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Abstract Summer rainfall anomalies have often posed a

major water concern in China, and the variations and

prediction of dry–wet abrupt alternation (DWAA) events

have been receiving increasing attention from researchers.

Based on precipitation and atmospheric circulation indices

in the middle and lower reaches of the Yangtze River

Basin, the spatio-temporal evolution characteristics and

predictability of DWAA events were analyzed by calcu-

lating the dry–wet abrupt alternation index and selecting

early warning signals. The results indicate that most long-

cycle and short-cycle DWAA events, except in the period

of May–June, are wet-to-dry (WTD) events and that the

frequencies and intensities of WTD events have gradually

decreased over time. The spatial distribution characteristics

on the south shore of the Yangtze River are opposite to

those on the north shore. Occurrences of DWAA events

can be predicted to some extent by comparing the actual

and critical values of select early warning signals. The

results also indicate that the BP neural network model

exhibits strong performance in simulating the occurrences

of DWAA events and therefore may provide a useful ref-

erence for intraseasonal wet and dry management in the

Yangtze River Basin.

1 Introduction

Widespread increases in global temperatures may influence

the probability and the intensity of extreme precipitation

events (Schaer et al. 1996; Groisman et al. 1999), resulting

in phenomena such as an abrupt wet spell after a prolonged

dry spell, which can be defined as a dry–wet abrupt alter-

nation (DWAA) event. These extreme fluctuations between

dry spells and wet spells may seriously impact human

systems, agricultural yields and infrastructure (Turner and

Annamalai 2012).

The middle and lower reaches of the Yangtze River

Basin (YRB-ML) (106�540–124�250E, 24�300–35�450N) are

located in a typical monsoon climate region with a drai-

nage area of 800,000 km2 (Fig.1). The annual precipitation

in the basin is approximately 1300 mm, with a decreasing

trend from the southeast to the northwest. The basin also

features an obviously nonuniform annual distribution of

precipitation, as more than 60% of the annual precipitation

falls between May and August every year. The climate of

the area is influenced by two types of monsoon per year,

the southeast Asian summer monsoon (May–September)

and the northwest Siberian winter monsoon (October–

April) (Tao and Ding 1981; Su et al. 2006). It is humid and

rainy during the summer monsoon and became cold and

dry during the winter monsoon. The anomalous activities

of the summer monsoon will bring droughts and flood

disasters, and severe temperature decreases, snowfall

events and gales may occur under the activity of the winter
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monsoon in the area (Tao and Ding 1981; Zhang and Wang

1997). Rainfall is concentrated and rainfall anomalies

occur most frequently during the summer season, mainly

because precipitation is closely associated with a quasi-

stationary front (or mei-yu belt), which represents the

activity of the summer monsoon (Ho et al. 2003). There-

fore, understanding the temporal and spatial evolution

characteristics of DWAA events and their predictability

during summertime in YRB-ML is crucial for preventing

disasters and managing water resources.

Summer rainfall anomalies have been discussed in a

number of studies (Kruger 1999; Reason et al. 2005;

Weaver et al. 2009; Efstathiou and Varotsos 2012;

Chaudhuri and Pal 2014; Muhire et al. 2015). In particular,

intraseasonal rainfall anomalies have been receiving

increasing attention since the 1990s (Camberlin 1997;

Maheras et al. 1999; Gonzalez et al. 2008; Chikoore and

Jury 2010; Kim et al. 2014; Yao et al. 2014). DWAA

events, a typical form of intraseasonal precipitation

anomaly, have occurred more frequently in various regions

of China in recent years (Wu et al. 2006; Zhang et al. 2007;

Sun et al. 2012). Wu et al. (2006) quantified the summer

intraseasonal long-cycle droughts–floods abrupt alternation

(LDFA) phenomenon by defining an LDFA index and

analyzed its correlation with large-scale atmospheric cir-

culation anomalies. Cheng et al. (2012) identified DWAA

events by combining Standardized Precipitation Index

(SPI) and historical disaster data, and summarized their

spatio-temporal evolution characteristics and correspond-

ing circulation features in the Huai River Basin. Further-

more, Li and Ye (2015) selected the DWAA events in the

Poyang Lake Basin, and analyzed their temporal, and

spatial distribution characteristics and tendencies. Most

studies have focused on the evolutionary characteristics of

DWAA events, with little attention paid to the simulation

or prediction of these events.

The objective of this study is to analyze the spatial and

temporal characteristics of DWAA from three aspects in

YRB-ML during the summer monsoon period (1960–2012,

from May to August), and simulate and predict the

occurrences of these events using the methods of stepwise

regression and back propagation neural network modeling.

2 Data and methods

2.1 Data

The daily precipitation data sets for 75 meteorological

stations distributed evenly all over the study basin for

the period of 1960–2012 were obtained from the

National Meteorological Information Center of China.

