uses the strat-
egy of moving-window training. We calculate an optimal 
training period and, for every test year, the model is trained 
using instances of the preceding optimal number of years. 
Thus, for testing t number of years, the model is required 
to be trained separately for all the cases (i.e., it is trained t 
number of times).

In our first approach, the total period (1948–2017) is 
divided into an exclusive set of training and test set con-
sidering a 70–30 ratio. The model is trained for the period 
1948–1994 and tested for 1995–2017. The prediction is 
evaluated by the mean absolute error (MAE), expressed as 
follows.

where Xi and Yi are the predicted and observed monsoon for 
the ith year and N denotes the total years.

The training errors for all the individual predictor with 
the ensemble regression tree model is presented in Table 4.

The prediction model and the identified predictors are 
evaluated over 23 years of the test period (1995–2017). 
The test errors are presented in terms of mean absolute 
errors. The predictions by individual predictor variable (SP, 
UWND, and SST) with static training period (first approach) 
are presented in Table 5 and those for combined identified 
predictors (SP + UWND, UWND + SST, SP + SST, and SP 
+ UWND + SST) are shown in Table 6. 

MAE =

∑N

i=1
∣ Yi − Xi ∣

N
,

Table 2  Predictor sets (Pred. 
sets) with the individual 
predictors of SP, UWND and 
SST for forecasting the Indian 
summer monsoon

Pred. sets Identified predictors Best lead month Pred. month

SP D1_S S
1
 , S

3
 , S

6
 , S

7
3, 9, 9, 11 March

D2_S S
1
 , S

3
 , S

6
3, 9, 9 March

D3_S S
1
 , S

2
 , S

3
 , S

4
3, 1, 9, 1 May

D4_S S
1
 , S

2
 , S

3
 , S

4
 , S

5
 , S

6
3, 1, 9, 1, 1, 9 May

UWND D1_U U
5
 , U

6
 , U

7
 , U

8
2, 9, 2, 4 April

D2_U U
1
 , U

2
 , U

3
 , U

4
 , U

5
 , U

6
1, 1, 1, 1, 2, 9 May

D3_U U
1
 , U

5
 , U

6
 , , U

7
 , U

8
1, 2, 9, 2, 4 May

D4_U U
2
 , U

5
 , U

6
 , U

7
 , U

8
1, 2, 9, 2, 4 May

SST D1_T T
1
 , T

2
 , T

3
 , T

4
 , T

5
8, 6, 3, 10, 12 March

D2_T T
1
 , T

2
 , T

3
 , T

4
 , T

5
 , T

6
8, 6, 3, 10, 12, 5 March

D3_T T
1
 , T

2
 , T

3
 , T

4
 , T

5
 , T

6
 , , T

7
8, 6, 3, 10, 12, 5, 2 April

D4_T T
3
 , T

4
 , T

5
 , T

6
 , T

7
3, 10, 12, 5, 2 April



1308 M. Saha, P. Mitra 

1 3

The second approach of moving-window training strat-
egy is also utilized for predicting the Indian summer mon-
soon. In this method, if the number of training years is 
n, then for testing the tth test year, training years for the 
model is considered from (t − 1) th to (t − n − 1) th years 
(i.e., considering the number of training years as ten, and 
if we need to test for the year 1995, then the model is 
trained with the data of 1985–1994). Thus, the model 
needs to be trained individually for every test year with 
corresponding preceding training years. The training 
period is inspected from 5 to 45 years. The optimal period 
is observed as 20 years, which gives comparatively less 
error. Results for individual and combined variables for 
moving-window training strategy are shown in Tables 7 
and 8. It is observed that the results are superior to that of 
the static training process as followed in our first approach. 
The reason underlying is that the moving-window training 
method can engross the pattern of variability of the close 
period of the test year.

