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Abstract In this paper, the Hilbert–Huang transform

(HHT) approach is used for the multiscale characterization

of All India Summer Monsoon Rainfall (AISMR) time

series and monsoon rainfall time series from five homo-

geneous regions in India. The study employs the Complete

Ensemble Empirical Mode Decomposition with Adaptive

Noise (CEEMDAN) for multiscale decomposition of

monsoon rainfall in India and uses the Normalized Hilbert

Transform and Direct Quadrature (NHT-DQ) scheme for

the time–frequency characterization. The cross-correlation

analysis between orthogonal modes of All India monthly

monsoon rainfall time series and that of five climate indices

such as Quasi Biennial Oscillation (QBO), El Niño

Southern Oscillation (ENSO), Sunspot Number (SN),

Atlantic Multi Decadal Oscillation (AMO), and Equatorial

Indian Ocean Oscillation (EQUINOO) in the time domain

showed that the links of different climate indices with

monsoon rainfall are expressed well only for few low-

frequency modes and for the trend component. Further-

more, this paper investigated the hydro-climatic telecon-

nection of ISMR in multiple time scales using the HHT-

based running correlation analysis technique called time-

dependent intrinsic correlation (TDIC). The results showed

that both the strength and nature of association between

different climate indices and ISMR vary with time scale.

Stemming from this finding, a methodology employing

Multivariate extension of EMD and Stepwise Linear

Regression (MEMD-SLR) is proposed for prediction of

monsoon rainfall in India. The proposed MEMD-SLR

method clearly exhibited superior performance over the

IMD operational forecast, M5 Model Tree (MT), and

multiple linear regression methods in ISMR predictions

and displayed excellent predictive skill during 1989–2012

including the four extreme events that have occurred dur-

ing this period.

1 Introduction

From several decades, characterization and forecasting of

Indian Summer Monsoon Rainfall (ISMR) have received a

lot of attention by meteorologists and hydrologists world-

wide. In the past, several studies attempted to understand

the teleconnection between ISMR and different global

climatic oscillations. Walker (1923) was the first who

established the teleconnections between Indian summer

monsoon and El Niño Southern Oscillation (ENSO); and

later on, many researchers investigated this link (Shukla

and Paolino 1983; Mooley and Parthasarathy 1983; Par-

thasarathy and Pant 1984; Krishna Kumar et al. 1999;

Gadgil et al. 2004; Maity and Nagesh Kumar 2006a, b).

The link of ISMR with Quasi Biennial Oscillation (QBO)

(Rao and Lakhole 1978; Vijayakumar and Kulkarni 1995;

Claud and Pascal 2007), tidal forcing (Campbell et al.

1983), solar indices such as sunspot cycle, group sunspot

number (SN), solar irradiance and sunspot number

(Bhalme and Jadhav 1984; Bhattcharya and Narasimha

2007; Azad 2011), Eurasian snow depth (Hahn and Shukla

1976; Kripalani and Kulkarni 1999; Mamgain et al. 2010),

etc were few earlier attempts in this direction. Such
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investigations helped to find the potential inputs for rainfall

forecasting models (Iyengar and Raghu Kanth 2005; Singh

and Borah 2012). Most of the past studies noted that ISMR

time series is non-linear and non-stationary series. More

specifically, the changes in statistical moments or covari-

ance refer to the non-stationarity of time series, while the

features such as non-normality, asymmetric cycles,

bimodality, non-linear relationship between lagged vari-

ables, variations of prediction performance over the state-

space, time irreversibility, and sensitivity to initial condi-

tions refer to the non-linearity of the time series (Fan and

Yao 2003). Although many natural phenomena can be

approximated by linear systems, they also have the ten-

dency to be non-linear whenever their variations become

finite in amplitude (Huang et al. 1998). The non-linearity

induced in the ISMR time series may be due to the non-

linearity of the process or the observational non-linearity.

Intra-wave frequency modulations may present in rainfall

time series data of India, which is a hall mark of classical

non-linear oscillators (Dhanya and Nagesh Kumar 2010).

Moreover, based on multiscale decomposition of ISMR

data sets, Iyengar and Raghukanth (2005) proved that the

separated components possess bimodality and stated that

this behavior indicates strong non-linearity in the dynamics

of the process behind ISMR.

Applications of the most popular Fourier transforms for

the spectral analysis of hydro-meteorological time series

are often constrained by the requirements of linearity and

stationarity of the data sets, the use of trigonometric basis

functions, etc. Wavelet analysis evolved as a solution to

these problems and has been widely used to analyze mul-

tiscaling behavior of non-stationary hydro-meteorological

time series data (Anctil and Coulibali 2004; Labat 2005;

Massei et al. 2007). In the past, several studies employed

wavelets to analyze the ISMR time series and established

its association with global climate oscillations (Torrence

and Webster 1999; Narasimha and Kailas 2001; Azad et al.

2008; Narasimha and Bhattacharyya 2010). Even though

wavelet transforms successfully address the issue of non-

stationarity of data sets when the data are non-linear in

characteristic, but the performance may not be appealing. It

is quite rare to see linearity in hydro-meteorological

observations particularly when the data set is too short or

observational manipulations are present (Franceschini and

Tsai 2010). Moreover, their application demands ‘a priori’

selection of proper wavelet function and setting of appro-

priate level of decomposition. To analyze the non-linear

and non-stationary time series data, Huang et al. (1998)

proposed an alternative spectral analysis technique namely

Hilbert–Huang transform (HHT), which integrates a data

adaptive multiscale decomposition process, namely

empirical mode decomposition (EMD) and the Hilbert

transform (HT). The EMD is a data adaptive operation

which decomposes a time series into a set of zero-mean

component (called intrinsic mode function, IMF) and a

final residue, based on spline fitting through the extrema of

the time series signal. The IMFs obtained are then sub-

jected to HT to examine the spectral properties of the time

series. In recent past, the method gained popularity to

analyze the hydro-meteorological time series signals

(Duffy 2004; Huang et al. 2009a; Kuai and Tsai 2012;

Massei and Fournier 2012; Adarsh and Janga Reddy 2016;

Janga Reddy and Adarsh 2016).

Iyengar and Raghukanth (2005) applied EMD for the

decomposition of ISMR time series from eight regions in

India. Based on the periodicity of IMFs, the possible asso-

ciation of ISMR with QBO, ENSO, sunspot cycles, and tidal

forcing was hypothesized, and the resulted IMFs were used

for forecasting of monsoon rainfall using the artificial

neural networks (ANN). However, a quantitative assess-

ment to prove the links of monsoon rainfall with that of

different climate indices in multiple time scales remained as

an open problem in their study. Establishing the link

between the different climate indices and rainfall based on

periodicity alone can convey only limited information on

the variability of such series owing to their multiscaling

behavior. Performing a running correlation analysis in a

multiscaling framework which also accounts the non-sta-

tionarity of the time series can be a viable approach to solve

this problem. The Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise (CEEMDAN)-based

multiscale decomposition can be used as a useful mean to

investigate the links between five different climate indices

such as QBO, ENSO, Sunspot Number (SN), Atlantic Multi

Decadal Oscillation (AMO), and Equatorial Indian Ocean

Oscillation (EQUINOO) with monsoon rainfall. Chen et al.