Moreover, 74 atmospheric circulation indices published

by the National Climate Center were obtained. In addi-

tion, the atmospheric circulation fields for the Southern

Hemisphere Annular Mode Index (SAMI), the Northern

Hemisphere Annular Mode Index (NAMI) and the North

Atlantic Oscillation Index (NAOI) for the same period

were available from the Institute of Atmospheric Phy-

sics, Chinese Academy of Sciences. These indices were

used as predictive factors for predicting the occurrence

of DWAA events.

2.2 Methods

2.2.1 Identification of DWAA event

For each station and the overall study area, standardized

precipitation anomalies (SPA) (Maheras et al. 1999) have

been calculated as follows:

SPAi ¼
Pi � P

r
; ð1Þ

where Pi is the precipitation of a particular month, i rep-

resents the month, P and r are the long-term monthly mean

and standard deviation, respectively. Months with stan-

dardized precipitation anomalies that are less than -0.5 or

greater than 0.5 standard deviations are defined as dry

spells and wet spells, respectively.

To describe the DWAA phenomena quantitatively and

qualitatively, a dry–wet abrupt alternation index (DWAAI)

was defined by Wu et al. (2006) and Zhang et al. (2012) as

follows:

DWAAI ¼ SPAi � SPAi�1ð Þ � SPAij j þ SPAi�1j jð Þ�
a� SPAiþSPAi�1j j ði ¼ 1; 2; . . .nÞ;

ð2Þ

where SPAi�1 and SPAi refer to the standardized precipi-

tation anomalies in the i� 1 month and the i month,

respectively, SPAi � SPAi�1ð Þ represents the DWAA

intensity term, SPAij j þ SPAi�1j jð Þ represents the intensity

of the wet and dry, and a� SPAiþSPAi�1j j is the weighting

coefficient, which enhances the weights of DWAA events

and reduces the weights of persistent wet and dry

phenomena.

In this paper, the spatio-temporal evolution character-

istics of DWAA were grouped into both long-cycle and

short-cycle time scales. Long-cycle time scale was defined

as 2 months, i.e., 2 months of wet conditions and 2 months

of dry conditions, based on the hydro-meteorological

characteristics of the basin. Therefore, long-cycle DWAA

events correspond to wet (dry) throughout May–June and

dry (wet) throughout July–August. According to the study

by Wu et al. (2006), the DWAAI calculated with a ¼ 1:8

was suitable for long-cycle DWAA events selection. Sim-

ilarly, the short-cycle time scale was defined as 1 month,

428 L. Shan et al.

123



and the a value of 3.2 was used to calculate the short-cycle

DWAAI (Zhang et al. 2012). In addition, scenarios with

DWAAI of less than -1 and greater than 1 were regarded

as wet-to-dry (WTD) events and dry-to-wet (DTW) events,

respectively. Moreover, a higher absolute DWAAI value

indicates an incident of higher severity.

2.2.2 Stepwise regression (SR)

To understand the relationship between long-term atmo-

spheric circulation and DWAA events and to predict the

occurrence of such events, stepwise regression (SR) mod-

eling was applied to pick out best combination of circula-

tion indices for predicting the DWAAI of both long- and

short-cycle time scales.

Stepwise regression is a combination of forward selec-

tion and backward elimination (Ghani and Ahmad 2010).

In this method, variables are added to and removed from

the model with the greatest influence on the residual sum of

squares in each step (Bilgili 2010). In the forward selection

procedure, the new subset model is chosen by adding one

variable at a time to the previously chosen subset. The

variable can be added to the subset model if it causes the

residual sum of squares to decrease the most. The selection

procedure changes to backward elimination if the residual

sums of squares for any chosen variables do not meet a

minimum criterion to stay. The backward process elimi-

nates the variable whose deletion causes the least increase

in the residual sum of squares until all chosen variables

meet the minimum criterion. The selection process

Fig. 1 Location of the middle

and lower reaches of the

Yangtze River Basin. The black

dots denote the meteorological

stations. Provincial boundaries

(black lines) and first-order

streams in the basin (in blue) are

shown
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terminates when no variables outside the model meet the

criterion to enter and when all variables in the model meet

the criterion to stay. Thus, the number of independent

variables in the best combination is not guaranteed (Cevik

2007).

2.2.3 Back propagation (BP) neural network

Back propagation (BP) neural network is a multi-layer feed-

forward network algorithm proposed by Rumelhart et al.

(1986). Importantly, this algorithm provides a powerful

mathematical or computational technique for modeling

systems in which the relationship among the variables is

unknown (Fausett 1994). In general, neural networks are

regarded as non-linear input–output models and have been

used in different research fields (French et al. 1992; Kar-

unanithi et al. 1994; Shamseldin 1997; Ghorbani et al. 2016).