Predictor set with identified predictors of surface pres-
sure shows a mean absolute error of 4.6% in predicting 
the monsoon in May. The UWND predictors provide 4.4% 

Table 3  Predictor sets (Pred. 
sets) with the combined 
predictors of SP + UWND, 
UWND + SST, SP + SST 
and SP + UWND + SST for 
forecasting the Indian summer 
monsoon

Pred. sets Identified predictors Best lead month Pred. month

S + U D1_S_U S
1
 , S

3
 , U

5
 , U

6
 , U

7
 , U

8
3, 9, 2, 9, 2, 4 April

D2_S_U S
1
 , S

3
 , S

6
 , S

7
 , U

5
 , U

6
 , U

7
 , U

8
3, 9, 9, 11, 2, 9, 2, 4 April

D3_S_U S
1
 , S

2
 , S

3
 , U

1
 , U

5
 , U

6
 , U

7
 , U

8
3, 1, 9, 1, 2, 9, 2, 4 May

D4_S_U S
1
 , S

2
 , S

3
 , S

4
 , S

5
 , U

2
 , U

5
 , U

6
 , U

7
 , U

8
3, 1, 9, 1, 1, 2, 9, 2, 4 May

U + T D1_U_T U
5
 , U

6
 , U

7
 , U

8
 , T

1
 , T

2
 , T

3
2, 9, 2, 4, 8, 6, 2 April

D2_U_T U
5
 , U

6
 , U

7
 , U

8
 , T

4
 , T

5
 , T

6
2, 9, 2, 4, 10, 12, 5 April

D3_U_T U
1
 , U

5
 , U

6
 , U

7
 , U

8
 , T

1
 , T

2
 , T

3
 , T

4
1, 2, 9, 2, 4, 8, 6, 2 May

D4_U_T U
1
 , U

5
 , U

6
 , U

7
 , U

8
 , T

5
 , T

6
 , T

7
1, 2, 9, 2, 4, 12, 5, 4 May

S + T D1_S_T S
1
 , S

3
 , S

6
 , T

1
 , T

2
 , T

3
3, 9, 9, 8, 6, 3 March

D2_S_T S
1
 , S

3
 , S

6
 , S

7
 , T

1
 , T

2
 , T

3
3, 9, 9, 11, 8,6, 3 March

D3_S_T S
1
 , S

3
 , S

6
 , T

3
 , T

4
 , T

5
 , T

6
 , T

7
3, 9, 9, 3, 10, 12, 5, 2 April

D4_S_T S
1
 , S

3
 , S

6
 , S

7
 , T

3
 , T

4
 , T

7
3, 9, 9, 11, 3,10, 2 April

S + U + T D1_S_U_T S
1
 , S

3
 , U

5
 , U

6
 , T

1
 , T

2
3, 9, 2, 9, 8, 6 March

D2_S_U_T S
6
 , S

7
 , U

7
 , U

8
 , T

4
 , T

5
9, 11, 2, 4, 10, 12 April

D3_S_U_T S
1
 , S

3
 , U

1
 , U

5
 , U

6
 , T

6
 , T

7
3, 9, 1, 2, 9, 5, 2 May

D4_S_U_T S
5
 , S

6
 , U

2
 , U

5
 , U

6
 , T

1
 , T

2
2, 9, 2, 9, 2, 8, 6 May

Table 4  Training errors as mean absolute errors (%) for Indian mon-
soon prediction with SP, UWND, and SST for 1948–1994

SP UWND SST

Pred. set Trng. error Pred. set Trng. error Pred. set Trng. error

D1_S 6.0 D1_U 5.2 D1_T 5.5
D2_S 5.7 D2_U 5.1 D2_T 5.5
D3_S 5.3 D3_U 5.0 D3_T 5.3
D4_S 5.8 D4_U 5.4 D4_T 5.9

Table 5  Mean absolute errors (%) for forecasting the Indian mon-
soon, with a static training span using individual predictors of SP, 
UWND, and SST for the test period 1995–2017

Bold indicates the minimum error by every predictor variables

SP UWND SST

Pred. set Pred. error Pred. set Pred. error Pred. set Pred. error

D1_S 5.8 D1_U 5.7 D1_T 6.3
D2_S 5.8 D2_U 5.1 D2_T 5.8
D3_S 6.3 D3_U 4.9 D3_T 5.7
D4_S 5.3 D4_U 5.2 D4_T 5.6

Table 6  Mean absolute errors 
(%) for forecasting the Indian 
monsoon, with a static training 
span with the combined 
predictors of SP + UWND, 
UWND + SST, SP + SST, and 
SP + UWND + SST for the test 
period 1995–2017