(2010) proposed EMD-based time-dependent intrinsic cor-

relation (TDIC) and it was successfully applied for tele-

connection studies recently (Huang and Schmitt 2014;

Ismail et al. 2015; Adarsh and Janga Reddy 2016). This

study proposes the application of TDIC method to investi-

gate the hydro-climatic teleconnection of ISMR by quan-

titatively establishing its linkage with different climate

indices. Few studies also proved that the information of

teleconnected hydro-climatic variables can be useful for

prediction of Indian monsoon rainfall (Maity and Nagesh

Kumar 2006a, b; Nagesh Kumar et al. 2007; Kashid and

Maity 2012). Understanding the scale-specific association

between the climate index series and monsoon rainfall may

help for improved prediction of monsoon rainfall, and none

of the past studies accounted the scale-specific information

for the prediction of ISMR. In this context, the present study

proposes an alternative method for ISMR prediction

employing multiscale decomposition of climate indices.

The specific objectives of the present study include:

(i) to quantitatively investigate the hydro-climatic
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teleconnections between monsoon rainfall and five differ-

ent climate indices in multiple time scales by employing

the TDIC analysis; (ii) to propose an improved framework

for ISMR prediction by accounting the multiscale associ-

ation between the teleconnected variables.

The rest of the paper is organized as follows. First, the

methodology followed for investigating the multiscale

teleconnection of ISMR with different climate indices, and

details of procedures used for prediction of ISMR are

presented in Sect. 2. Then, the details of the study area and

data sets are presented in Sect. 3. Thereafter, application of

methodology to case study and discussion of results are

presented in Sect. 4. The results section is organized in

three sub-sections: first subsection presents the application

of CEEMDAN algorithm for multiscale decomposition of

ISMR time series and its corresponding results; second

subsection presents the results of CEEMDAN-based TDIC

analysis to investigate the association of a specified climate

index with ISMR in different time scales, applied for five

different cases; subsequently, in third subsection, the

practical utility of the multiscale teleconnection study is

demonstrated for prediction of AISMR by employing the

proposed MEMD-SLR method. Finally, the key conclu-

sions drawn from the study are presented in Sect. 5.

2 Methods

2.1 Complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN)

The scale separation by EMD is purely data dependent and

no user specified selection of basis functions or levels (like

‘dyadic’ scales in discrete wavelets) is necessary to pro-

ceed with this technique. However, sometimes, ‘scale

mixing’ problem (in which a decomposed IMF contains a

mixture of drastically different periodic scales) may exist

on its implementation. The noise assisted and ensemble

averaged variant of EMD namely the Complete Ensemble

EMD with Adaptive Noise (CEEMDAN) may alleviate this

problem (Torres et al. 2011).

In CEEMDAN method, noise series is added at each

stage of the decomposition to result in a unique residue in

each mode from the residue of previous mode (or the true

signal, for the first mode) and currently generated IMF. To

illustrate the functioning details, the flowchart of the

CEEMDAN algorithm is given in Fig. 1.

2.2 Investigating the hydro-climatic teleconnection

of ISMR using TDIC

A cross-correlation analysis between the oscillatory com-

ponents of monsoon rainfall and that of different climate

indices can provide preliminary information on the hydro-

climatic teleconnections in multiple time scales (Janga

Reddy and Adarsh 2016). As the hydro-climatic time series

possess multiscaling behavior, a scale-dependent running

correlation analysis is more appropriate to investigate the

hydro-climatic teleconnections. Most of the running cor-

relation methods proposed earlier involve the estimation of

correlation coefficient of the data subsets by fixing suit-

able sliding window size (Papadimitriou et al. 2006; Rodo

and Rodriguez-Arias 2006; Scafetta 2014). However, the

selection of appropriate window size is a challenging

problem while applying such techniques, and a data

adaptive selection of window size can be a solution to this

problem. The TDIC analysis as proposed by Chen et al.

(2010) fixes the window size adaptively based on instan-

taneous frequency computed by HHT. TDIC method can

be applied between a typical IMF of rainfall and the cor-

responding IMF of climate index to capture the association

between the rainfall and climate index at specific time

scale. The key steps involved in the process are given

below:

1. Apply HHT on the selected IMF pairs to obtain

instantaneous frequencies (and hence instantaneous

periods)

2. Fix the minimum sliding window size (td) as maximum

instantaneous period between the two signals at the

current position tk, i.e., td = max(T1,i(tk), T2,i(tk)) ,

where T1,i and T2,i are instantaneous periods.

3. The sliding window is fixed as tnw ¼ tk � ntd
2
: tk þ ntd

2

� �
;

where n is any positive number (a multiplication factor

for minimum sliding window size) and normally n is

selected as 1 (Huang and Schmitt 2014).

4. Let IMF1 and IMF2 are two IMFs of nearly the same

mean period pertaining to two different time series.

The TDIC of the pair of IMFs can be found out from

Ri(tk
n) = Corr(IMF1,i(tw

n), IMF2,i(tw
n)) at any tk, where

Corr is the correlation coefficient of two time series

5. Perform Student’s t test to investigate statistical

significance of correlation coefficients obtained in the

previous step.

6. Repeat the above two steps iteratively till the boundary

of the sliding window exceeds the end points of the

time series.

After computing the TDIC matrix, the TDIC plot is

prepared. The horizontal axis of the TDIC plot is the time

axis corresponding to the center position of the sliding

window, and the vertical axis is the size of the sliding

window. The TDIC plot will be triangular in shape and the

correlation at the apex point will be the correlation coef-

ficient between the series considering the entire data
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length, if the data length is chosen as the maximum win-

dow size (Chen et al. 2010).

2.3 MEMD-SLR approach for rainfall prediction

In this study, the multivariate extension of EMD (MEMD)

proposed by Rehman and Mandic (2010) is used for

decomposition of multivariate data set, as MEMD performs

the decomposition of all variables in a single step and

ensures equal number of modes (Huang et al. 2016). The

SLR method is used for modeling individual components,

as it facilitates the inclusion or exclusion of a particular

variable at a specific time scale based on its statistical

significance. The theoretical details of MEMD are pre-

sented in the ‘‘Appendix I’’ and the details on SLR can be

found in Draper and Smith (1998). The flowchart depicting

the key steps involved in MEMD-SLR approach for rainfall

prediction is presented in Fig. 2.

3 Study area and data sets

In this study, the monsoon rainfall data pertaining to dif-

ferent regions of India are analyzed. Indian Institute of

Tropical Meteorology (IITM) (http://www.tropmet.res.in)

located at Pune have identified 36 meteorological subdi-

visions in India. In addition, these subdivisions are grouped

into eight regions such as All India (AI), Homogeneous

India (HOI), Core Monsoon (CMI), Western Central India

(WCI), Central North East India (CNEI), North East India

(NEI), North West India (NWI), and Peninsular India (PI)

by the IITM Pune. Out of eight regions, the first three are

overlapping regions. All India (AI) considers all the 36

meteorological subdivisions except for the some hilly

regions in northern part of India, while the other regions

are formed based on similarity in rainfall characteristics.