In this paper, a three-layer BP neural network, which

contains only one hidden layer, was applied to simulate

DWAAI and to predict the occurrence of DWAA events.

The input information for the network consisted of the

predictive factors selected via stepwise regression, and the

output information was the DWAAI value. For neurons in

the hidden and output layers, the input power Ynet was

calculated with the following equation (Haykin 1994):

Ynet ¼
XN

i¼1

Yixi þ x0; ð3Þ

where N is the number of neurons in the preceding layer; Yi
is the output of the ith neuron in the preceding layer; xi is

the connection weight between the neuron and the ith

neuron in the preceding layer; and x0 is the neuron

threshold value. The neuron output Yout is obtained from

the neuron input Ynet through the following neuron transfer

function:

Yout ¼ f Ynetð Þ ¼ 1

1 þ e�Ynet
: ð4Þ

The selected transfer function has an S shape, and its

value ranges between 0 and 1; because of these

characteristics, the function can introduce non-linearity

into the operation of the neural network, which enhances

its ability to represent a natural process. The output Yout of

the output layer is the final network output array. The

output error E of the network, i.e., the error in the infor-

mation transmitted to the output layer, can be calculated as

follows:

E ¼
Xm

i¼1

1

2
Xi � Youtið Þ2; ð5Þ

where m is the number of neurons in the output layer; Xi

and Youti are the desired output and calculated output,

respectively, of the ith neuron in the output layer. The

neural network will run until E is less than the expected

error e. Then, it will enter the phase of the backward

propagation of error signals. The primary purpose of the

backward propagation of error is to estimate xi and x0

(Hammerstrom 1993). Generally speaking, the two pro-

cesses alternate until E is less than e or the training time

has reached a preset value.

3 Results

3.1 Temporal evolution characteristics of DWAA

events

The long-cycle dry–wet abrupt alternation index (LDWAAI)

based on the average precipitation of the area during the

period of 1960–2012 was calculated, and the years with the

six highest and six lowest LDWAAI values and the corre-

sponding SPAs of May–June and July–August are listed in

Table 1. The high-LDWAAI years exhibit more rainfall in

July–August than May–June, which suggests that high-

LDWAAI years correspond to increased precipitation from

May to August and that the inverse also holds true. Specifi-

cally, the July–August SPA for five of the high-LDWAAI

years are greater than 0.5, and for three of those years, the

values are greater than 1, indicating that these years represent

a significant increase in moisture level (a wet spell). While

Table 1 Comparison of SPA values for the six highest and six lowest LDWAAI during periods of 1960–2012

High LDWAAI Low LDWAAI

Year LDWAAI May–June SPA July–August SPA Year LDWAAI May–June SPA July–August SPA

1969 1.11 0.24 2.13 1967 -9.02 1.49 -1.70

1980 0.70 0.77 2.09 1971 -5.24 1.05 -1.83

1996 0.67 0.67 1.84 1964 -5.15 1.06 -1.63

2008 0.62 -0.19 0.73 2011 -3.25 0.88 -0.97

2007 0.52 -0.65 0.18 1995 -3.25 1.95 -0.67

1991 0.35 -0.04 0.67 1973 -2.77 1.99 -0.55
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the May–June SPA of only one of these years is less than

-0.5 (a dry spell). Therefore, high-LDWAAI values cor-

rectly reflect the occurrence of DTW events. The conditions

of the low-LDWAAI years are precisely the opposite. The

July–August SPAs of all chosen low-LDWAAI years are less

than -0.5, even less than -1.0 in some years, but greater

than 0.88 in May–June. Therefore, low-LDWAAI years are

often related to WTD events.

The LDWAAI shows a significant increasing trend (10%

significance level) since 1960 (Fig. 2a). It is clear that

WTD events (LDWAAI \-1) are the main type of long-

cycle dry–wet abrupt alternation (LDWAA) events.

DWAA events can be identified by comparing the SPA in

May–June with that in July–August (Table 2). There were

three WTD events and one DTW (LDWAAI [1) event

with high intensity in the 13-year period of 1960–1972,

while only five WTD events in the 40-year period of

1973–2012. Therefore, LDWAA events have become less

frequent since 1972. By also considering the 5-year sliding

average, it is concluded that both the frequency and

intensity of LDWAA events have gradually decreased over

time.

The main type of short-cycle dry–wet abrupt alternation

(SDWAA) event during the period of May–June is DTW

and the corresponding short-cycle dry–wet abrupt alterna-

tion index (SDWAAI) fluctuated greatly during the period

of 1975–1997 (Fig. 2b). Moreover, the 5-year sliding

average curve shows that the frequency and intensity of

DTW events during this period exhibit an increasing trend.