Bold indicates the minimum error by every predictor variables

SP + UWND UWND + SST SP + SST SP + UWND + SST

Pred. set Pred. error Pred. set Pred. error Pred. set Pred. error Pred. set Pred. error

D1_S_U 5.3 D1_U_T 6.0 D1_S_T 6.0 D1_S_U_T 5.3
D2_S_U 5.0 D2_U_T 5.7 D2_S_T 6.3 D2_S_U_T 6.2
D3_S_U 4.9 D3_U_T 5.6 D3_S_T 5.9 D3_S_U_T 5.1
D4_S_U 4.9 D4_U_T 4.6 D4_S_T 6.1 D4_S_U_T 5.1
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error in April. The identified predictors of SST predict 
monsoon with 5.1% error in March.

Moreover, the predictor sets with combined predictors 
also forecast monsoon with good accuracy. Predictor set with 
surface pressure and zonal wind (SLP+UWND) predicts the 
monsoon in April with 4.4% error. Similarly, UWND + SST 
and SP + SST predictor sets predict Indian monsoon at 2 

months lead with 4.5% and 4.9% errors, respectively. Finally, 
the predictor set built with all three variables (SP + UWND 
+ SST) shows 4.2% error in forecasting the monsoon in May.

Figure 4a, b shows the actual and predicted rainfall as 
deviation from the long period average rainfall (LPA) for 
predictor sets with individual variable and combined vari-
ables, respectively. The result highlights that the predicted 
rainfall shows a similar deviation of rainfall (negative or 
positive departure from LPA) as actual for the majority of 
the test years.

All the extremes (drought—2002, 2004, 2009, 2014, 
2015) are forecast with a negative anomaly from the LPA by 
the combined predictor sets. The predictors of surface pres-
sure capture the drought year of 2014, and SP + SST predic-
tors correctly capture the drought of 2009. For numerical 
models, even the direction of the deviation of predicted rain-
fall from LPA is incorrect in many years (Nanjundiah et al. 
2013). Therefore, the identified predictors by the climate 
network-based method improve the accuracy of monsoon 
prediction of India.

Table 7  Mean absolute errors (%) for forecasting the Indian mon-
soon, with a moving-window training span with individual predictors 
of SP, UWND, and SST for the test period 1995–2017

Bold indicates the minimum error by every predictor variables

SP UWND SST

Pred. set Pred. error Pred. set Pred. error Pred. set Pred. error

D1_S 4.7 D1_U 4.4 D1_T 5.1
D2_S 5.1 D2_U 4.6 D2_T 5.4
D3_S 4.6 D3_U 4.6 D3_T 5.2
D4_S 4.7 D4_U 4.8 D4_T 5.4

Table 8  Mean absolute errors 
(%) for forecasting the Indian 
monsoon, with a moving-
window training span with 
combined predictors of SP + 
UWND, UWND + SST, SP + 
SST, and SP + UWND + SST 
for the test period 1995–2017

Bold indicates the minimum error by every predictor variables

SP + UWND UWND + SST SP + SST SP + UWND + SST

Pred. set Pred. error Pred. set Pred. error Pred. set Pred. error Pred. set Pred. error

D1_S_U 4.7 D1_U_T 4.5 D1_S_T 5.0 D1_S_U_T 4.6
D2_S_U 4.4 D2_U_T 5.1 D2_S_T 5.0 D2_S_U_T 5.2
D3_S_U 4.4 D3_U_T 4.5 D3_S_T 4.9 D3_S_U_T 4.2
D4_S_U 4.6 D4_U_T 4.9 D4_S_T 5.3 D4_S_U_T 4.8

Fig. 4  Forecasts by predictor set with the identified a individual pre-
dictors of SP (D4_S), UWND (D1_U), SST (D4_T), and b combined 
variables of SP + UWND (D1_S_U), UWND + SST (D1_U_T), SP 

+ SST (D1_S_T), and SP + UWND + SST (D1_S_U_T) for the test 
period 1995–2017
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5.2.3  Other evaluation measures of prediction

We have also evaluated the performance of the predictors 
using different statistical measures. The measures and their 
corresponding results are elaborated in this section.