The five non-overlapping regions considered for the study

are shown in Fig. 3. The monthly rainfall data of all the

regions for the period 1871–2012 were collected from

IITM Pune. The monsoon rainfall for each region is com-

puted by adding the monthly rainfall values of monsoon

period (i.e., June, July, August, and September months).

To study and explore the hydro-climatic teleconnections

of Indian monsoon rainfall, data of five different climate

indices were collected and used in this study. The monthly

data of QBO were obtained from the website of National

Oceanic and Atmospheric Administration (NOAA) Earth

System Research Laboratory (http://www.esrl.noaa.gov/

psd/data/correlation/qbo.data) for the period 1950–2012.

The intensities of El Niño Southern Oscillation (ENSO) are

generally assessed on the basis of the average Sea Surface

Temperature (SST) over different Niño regions in the

Pacific Ocean within specific latitudes and longitudes, and

it has been found that summer monsoon rainfall over India

is best correlated with temperature anomaly from Niño 3.4

region, which overlaps between Niño 3 and Niño 4. The

SST anomaly data corresponding to the Niño 3.4 region

(120�W–170�W, 5�S–5�N) called as Oceanic Niño Index

Initialize the number of realizations M, 
noise parameters, index for IMF k=1
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Fig. 1 Flowchart of
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mode obtained by EMD
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(ONI) were obtained from NOAA National Weather Ser-

vice Climate Prediction Center (http://www.cpc.ncep.noaa.

gov/data/indices/) for the period 1950–2012 and used as

the ENSO index. The sunspot number records are obtained

from the solar physics group at NASA’s Marshall Space

Flight Centre (http://solarscience.msfc.nasa.gov/greenwch/

spot_num.txt) for the same period and used in the present

study. The relationship of AMO with monsoon rainfall was

also investigated in few studies (Goswami et al. 2006; Lu

et al. 2006; Zhang and Delworth 2006; Feng and Hu 2008).

The data of monthly AMO indices were obtained from

NOAA National Weather Service Climate Prediction

Center (http://www.esrl.noaa.gov/psd/data/timeseries/

AMO/) for the period 1950–2012. The relation between the

EQUINOO and Indian monsoon was studied extensively

by various researchers (Gadgil et al. 2004; Maity and

Nagesh Kumar 2006a, b; Nagesh Kumar et al. 2007;

Kashid and Maity 2012). The zonal wind component for

the region 60�–90�E, 2.5�S–2.5�N) was obtained from the

National Centre for Environmental prediction (NCEP)

(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.rea

nalysis.html) for the same period. The negative of the

anomaly of the zonal component of surface wind in the

equatorial Indian ocean region (60�–90�E, 2.5�S–2.5�N) is

considered as EQUINOO index (Maity and Nagesh Kumar

2006a). It is to be noted that the data from 1950 to 2012

have been considered for the present analysis, as the data

for most of the climate indices were available from 1950

onwards.

4 Results

In this section, first, the results of multiscale decomposition

of AISMR and monsoon rainfall of five non-overlapping

regions by employing the CEEMDAN algorithm are

Fig. 2 Flowchart of MEMD-SLR procedure, describing the steps of

the model development for rainfall prediction (Var variable, C cali-

bration, OM orthogonal mode, SLR stepwise linear regression, MEMD

multivariate empirical mode decomposition). Here, the first variable

is considered as output and rest of the variables as inputs
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presented, and then, the results of spectral analysis of IMF

components obtained from the decomposition are dis-

cussed. Subsequently, the orthogonal modes of monthly

AISMR time series are compared with the modes of five

climatic indices series in the time domain, and the inter-

relationships between them are investigated by the TDIC

analysis. Finally, the results of CEEMDAN-SLR for

monsoon rainfall prediction are presented.

4.1 Multiscale decomposition of monsoon rainfall

time series

The CEEMDAN algorithm is invoked to decompose all the

six time series to a set of orthogonal modes (OM), where

each mode is associated with specific time scale. The

results of CEEMDAN-based decomposition of AISMR and

other time series are presented in Fig. 4. To run the

CEEMDAN algorithm, a noise standard deviation of 0.2

and 500 realizations was selected, considering the sug-

gestions from the past studies (Torres et al. 2011; Antico

et al. 2014). The CEEMDAN method decomposes the time

series data into five different IMFs and a residue except for

the rainfall time series of NEI. The mean period of the time

series can be approximated by dividing the number of data

samples by half the number of zero crossings (Barnhart and

Eichinger 2011). The mean period of different modes along

with the percentage variability explained by different

modes is presented in Table 1.

The mean periods and the percentage variability

explained by different modes show close matching with

those reported by Iyengar and Raghukanth (2005). Identi-

fication of similar periodicities in different modes of ISMR

Fig. 3 Location map showing five non-overlapping regions in India

(1 Andaman Nicobar Islands, 2 Arunachal Pradesh, 3 Assam &

Meghalaya, 4 Nagaland, Manipur, Mizoram &Tripura, 5 Sub

Himalaya, West Bengal & Assam, 6 Gangetic West Bengal, 7 Orissa,

8 Jharkhand, 9 Bihar, 10 East Uttar Pradesh, 11 West Uttar Pradesh,

12 Uttaranchal, 13 Haryana, Chandigarh & Delhi, 14 Punjab, 15

Himachal Pradesh, 16 Jammu & Kashmir, 17 West Rajasthan, 18 East

Rajasthan, 19 West Madhya Pradesh, 20 East Madhya Pradesh, 21

Gujarat, 22 Saurashtra, Kutch & Diu, 23 Konkan & Goa, 24 Madhya

Maharashtra, 25 Marathwada, 26 Vidarbha, 27 Chhattisgarh, 28

Coastal Andhra Pradesh, 29 Telangana, 30 Rayalaseema, 31 Tamil

Nadu & Pondicherry, 32 Coastal Karnataka, 33 North Interior

Karnataka, 34 South Interior Karnataka, 35 Kerala, 36 Lakshadweep)
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and the modes of the different climate indices suggests the

preliminary evidence of possible teleconnections of ISMR

with different global climate indices. IMF1 possesses an

average period of 2.6–3.02 years in different regions

(Table 1). The periodicity of biennial oscillation is

2–3 years and observing such a mode in ISMR time series

suggests the possible link between the two. The ENSO has

3–7 year periodicity (Kripalani and Kulkarni 1997a, b;

Iyengar and Raghukanth 2005) and the average period of

second mode obtained by the decomposition of ISMR from

different region varies between 5.68 and 6.17. Hence, a

possible link of ISMR and ENSO could be assessed. The

IMF3 has a mean periodicity between 10.9 and 11.9 years

in all the regions except NWI. It is well understood that

sunspot time series have a mean periodicity of 11 years

(Usoskin and Mursula 2003; Claud et al. 2008; Barnhart

and Eichinger 2011); hence, a preliminary notion on the

link between ISMR and sunspot cycle could be established.

The mean period of fourth mode (IMF4) is found to be

between 23 and 29 years, which could be possibly linked

with the tidal forcing of similar periodicity (Campbell et al.

1983; Iyengar and Raghukanth 2005). Campbell et al.

(1983) examined the precipitation records of northern India

for the period 1895–1975 using the eigenvector analysis.

By comparing its dominant frequencies of the precipitation

data with that of soli-lunar tidal potential at the latitude of

northern India, the study hypothesized that the tidal effects

modulate the advance of monsoon front and proposed a

method for prediction of June rainfall one year in advance

using the information on tidal frequencies. The IMFs

having multidecadal periodicity of more than 60 years

(IMF5) may represent a possible association of AMO with

the Indian monsoon rainfall (Goswami et al. 2006).

Moreover, a plot between the IMF and the respective cli-

mate index time series can be prepared to explain the link

between climate indices and the different modes obtained

by the multiscale decomposition. As the annual data sets

for the period 1871–2012 are available only for the SN

time series and AMO time series, hence only the plot of

IMF3 and IMF5 is considered for analysis. The comparison

of respective IMF and climate index time series is pre-

sented in Fig. 5. The visual comparison between the IMF

and time series shows striking similarity and similar evo-

lution in most of the time duration. This further confirms

the distinct possibility of the link of SN and AMO with the

ISMR.

4.2 Investigating hydro-climatic teleconnection

of AISMR

The ‘hydro-climatic teleconnection’ refers to the association

of hydrologic variables with large-scale atmospheric/ocea-

nic oscillations from different parts of the world. In the

teleconnection analysis using the multiscale decomposition,

the comparison of periodicity of oscillatory modes of rainfall

with that of climatic variable is a standard approach to

establish the links between the two variables (Iyengar and

Raghukanth 2005; Massei et al. 2007; Massei and Fournier

2012). The five climate indices considered in the present

study include QBO, ENSO, SN, AMO, and EQUINOO.

As a first step, the multiscale decomposition of AI

monthly monsoon rainfall time series and all the five climate

indices for the period 1950–2012 is performed using the

CEEMDAN algorithm. The mean period of the modes

obtained from the decomposition of different climate indices

and AISMR are presented in Table 2. Table 2 shows that

different climate indices possess nearly the same period of

evolution as that of AISMR particularly for lower modes.

For higher modes, the periodicities do not match and this

may be because only limited number of cycles is present in

Table 1 Mean periods (in years) and percentage variability explained (VE) by different modes of rainfall time series from different regions of

India

Mode AI NEI CNEI NWI WCI PI

Mean

period

(years)

VE

(%)

Mean

period

(years)

VE

(%)

Mean

period

(years)

VE

(%)

Mean

period

(years)

VE

(%)

Mean

period

(years)

VE

(%)

Mean

period

(years)

VE

(%)

IMF1 2.73 64.67 2.9 55.92 3.0 62.01 2.8 54.78 2.6 60.96 2.73 63.16

IMF2 5.68 17.13 5.7 19.48 6.4 23.15 5.7 23.55 5.7 13.63 6.17 21.29

IMF3 12.91 11.57 10.9 5.52 10.1 4.44 14.2 17.05 11.8 11.87 11.83 7.80

IMF4 28.40 1.47 28.4 10.72 20.3 8.71 28.4 1.95 28.4 3.75 20.28 2.13

IMF5 71.0 3.28 47.3 2.09 47.3 1.02 71.0 2.66 47.3 7.39 47.33 2.18

IMF6/

Residue

142.0 1.89 71.0 1.94 71.0 0.67 142.0 0.01 142.0 2.40 142.0 3.45

Residue 142.0 4.33
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IMFs at larger scales. Furthermore, a cross-correlation

analysis between the modes of AISMR time series with that

of different climate indices is performed and the corre-

sponding results are presented in Table 3. From Table 3, it

can be noticed that there exists a very high degree of cor-

relation only between the trend components of the monsoon

rainfall time series and different climate indices. Also few

higher order modes show a reasonable correlation, as high-

lighted in bold numbers in Table 3, for example, IMF6 of

monsoon rainfall and IMF5/IMF6 of SN time series; IMF6

of monsoon rainfall with IMF6 of QBO, etc. This is an

important observation as it can be concluded that the rela-

tionship between climate indices and monsoon rainfall

shows a better agreement in the low-frequency part of their

spectra. To understand the pattern of evolution in the time

domain (i.e., how the changes occur above and below the

mean value over the time domain), the plots of trend com-

ponents of monsoon rainfall with the trend component of all

five climate indices are prepared and presented in Fig. 6. A

comparison of the trends of different indices with that of

rainfall shows that different indices have very good agree-

ment with rainfall. In addition, the changes above the mean

are found to be occurring in similar manner. Furthermore, it

is noticed that the zero crossing occurs more or less at the

same time instant in all cases. This also establishes the

strong long-term association of the different climate indices

with Indian monsoon rainfall.

It is to be noted that in the present correlation analysis,

the correlation between modes is computed by considering

the entire time span. However, there is a possibility that the

IMFs of climate indices and rainfall may show strong

positive (or negative) correlation for shorter time spells.

Also at some of the time spells, such correlation can be

negative, and at some other spells, it may be positive. To

illustrate this aspect, the modes of ENSO and AISMR are

plotted and presented in Fig. 7.

From Fig. 7, it can be noticed that the correlation

between the two is negative in most of the lower modes and
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series

Table 2 Time period of modes

of AI monthly monsoon rainfall

and different climate indices for

1950–2012

Mode Rainfall Climate indices

AI QBO ENSO SN AMO EQUINOO

IMF1 3.231 3.150 3.600 3.111 3.360 3.150

IMF2 6.300 9.333 8.400 6.146 7.636 6.811

IMF3 13.263 18.000 15.750 11.455 14.000 14.000

IMF4 28.000 31.500 28.000 42.000 28.000 25.200

IMF5 42.000 63.000 50.400 126.000 84.000 50.400

IMF6 84.000 126.00 126.00 126.00 126.00 126.000

Residue 252.000 252.00 252.00 252.00 252.00 252.000
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the residue, but the two are positively correlated for the

shorter time spells *1960–65 in IMF2, *1978–82 in

IMF2 and IMF3, *1994–96 in IMF3, etc. This implies that

the correlation coefficient of two data series on the whole

domain alone may not reveal the possible relationship

between them particularly when the processes are

Table 3 Correlation coefficients between orthogonal components of

monthly monsoon rainfall (1950–2012) of AI and orthogonal

components of different climate indices [italic letters indicate

significant correlation (p value \0.05) and bold letters indicates

moderate-to-strong correlation, say[±0.5]