(a) Root mean square error (RMSE): calculates the varia-
tion of the model output against actual values. 

 where Xi and Yi are the observed and predicted mon-
soons for the ith year, and N is the total years as defined 
earlier.

(b) Prediction yield (PY): is evaluated at three different 
error categories (5%, 10%, and 15%) to assess the over-
all prediction by judging the number of predicted years 
within the allowed errors range.

(c) Multiplicative bias (MB): is the ratio of the predicted 
to actual value; a closer value to 1 signifies good per-
formance.

(d) Pearson correlation coefficient ( � ): measures the 
strength of the linear association between the actual 
and predicted value (shown in Eq. 4).

(e) Willmott index of agreement (WI): is a measure calculat-
ing the degree of model prediction, with higher values 
indicating a better fit of model. It is shown in Eq. (5). 

Table 9 elaborates the verification statistics for different 
predictor sets for forecasting the Indian summer monsoon. 
The monsoon prediction by combined predictors of sur-
face pressure, zonal wind and sea surface temperature is 
observed to be superior as compared to the other predic-
tors or their combinations.

We have also presented the skills of identified predic-
tors by investigating their productivity in predicting the 

RMSE =

�

∑N

i=1

�

Yi − Xi

�2

N
,

(5)

Index of agreement = 1 −

∑N

i=1
∣ Xi − Yi ∣

2

∑N

i=1
(∣ Yi − X ∣ + ∣ Xi − X ∣)2

.

rainfall’s negative or positive deviation from the LPA. A 
confusion matrix (Table 10) is used for the purpose. We 
have compared the predicted negative or positive deviation 
with the observed rainfall deviation from LPA.

True positive (TP) denotes the count of test years when 
both observed and predicted rainfall show positive devia-
tion from LPA, true negative (TN) denotes the count of 
test years when both observed and predicted rainfall show 
negative deviation from LPA, false positive (FP) repre-
sents the count of test years where the observed rainfall 
shows negative deviation but it is predicted as positive 
deviation from LPA, and false negative (FN) represents 
the count of test years when the rainfall is predicted as 
negative deviation but the observed rainfall shows positive 
deviation from LPA. The related measures to the confusion 
matrix are defined as follows.

(a) Sensitivity: proportion of years that is correctly pre-
dicted as positive deviation from total observed positive 
deviation ( TP∕(TP + FN)).

(b) Specificity: proportion of years that is correctly pre-
dicted as negative deviation from total observed nega-
tive deviation ( TN∕(TN + FP)).

(c) Precision: proportion of positive deviation that is pre-
dicted correctly from the total number of predicted 
positive deviations ( TP∕(TP + FP)).

(d) Negative predictive value: proportion of negative devia-
tion that is predicted correctly from the total number of 
predicted negative deviations ( TN∕(TN + FN)).

(e) Accuracy: proportion of years when it is correctly 
predicted to be the same as the observed deviation 
( (TP + TN)∕(TP + TN + F + FN)).

Table 9  Prediction evaluation 
measures for the model with the 
identified climatic predictors of 
SP, UWND, SST, SP + UWND, 
UWND + SST, SP + SST and 
SP + UWND + SST for the test 
period 1995–2017

Bold indicates the minimum error by every predictor variables

Verification measures RMSE (%) PY (%) at 5% PY (%) at 10% PY (%) at 15% MB � WI

SP 6.3 0.74 0.83 0.96 1.02 0.55 0.66
UWND 6.4 0.73 0.86 0.91 1.02 0.57 0.66
SST 7.0 0.60 0.91 0.91 1.02 0.41 0.57
SP + UWND 5.7 0.60 0.91 1.00 1.02 0.67 0.74
UWND + SST 6.2 0.69 0.86 0.95 1.02 0.57 0.62
SP + SST 6.4 0.60 0.78 1.0 1.02 0.57 0.61
SP + UWND + SST 5.6 0.78 0.95 0.95 1.02 0.76 0.71

Table 10  Confusion matrix

Predicted

Positive Negative

Observed
  Positive True positive (TP) False negative (FN)
  Negative False positive (FP) True negative (TN)
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(f) F1 score: the harmonic mean of sensitivity and preci-
sion of the model ( (2 ∗ TP)∕(2 ∗ TP + FP + FN)).

The confusion matrix elaborating the correctly predicted 
number of positive and negative deviations from LPA 
as observed by all the predictor variables is presented in 
Table 11a–g. The observed number of positive and negative 
deviations from LPA rainfall during test period 1995–2017 
are 8 and 15, respectively. The measures calculated from the 
confusion matrix to evaluate the performance of identified 
predictors in predicting correctly the positive or negative 
deviation rainfall are shown in Table 12.

 5.2.4  Uncertainty analysis

The uncertainty involved in monsoon prediction is explained 
in terms of ‘Fraction of variance unexplained (FVU)’. The 
measure is defined as the fraction of variance of depend-
ent variable (the monsoon in our case) which cannot be 
explained or correctly predicted by the explanatory vari-
ables (identified monsoon predictors). FVU will be one if 
the identified predictors to not convey anything about the 
monsoon, and the prediction is said to be more accurate 
with less uncertainty as the FVU value approaches zero. 
The expression is shown in Eq. (6).

where

The terms are already defined in Sect. 5.2.3. The prediction 
provided by the surface pressure has FVU of 0.38 and that 
by the zonal wind and sea surface temperature provides FVU 
of 0.33, and 0.55, respectively. Lower values of the variable 
suggest that less fraction of variance remains unexplained, 
which symbolizes a good prediction of the monsoon.

5.2.5  Comparisons with existing models

The prediction skill of monsoon predictors, which are 
identified by the proposed approach are investigated with 
the existing monsoon prediction models of India Meteoro-
logical Departments (IMDs). The models used by IMD are 
16-parameter power regression model (Gowariker et al. 
1991), 8-parameter and 10-parameter regression models 
(Rajeevan et al. 2004). The results are shown in Fig. 5.

The predictor sets with SP, SST, UWND, SP + SST, UWND 
+ SST, SP + UWND, SP + UWND + SST provide 5.5%, 6.1%, 
5.9%, 5.7%, 5.9%, 4.5% and 4.6% root mean square errors, 

(6)FVU =
VAR error

VAR total

=
SD error∕ n

SD total∕ n
=

SD error

SD total

,

SD error =

N
∑

i=1

(

Xi − Yi
)2
,

SD total =

N
∑

i=1

(

Xi − X
)2

.

Table 11  Confusion matrix for 
monsoon prediction by (a) SP, 
(b) UWND, (c) SST, (d) SP + 
UWND, (e) UWND + SST, (f) 
SP + SST, (g) SP + UWND 
+ SST predictors for the test 
period 1995–2017

Predicted

Pos. Neg.

Observed
(a)

  Pos. 4 4
   Neg. 2 13

(b)
  Pos. 6 2
  Neg. 2 13

(c)
  Pos. 4 4
  Neg. 1 14

(d)
  Pos. 5 3
  Neg. 2 13

(e)
  Pos. 4 4
  Neg. 1 14

(f)
  Pos. 5 3
  Neg. 1 14

(g)
  Pos. 6 2
  Neg. 1 14

Table 12  Evaluation for 
positive and negative deviation 
rainfall prediction with the 
identified climatic predictors of 
SP, UWND, SST, SP + UWND, 
UWND + SST, SP + SST and 
SP + UWND + SST for the test 
period 1995–2017

Bold indicates the minimum error by every predictor variables

Measures Sensitivity Specificity Precision Neg. Pred. Val. Accuracy (%) F1-Score

SP 0.50 0.86 0.66 0.76 73.9 0.57
UWND 0.75 0.86 0.75 0.86 86.6 0.75
SST 0.50 0.93 0.80 0.77 78.2 0.61
SP + UWND 0.62 0.86 0.71 0.81 78.2 0.66
UWND + SST 0.50 0.93 0.80 0.77 78.2 0.61
SP + SST 0.62 0.93 0.83 0.82 82.6 0.71
SP + UWND + SST 0.75 0.93 0.85 0.87 86.9 0.80
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respectively in monsoon prediction, for the period 1996–2002 
[period is considered to compare with existing forecasts by 
Rajeevan et al. (2004)]. The three IMD models predict mon-
soon with 10.8%, 6.4%, and 7.6% errors, respectively.