Mode of

monsoon rainfall

Climate index Mode of climate index

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Residue

QBO

IMF1 -0.085 0.044 -0.03 -0.012 -0.013 -0.018 -0.002

IMF2 0.015 0.019 0.078 0.015 0.039 0.018 0.027

IMF3 0.019 -0.007 -0.407 0.12 -0.048 -0.061 -0.024

IMF4 0.016 0.042 -0.133 -0.115 0.563 0.217 0.156

IMF5 -0.009 0.01 0.026 -0.084 -0.395 -0.264 -0.111

IMF6 -0.031 -0.016 0.049 -0.023 -0.027 0.879 0.15

Residue 0.01 0.035 0.096 0.035 -0.064 -0.181 0.999

ENSO

IMF1 -0.031 -0.022 0.022 0.000 -0.038 -0.014 0.000

IMF2 -0.114 -0.347 -0.165 -0.018 0.038 -0.008 -0.025

IMF3 0.065 -0.084 -0.399 -0.183 0.085 -0.013 0.015

IMF4 -0.025 0.035 -0.104 -0.100 -0.055 0.170 -0.134

IMF5 0.016 -0.005 0.020 0.094 -0.154 -0.188 0.088

IMF6 0.035 -0.032 0.038 -0.110 -0.202 0.945 -0.142

Residue -0.003 -0.014 0.078 -0.097 -0.147 0.119 20.992

SN

IMF1 -0.010 -0.018 -0.041 -0.017 0.014 -0.002 -0.001

IMF2 0.018 -0.014 -0.032 -0.053 -0.017 -0.007 0.025

IMF3 -0.009 0.013 0.068 0.157 -0.042 -0.042 -0.019

IMF4 -0.017 0.039 -0.102 0.073 0.329 0.273 0.151

IMF5 0.030 -0.028 0.129 -0.171 -0.354 -0.328 -0.104

IMF6 0.015 0.003 0.117 -0.079 0.653 0.810 0.173

Residue -0.008 0.009 0.127 -0.058 0.238 0.175 0.996

AMO

IMF1 0.085 0.020 -0.023 0.010 0.032 0.010 0.001

IMF2 -0.065 -0.044 0.017 -0.045 -0.015 -0.006 -0.027

IMF3 -0.063 -0.072 0.074 0.124 0.054 0.054 0.018

IMF4 0.024 0.154 0.059 -0.206 -0.003 -0.173 -0.142

IMF5 -0.007 -0.030 0.122 -0.014 -0.401 0.129 0.102

IMF6 -0.032 0.024 0.136 0.007 0.418 -0.026 -0.181

Residue 0.022 0.077 -0.027 0.023 0.320 20.559 20.992

EQUINOO

IMF1 -0.349 -0.068 -0.013 -0.017 -0.028 0.000 0.000

IMF2 -0.036 -0.154 -0.032 -0.023 0.010 -0.003 -0.024

IMF3 -0.006 -0.094 -0.151 0.011 -0.069 -0.037 0.011

IMF4 0.012 0.051 -0.166 -0.256 0.082 0.020 -0.126

IMF5 -0.035 -0.071 0.021 0.034 -0.041 0.004 0.079

IMF6 -0.047 0.026 -0.037 -0.132 0.208 -0.496 -0.157

Residue 0.027 0.028 0.023 -0.098 0.207 0.141 20.985
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intermittent or non-stationary or contain drift and trends. In

addition, it is noticed that the relation between IMF4 of

ENSO and rainfall is very weak for most of the time

periods. A strong positive correlation between ENSO and

AISMR is observed in IMF6 in most of the time periods

and in IMF5 for the period *1987–2007. The relation in

IMF5 was noticed with a phase shift for the period

*1997–2007.

Hence, it can be concluded that for the complex relation

between rainfall and climate indices, certain processes

involved may correlate with each other in one scale but not

in others. In addition, the correlation between rainfall and

climate indices might have changed from strong positive

correlation to strong negative correlation in some of the

scales (i.e., for IMFs). This evidence is clear on consider-

ing the much investigated relation between ENSO and
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ISMR by the comparison of their IMFs. The two events are

negatively correlated for the residue component (correla-

tion coefficient of -0.992), but a strong positive correla-

tion for the IMF6 (correlation coefficient of 0.945)

(Table 3). This is noteworthy, because negative correlation

at one scale would counteract positive correlation at

another scale, resulting low overall correlation between

rainfall and climate indices. In this case, the overall cor-

relation between ENSO and monsoon rainfall series is only

-0.21, while the correlation values between rainfall series

and QBO, SN, AMO, and EQUINOO are 0.01, -0.001,

0.013, and -0.33, respectively. It is to be noted that above

correlation values are quite low and the correlation coef-

ficient depicts only the linear association between the dif-

ferent variables with ISMR, while the true association

between them might be of non-linear in characteristics.

However, the climate forcing of lower periodicity may last

for shorter time spells and they might have significant

impact on the hydrological processes of the regime. To

identify such local associations, a correlation analysis

considering shorter time spells can be adopted. Therefore,

an in-depth intrinsic correlation analysis of IMFs may give

more insight to the linkages between climate indices and

Indian monsoon rainfall. Therefore, a time-dependent

intrinsic correlation analysis (TDIC) of Indian monsoon

rainfall time series is performed.

4.3 Time-dependent intrinsic correlation analysis

of AISMR and climate indices

The TDIC was calculated among the different pairs of

IMFs of climate index and monsoon rainfall, and the TDIC

plots are prepared for the first four IMFs, as the periodic-

ities of monsoon rainfall and different climate indices

matches reasonably well only for the first four IMFs, and

the TDIC analysis of higher order modes (IMF5 onwards)

rainfall and climate indices does not pass the student t test

in most of the time scales for most of the time spells.

In the implementation of TDIC analysis, first, the

spectral analysis of IMFs is to be performed and the

instantaneous frequencies (and the reciprocal of which

gives the instantaneous period) are to be estimated.

Sometimes, the traditional HT may lead to instantaneous

frequencies that are of less physical meaning (such as

negative frequency) or it may show mathematical incor-

rectness as stated in two well-known theorems such as

Bedrosian theorem (Bedrosian 1963) and Nuttal theorem

(Nuttal 1966). The restriction of the Bedrosian theorem

(Bedrosian 1963) can be surpassed through normalization

of the resulting IMFs and restriction imposed by Nuttall

(1966) theorem can be circumvented by the direct

quadrature (DQ) method proposed by Huang et al. (2009b).

In this study, the Normalized Hilbert Transform and DQ

(NHT-DQ) scheme are used for determining the instanta-

neous frequency, and the details of this scheme can be

found elsewhere (Huang and Wu 2008; Huang et al.

2009a, b). Using the instantaneous periods, the TDIC

algorithm is invoked and the TDIC plots are prepared for

different cases. To illustrate the applicability of TDIC

analysis, first, the relationship between ENSO and rainfall

is considered, and the TDIC plots for different IMFs are

presented in Fig. 8. The bottom contour of the triangular

plots depicts the instantaneous frequency and hence a shift

of the plots to larger time scales can be noticed in higher

order IMFs (of low-frequency modes). The white spaces in

the plots represents that such correlations fails to satisfy the

Student’s t test and hence not statistically significant. It is

to be noted that in the teleconnection studies, the appended

monthly data sets of monsoon period from different years

are considered, while HHT is one such tool recommended

even for the spectral analysis of data sets with irregular

periodicity (Huang et al. 2009a; Cong and Chetouani 2009;

Huang 2013; Rahman et al. 2015). In this case, the main

aim is to examine the association between the variables in

multiple time scales whatever be the scale (periodicity)

associated with them. However, it is important to perform

the appropriate time scale conversion, while periodicity

becomes the central focus of the discussion. ENSO shows a

long range negative correlation with AISMR for IMF2

(*8.4 9 4/12 = 3 year periodicity) and IMF3 (*15.7 9

4/12 = 5 year periodicity), so it can be inferred that both

modes may be contributed by same physical processes like

westerly wind bursts or oscillatory patterns such as Mad-

den–Julian oscillations (MJO) which vary in intraseasonal

scales (Wang and Picaut 2004), even though the exact

physical mechanism behind such transition in the nature of

correlation could not be adduced from the present analysis

at this stage. However, localized positive correlation of

ENSO with AISMR is observed in different modes in

different shorter time spells, for example, IMF2 in

*1964–66, IMF3 in *1979–82, IMF4 in 1995–1998, etc.