The prediction by the identified climatic predictors are 
also compared with the predictions provided by current 
IMD’s model using pursuit projection regression (PPR) 
(Rajeevan et al. 2007). The monsoon predictions provided by 
the discovered predictors are compared during the period of 
2003–2017 (available forecasts by IMD models). The pursuit 
projection regression model presents monsoon prediction 
in two intervals– first in April (LRF1) and the next in June 
(LRF2). The model predicts the monsoon with 6.8% and 
6.1% mean absolute errors in April and June, respectively.

The identified predictors of SP, SST, and UWND 
provide 4.9%, 5.2%, and 4.5% errors, respectively. The 
combined predictors of SP + SST, UWND + SST, SP + 
UWND, and SP + UWND + SST provide errors of 4.9%, 
4.7%, 5.1%, and 4.6%, respectively. Thus, the identified 
predictors by the proposed climate network-based approach 
are comparable with the monsoon models used by IMD 
(Gowariker et al. 1991; Rajeevan et al. 2004, 2007). The 
results are presented in Fig. 6 by a bar chart diagram.

5.3  Analysis based on correlation of monsoon 
predictors with the Indian summer monsoon

The Pearson correlation ( � ) (Eq. (4)) between the identified 
monsoon predictors and the monsoon of India are explored 
with the same well-known predictors and the monsoon 
(Rajeevan et al. 2007). The important well-known monsoon 

predictors, as considered by India Meteorology Department, 
include the North Atlantic SST (NA_SST), the Equatorial 
South-Eastern Indian Ocean SST (ESE_IO_SST), the East 
Asia SP (EA_SP), the North Atlantic SP (NA_SP), the 
North-Central Pacific Ocean zonal wind (NC_PO_WV), 
and the North-West Europe SP (NW_Eu_SP). The identified 
predictors of SP, SST, and UWND having � of 0.35, 0.34, 
and 0.43 are comparable to the correlation of known IMD’s 
predictors with the monsoon of India (shown in Fig. 7).

5.4  Monsoon of current year 2018

Indian monsoon for the current year 2018 is predicted. 
The identified predictors of SP, UWND, and SST forecast 
rainfall as 92.26%, 90.12%, and 92.15% of a long period 
average in May, March, and March, respectively. Addition-
ally, the combined predictors of SP + UWND, UWND + 
SST, SP + SST, and SP + UWND + SST predict monsoon 
as 94.03%, 91.65%, 95.19%, and 95.22% in May, April, 
April, and May, respectively. Thus, averaging all the val-
ues, we present the Indian monsoon for 2018 as 92.94% of 
LPA rainfall, which is below normal for the current year.

6  Conclusions

The identification of monsoon predictors is always been 
a prime focus in earth science. In our work, community 
detection approach is used for identifying the monsoon 
predictors that are important for the monsoon of the 

Fig. 5  Root mean square errors in monsoon prediction by the predic-
tors of SP, SST, UWND, SP + SST, UWND + SST, SP + UWND, 
SP + UWND + SST; and IMD’s 16- (Gowariker et  al. 1991), 10-, 
and 8-parameter models (Rajeevan et al. 2004) during 1996–2002

Fig. 6  Mean absolute errors (%) in monsoon prediction by the pre-
dictors of SP, UWND, SST, SP + UWND, UWND + SST, SP + 
SST, SP + UWND + SST, and IMD’s PPR model (LRF1 and LRF2) 
(Rajeevan et al. 2007) during 2003–2017
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subcontinent. The community detection method is fol-
lowed by the density-based clustering method to obtain 
the localized geographical regions. These regions represent 
newly identified monsoon predictors. Some of the identi-
fied predictors correspond to known predictors of the mon-
soon, which validate the proposed predictors’ identification 
approach, while some other new predictors are also found 
having high correlation with the Indian summer monsoon. 
The non-linear ensemble regression model, designed with 
identified monsoon predictors, was observed to be com-
parable to the IMD’s existing models for forecasting the 
Indian monsoon.

The future scope of the work comprises the inclusion 
of more climatic variables and identification of the new 
predictors from an amalgamation of different variables. 
The focus will be on exploring the new climatic predictors 
which will be crucial to the summer monsoon and may 
prove as an even better estimator for the Indian summer 
monsoon.
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