It is well known that the strongest El Niño of the century

(1997–98) triggered an Indian Ocean Dipole (IOD) mode

and which resulted in above-average rainfall during the

period 1997–98 (Kumar et al. 2006). From the TDIC

analysis (Fig. 8), it is found that for IMF4, the correlation

between the AISMR and ENSO time series is strongly

positive during 1995–98. This matches with the results

presented by Chen et al. (2010) who established the rela-

tion between IOD and ENSO using the TDIC analysis.

Moreover, it is observed that there are frequent alterations

in nature of correlation between ENSO and AISMR in the

high-frequency mode (IMF1). Such dynamics (transition

from positive correlation to negative and vice versa) are

more apparent for smaller window size (i.e., in the lower

part of the TDIC plot). In addition, it is the well understood
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that in 2001–2002, Indian monsoon weakened due to the

effect of ENSO, and it is observed that IMF2 and IMF3

shows very strong negative correlation with rainfall. Even

though the multiscale relation between ENSO and ISMR is

revealed, more investigation is needed to elucidate the

exact physical processes behind such relationships and the

reasons for the changes in correlation from positive to

negative at different time spells.

The TDIC plots of QBO, SN, AMO, and EQUINOO

links are presented in Figs. 9, 10, 11, and 12. Figure 9

shows that IMF1 of QBO is negatively correlated with that

of AISMR in almost all scales. A direct correlation

between QBO and ISMR was observed in the period

*1967–1994 for the IMF2; but in the recent past

(*1995–2010), the IMF2 also shows an anti-correlating

behavior. For IMF3, the relation between QBO and

AISMR is primarily long range negative correlation.

However, some significant direct relation between the two

events was noticed during short-term spells 1953–55,

1978–80, and 1997–98. From Fig. 10, it is noticed that the

high-frequency modes of SN (IMF1 and IMF2) show sta-

tistical significance only up to window size of

*60 months. Overall, the correlation between the SN and

AISMR is weak and shows that very rich dynamics (i.e.,

frequent alterations in correlations) in pattern are noticed in

different TDIC plots of SN time series.

From Fig. 11, a weak positive correlation is observed

between AMO and AISMR in different modes. Interest-

ingly, all the first four modes show a strong direct

correlation with monsoon rainfall in the recent past

(*1995–2010). More specifically, it is observed that dur-

ing 1997–98, there exists a strong correlation between the

two in all modes, which supports the earlier findings of the

modulation of Indian monsoon by AMO and its link with

ENSO (Goswami et al. 2006; Dong et al. 2006). From

Fig. 12, it is noticed that most of the modes of EQUINOO

show an anti-correlation with the monsoon rainfall, both at

shorter or longer scales, but very localized direct correla-

tions are observed between the two at lower time scales of

less than 2 years (for e.g., IMF3 in 1950s, IMF1 in 2000s,

etc.). The significant negative correlation of IMF1 of

EQUINOO and AISMR is quite different from that of other

indices considered in this study. In short at a particular time

spell, the relation of different climate indices with mon-

soon rainfall may be quite different; for example, during

1950–1960, for scale ranges \20 months, the correlation

between the different modes of AMO and monsoon rain-

fall, during *1960–1970 period, for scale ranges

20–40 months, the correlation between the different modes

of EQUINOO and monsoon rainfall, etc. This also infers a

possible interconnection between the different climate

oscillations (such as QBO, ENSO, and AMO) and it can be

inferred that their joint influence may decide the fate of

monsoon rainfall during different periods. Such linkages

need to be investigated further to corroborate more strong

inferences. Moreover, the high (positive or negative) cor-

relation between the IMFs of rainfall and climate oscilla-

tion at a particular time spell infers that they might be
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contributed to the same physical processes. Identifying

such physical processes and investigating their link with

climate indices are challenging task, but it is important for

complete understanding of the characteristics of monsoon

rainfall. It is to be noted that the present study considered

the TDIC analysis of IMF of monsoon rainfall and one

climate index at a time, but the correlation among the

different climate indices is not attempted in this study. For

performing such analyses, TDIC is a useful method and

may give more insight in identifying the physical
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Fig. 10 TDIC plots between IMFs of SN and monsoon rainfall. The white space of the TDIC plot means that the correlation coefficient is not

significant at 5% significance level
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mechanisms responsible to such teleconnections. Tech-

niques similar to TDIC (such as wavelet coherency anal-

ysis) involve the complex step of appropriate selection of

mother wavelet function, which may alter the correlation

plots and subsequent interpretations (Grinsted et al. 2004),

but TDIC can provide a unique set of plots which decipher

the ‘true’ association between hydro-climatic variables in

multiple time scales. Moreover, the wavelet coherency

demands smoothing operation, which may alter the quality

of representations either in time or frequency domains (Liu

1994; Grinsted et al. 2004). TDIC also solves the complex

problem of selection of appropriate scaling window in the
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Fig. 11 TDIC plots between IMFs of AMO and monsoon rainfall. The white space of the TDIC plot means that the correlation coefficient is not

significant at 5% significance level
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Fig. 12 TDIC plots between IMFs of EQUINOO and monsoon rainfall. The white space of the TDIC plot means that the correlation coefficient

is not significant at 5% significance level
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running correlation analysis exercise, and thus, TDIC can

be a viable alternative for investigating hydro-climatic

teleconnections of ISMR.

4.4 Prediction of AISMR based on multiscale

decomposition of climate indices

In the past, various studies have noted that the information

of large-scale climate oscillations (or climate indices) can

be used as inputs for improved prediction of ISMR (Gadgil

et al. 2004; Maity and Nagesh Kumar 2006a, b; Kashid and

Maity 2012). In most of such studies, along with the lagged

values of rainfall (which can be considered as signatures of

physical factors influencing the process), the lagged values

of climate indices were used as inputs to predict Indian

monsoon rainfall. The HHT-TDIC-based analysis for

detecting hydro-climatic teleconnections proved that the

nature and strength of association between the rainfall and

climatic indices vary over the time scales. It is hypothesized

that capturing such information may improve the prediction

capabilities of ISMR. For testing this hypothesis, prediction

of AISMR time series for the period 1950–2012 is per-

formed using MEMD-SLR approach (whose details are

presented in Sect. 2.3). As details of the overall framework

for prediction of AISMR are presented in Fig. 2, where

MEMD is used for the decomposition of the multivariate

data set (comprising lagged inputs of rainfall and climate

oscillations) and the stepwise linear regression (SLR) is

used for building the regression models for each of the

orthogonal components resulting from the decomposition.

The model calibration stage of the MEMD-SLR

approach involves the following steps:

(i) Select candidate predictor variables and appropri-

ate lags by correlation analysis.

(ii) Perform the decomposition operation of the

climate indices and rainfall data using MEMD.

(iii) Prepare separate models to predict each compo-

nent of rainfall using SLR.

(iv) Recombine the predicted orthogonal modes (OM)

to get the rainfall value.

For modeling AISMR, the annual series of rainfall and

the five climate indices for different monsoon months

(JJAS) are considered. In this exercise, first, the past

5 years lagged values of rainfall of the particular month are

included as inputs following the suggestions from the past

studies (Sahai et al. 2000; Kashid and Maity 2012; Singh

and Borah 2012). The correlation of each of the monthly

values of climatic indices of the present year (say, for

January–May months) with the given month (say June) is

computed and the one which gives highest correlation is

chosen as model input. Thus, for the prediction of June

rainfall, the model is of the form:

Rt June ¼ f ðRJuneðt�1Þ; . . .;RJuneðt�5Þ; QBOMay; SNMay;

EQMarch; AMOJanuary; ENMayÞ:

Similarly, the models are considered for prediction of

rainfall in July, August, and September months. Then, the

seasonal rainfall (monsoon season) can be calculated as

follows:

Rmonsoon ¼ RJune þ RJuly þ RAugust þ RSeptember:

The data set for 1950–1988 is used for model calibration

and that for the rest of the period (1989–2012) is used for

validation. For modeling rainfall of a month (say, June),

the multivariate data set comprising all input parameters is

first decomposed by MEMD method. The maximum and

minimum threshold parameters of MEMD are fixed as

0.075 and 0.75, which ensure globally small fluctuations in

mean while accounting locally large fluctuations during the

‘sifting’; and the fraction for controlling the sifting itera-

tion is chosen as 0.075, after following the suggestions

from past studies (Rilling et al. 2003; Hu and Si 2013). The

decomposition resulted in seven IMFs and residue. The

SLR models are developed for individual modes of rainfall.

For each model, the regression coefficients, the statistical

significance (at 5% significance level) was decided based

on p value statistics and regression coefficients that fail to

meet the criteria are brought to zero, i.e., it can be assessed

that such variable is not influential at the respective time

scale. The same procedure is repeated for the rainfall of the

remaining months (July, August, and September) and the

decomposition resulted in six modes for July month series,

and seven modes for August and September month series.

To illustrate this procedure, the model of IMF1 and

IMF4 is provided below:

IMF1Rainfall ¼ �2:029 IMF1Rt�1
� 2:759 IMF1Rt�2

� 2:539 IMF1Rt�3
� 1:5971 IMF1Rt�4

IMF4Rainfall ¼ 1:447 IMF4Rt�1
� 1:301 IMF4Rt�2

þ 0:309 IMF4Rt�3
� 1:271 IMF4QBOMay

þ 0:062 IMF4EQMarch

From the above expression, it is clear that none of the

climate index is influential at the timescale of IMF1 (as

none of the oscillatory mode of climate index is present in

the expression). At the time scale of IMF4, only QBO and

EQ are influential and similar observations can be made for

other oscillatory modes also.

Final summation of the predicted OMs provides the

rainfall of June month. Based on the developed models, the

OMs of validation data are obtained and the summation of

the predicted OMs gives the rainfall during those periods.

Similar procedure is followed to predict the rainfall of July,

August, and September months. The predictions for the

individual months are aggregated to get the seasonal
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(monsoon) prediction. To examine the efficacy of the

proposed approach, the prediction of rainfall is also per-

formed using the M5 Model Tree technique and multiple

linear regression (MLR) for a comparative analysis. Here,

M5 model trees (Quinlan 1992) are chosen (from the

available different data-driven paradigms for regression)

because of its simplicity and superior performance for

hydrological predictions as reported in the past studies

(Singh et al. 2010; Jothiprakash and Kote 2011). The

performance of models is evaluated by estimating the

correlation coefficient (R), Mean Square Skill Score

(MSSS) (Murphy 1988), and Root Mean Square Error

(RMSE) statistics both for the calibration and validation

data sets. For validation period (1989–2012), the actual

data and IMD operational forecasts are collected from the

website of IMD (http://imdpune.gov.in/Clim_Pred_LRF_

New/Home/LRF_Perform_89-2014.png). The performance

of models for validation period is assessed by computing

the different performance measures, which involves com-

parison of the predictions by different methods (MEMD-

SLR, MT, MLR, and IMD operational forecast) with the

actual rainfall. The performance evaluation statistics for

seasonal (monsoon) rainfall during the calibration period

(1950–1988) and validation period are presented in

Table 4. For visual illustration, scatter plot and time series

plots of monsoon rainfall prediction by different methods

are shown in Fig. 13 for the validation period (1989–2012).

For the calibration data, the results show remarkable

improvement in performance of MEMD-SLR model in

terms of higher correlation (0.973) and smaller error

statistics when compared with MT/MLR methods.

Recalling that the ENSEMBLE project Multi Model

Ensemble (MME) hindcast of All India Rainfall Index

(AIRI) has a skill of 0.63 for the period from 1960 to 1988,

Physically motivated Empirical model (P-E model) dis-

played a skill of 0.77 (Wang et al. 2015), and it is clearly

evident that model calibration is acceptable for prediction.

The tabulated performance statistics (in Table 4) for

predictions by the four methods during the validation

period (1989–2012) show that highest correlation skill is

displayed by the MEMD-SLR model (0.798), while that of

IMD forecast is only -0.12. It is to be noted that the

correlation for predictions for this period (1989–2012) is

0.51 based on the P-E model proposed by Wang et al.

(2015). The MSSS is 0.37 for the proposed method, while

that is negative for other models, which is an indicative of

poor prediction skills. Here, the RMSE of predictions are

also computed, which show that the RMSE is least for

MEMD-SLR model (55.66) which shows an improvement

of 44% over the MT approach and 47% over the IMD

operational forecasts. The results presented in Table 4

clearly indicate superior performance of MEMD-SLR

model for prediction of ISMR over the other methods

during the validation period, which infers that MEMD-SLR

has better generalization capabilities over the IMD opera-

tional forecasts, and MT and MLR methods.

The time series plot (Fig. 13a) clearly depicts close

matching of predictions by MEMD-SLR model with that

of observed values, whereas larger deviations can be

noticed in the predictions by MT, MLR, and IMD oper-

ational forecasts. In the scatter plot(Fig. 13b), the close-

ness of points towards the ideal fit line clearly indicates

the superiority of the proposed MEMD-SLR method. The

plots further show that the highest rainfall magnitude

(1005.7 in the year 1994) is predicted best by MEMD-

SLR model (957.71) when compared with other methods

(805.78 mm, 781.64 mm, and 818.8 mm, respectively by

MT, MLR, and IMD operational forecast). Similarly, the

lowest two rainfall record of 2009 (694.2) is well pre-

dicted by MEMD-SLR model (684.34) followed by the

other methods (825.91 mm, 820.69 mm, and 827.7 mm

by MT, MLR, and IMD forecast, respectively). This also

shows that the deviations of predictions of extreme values

from the actual values are the least for the MEMD-SLR

method. To enable a better comparison, four critical years

as referred by Wang et al. (2015) are considered, for

which the observed rainfall and the rainfall predicted by

different methods are presented in the form of a bar graph

in Fig. 14.

Figure 14 shows that the rainfall in all the critical years

is well predicted by the proposed method. Apart from the

extreme rainfall years of 1994 and 2009, the rainfall for the

critical years 2002 and 2004 is also predicted well by the

proposed method. The actual rainfall values of these years

are 720.9 mm in 2002 and 765.4 mm in 2004, which are

predicted as 679.97 mm and 785.61 mm, respectively, by

Table 4 Performance evaluation of rainfall predictions by different methods during calibration (1950–1988) and validation period (1989–2012)

Performance evaluation criteria Calibration Validation

MEMD-SLR MT MLR MEMD-SLR MT MLR IMD

R 0.973 0.819 0.691 0.798 -0.064 -0.082 -0.120

MSSS 0.943 0.469 0.464 0.371 -0.309 -0.734 -0.361

RMSE 21.612 65.937 66.235 55.668 80.282 92.402 81.853
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MEMD-SLR method. Furthermore, to check the consis-

tency of predictions by the different methods, standard

deviation of actual data (1989–2012) is compared with that

obtained by the four methods. The value of standard

deviation for observed data was 71.67 mm, while standard

deviation values for predicted series by the four methods

are 69.02 mm, 33.58 mm, 55.8 mm, and 37.48 mm, which

clearly show that the deviations of predictions by MEMD-

SLR method are in good agreement with that for observed

data.

Moreover, by considering the data set for the years

1989–2005, the correlation skill of predictions is com-

puted, which are found to be 0.81,-0.35, -0.32, and

-0.22 by the four methods MEMD-SLR, MT, MLR, and

IMD forecasts. As per Wang et al. (2015), the correlation

skills of ENSEMBLE models are 0.09 for 1989–2005,

Asia–Pacific Economic Cooperation (APEC) climate cen-

ter (APCC) Climate Prediction and its application to

Society (CliPAS) models’ skill is 0.24, while that of P-E

model is 0.77. In addition, corresponding MSSS skills for

ENSEMBLE and CliPAS are -1.32 (1989–2005) and

-1.36 (1989–2005), while that of MEMD-SLR, MT, MLR,

and IMD forecasts are 0.299, -0.66, -0.66, and -0.55,

respectively. These results also clearly indicate that better

prediction capabilities of MEMD-SLR model. The pre-

sented modeling strategy considers the lagged values of

climatic indices as inputs. Hence, this can be treated as

medium range forecast with 1 month lead time which has

its own importance for planning of agricultural activities

and judicious management of available water resources.

Overall, maximum correlation for predictions for this

period (1989–2012) is 0.51 based on the P-E model and

displayed a skill of 0.64 for the 92-year (1921–2012) ret-

rospective forecast (Wang et al. 2015). While the previous

studies reported a maximum correlation skill of *0.5,

from statistical and dynamic models for shorter periods

(DelSole and Shukla 2009, 2012; Wang et al. 2015) the

forecasting skill of the proposed method showed
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substantial improvement. In addition, IMD uses six

potential predictors for the operational forecasts, while the

study by Wang et al. (2015) contributed four comple-

mentary predictors for ISMR prediction, which exhibited

superiority in prediction skill for the recent decades under a

global warming scenario. The present study considers five

established climatic indices whose periodic properties are

quite similar with the complementary predictors used by

Wang et al. (2015) for ISMR prediction. MEMD is quite

successful in information capturing from these predictors

in different periodic time scales and the SLR is capable to

identify the relevant inputs at each of these time scales.

This facilitates to retain the potential input and omit the

less significant input at different time scales, which cannot

be achieved through the conventional modeling methods.

This may be the reason behind the superior performance of

the proposed methodology. Overall, the proposed strategy

involving the ‘decomposition and exclusion’ is found to be

a promising modeling practice for ISMR prediction. Sub-

stantial improvement in prediction skills based on the use

of time scale information from the five climate indices by

employing the MEMD-SLR method is a real-value addi-

tion for the complex problem of ISMR prediction. It is to

be noted that the methodology proposed is a general one,

so in future studies, the relative predictive capabilities can

be examined systematically by extensive analysis by con-

sidering different combinations of climatic indices (those

influence the ISMR) as predictor variables.

5 Conclusions

In this study, the multiscale teleconnection between ISMR

and different climatic indices is investigated using the

HHT-based TDIC analysis. Eventually a MEMD-SLR

approach is proposed for effective prediction of ISMR.

Specific conclusions of the study are:

• The cross-correlation between orthogonal modes pro-

ven that the link between climatic indices and all India

monsoon rainfall is expressed well mainly for low-

frequency modes and the trend component.

• The TDIC analysis between oscillatory modes of El

Niño Southern Oscillation (ENSO) and Indian summer

monsoon rainfall successfully captured the overall

negative correlation and the localized direct correla-

tions between them.

• The study inferred the existence of strong long range

negative correlation between EQUINOO and AISMR

and positive correlation of different modes of AMO

with monsoon rainfall along with the respective short-

term counter correlations.

• The association between the climatic oscillations and

ISMR varies with time scales and it differs in both

nature and strength of the association.

• The proposed MEMD-SLR method facilitates the

selection of significant climate indices that are respon-

sible for the variability of rainfall at different time

scales, which eventually lead to significant improve-

ment in rainfall forecasts over the IMD operational

forecast, MT, and MLR methods for prediction of

ISMR. The proposed method performed better than the

other methods in predicting the extreme rainfall during

the critical years (1994, 2002, 2004, and 2009) and

displayed better predictive skill than the dynamical

methods and physically motivated empirical (P-E)

methods for rainfall prediction during the period

1989–2005.

6 Appendix I

6.1 Multivariate empirical mode decomposition

(MEMD)

Multivariate extension of EMD (MEMD) (Rehman and

Mandic 2010) decomposes multiple time series simulta-

neously after identifying the common scales inherent in

different time series of concern. A brief description of the

MEMD algorithm is presented below:

In this method, multiple envelops are produced by tak-

ing projections of the multiple inputs along different

directions in an m-dimensional space.

Assuming V(t) = {v1(t), v2(t), …, vm(t)} being the m

vectors as a function of time t and Xak ¼ fxk1; xk2; . . .; xkmg
denoting the direction vector along different directions

given by angles ak = {ak1; a
k
2; . . .; a

k
m�1} in a direction set

X (k = 1,2,3,….K; K is the total number of directions). It

can be noted that the rotational modes appear as the

counterparts of the oscillatory modes in EMD or its vari-

ants. The IMFs of m temporal data sets can be obtained by

the following algorithm:

1. Generate a suitable set of direction vectors by

sampling on a (m - 1) unit hypersphere

2. Calculate the projection pakðtÞ of the data sets V(t)

along the direction vector Xak for all k

3. Find temporal instants taki corresponding to the maxima

of projection for all k

4. Interpolate [taki ;Vðt
ak
i Þ] to obtain multivariate envelop

curves eakðtÞ for all k

5. The mean of envelope curves (M(t)) is calculated by

MðtÞ ¼ 1
K

PK
k¼1 eakðtÞ
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6. Extract the ‘detail’ D(t) using D(t) = V(t) - M(t). If

D(t) fulfills the stoppage criterion (Huang et al. 1998),

apply the above procedure to V(t) - D(t), otherwise

apply it to D(t).

For the generation of direction vectors, Hammersley

sampling sequence was used (Huang et al. 2016).
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