In contrast, WTD is the main type during the period of

June–July (Fig. 2c), and the SDWAAI fluctuated greatly

during the period of 1960–1997. A tendency of transfor-

mation from WTD to DTW is evident, and a decrease in

the incident intensity is observed. During the period of

July–August (Fig. 2d), WTD is the main type of SDWAA

event. The SDWAAI fluctuated greatly during the period of

1960–1997 and stabilized after 1990. In combination with

the 5-year sliding average, these findings indicate that the

frequency and intensity of SDWAA events during the

period of July–August have gradually decreased over time.

Fig. 2 The variation trends of a LDWAAI, SDWAAI during the periods of b May–June, c June–July and d July–August. The blue lines

represent the calculated DWAAI. Red dash lines and black dotted lines represent the 5-year sliding average and tendency, respectively

Table 2 Statistical results for

both WTD events and DTW

events

Event type Frequency Years Rate (%)

WTD 8 1964, 1967, 1971, 1973, 1976, 1988, 1995, 2011 15.10

DTW 1 1969 1.89
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DTW events occurred in certain areas during the study

period, such as the western and northern regions of Hunan

and the Jianghan Plain. For example, most of the area south

of the Yangtze River was afflicted by a continuous dry

spell prior to July 1988 largely as a result of continuous

high-temperature climate, whereas continuing heavy rains

occurred in the upper and middle reaches of the Yangtze

River and Dongting Lake water system in mid-August.

Notably, the precipitation has more than tripled compared

to the same time last year. Moreover, the study area

experienced the most severe continuous meteorological dry

spell in the last six decades prior to June 2011, but then

suffered from severe storm flooding disasters after four

successive heavy precipitation events in June (Shen et al.

2012). The years in which severe disasters occurred coin-

cided with those identified in this analysis as years with

extreme DWAAI values, and these results demonstrate that

the DWAAI can essentially reflect DWAA events.

3.2 Spatial distribution characteristics of DWAA

events

3.2.1 Frequency

The spatial distribution of the frequency of DWAA events

in study area is uneven (Fig. 3), i.e., DTW events tend to

occur more commonly along the north shore of the

Yangtze River, whereas WTD events tend to occur more

commonly on the south shore. Figure 3a shows that the

frequency of long-cycle WTD events on the south shore is

higher, especially in the southeast. In contrast, long-cycle

DTW events tend to occur on the north shore, especially

in the northwest (Fig. 3b). This opposite feature is the

result of the spatial variability in precipitation. On the

south shore, annual maximum precipitation usually occurs

in May and June, while it occurs in June and July on the

north shore.

The spatial distributions of the frequency of WTD

events in the three short-cycle periods, i.e., May–June,

June–July and July–August, are nearly identical (Fig. 3c, e,

g). There is a high incidence of WTD events on the south

shore of the Yangtze River, and the frequencies in all

periods are approximately the same. WTD events often

occur in the middle area of the south shore during the

period of May–June, whereas the high-incidence area shifts

slightly eastward during the period of June–July, and it

shifts to the west during the third period. Unlike WTD

events, spatial distributions of the frequency of DTW

events among these three periods are different (Fig. 3d, f,

h). Specifically, YRB-ML is the high-incidence area of

DTW events during the period of May–June. However, the

northwestern parts and southern parts of the basin are the

areas with the highest incidence of DTW events during the

periods of June–July and July–August, respectively, but the

frequency of such events is relatively lower.

3.2.2 Intensity

LDWAAI and SDWAAI calculated for each station in the

typical years of 1998 and 2011 were used to analyze the

spatial distributions of the intensity of DWAA events, as

shown in Fig. 4. The spatial distributions of the intensity of

LDWAA events in these two typical years were similar

(Fig. 4a, b). Specifically, DTW events with high intensity

occurred on the north shore of the Yangtze River. In con-

trast, WTD events predominantly occurred on the south

shore, especially in 2011, when high-intensity WTD events

occurred in most parts of the basin except in the north-

western region. In contrast, the LDWAA events in 1998

were more serious than those in 2011. Three stations

experienced DTW events with SDWAAI values greater

than 3.00 and five stations experienced high-intensity WTD

events with SDWAAI values less than -5.00.

Intensity distributions of SDWAA events during the

periods of May–June and June–July were roughly the same

in both typical years, except more stations witnessed

DWAA events in 2011 than in 1998 (Fig. 4c–f). Severe

DTW events occurred in most parts of the basin from May

to June and, by contrast, severe WTD events occurred at

the same stations during the period of June–July. Unlike

the LDWAA events, SDWAA events in 2011 were more

serious than in 1998 during the two short-cycle periods.

Severe WTD and DTW events were centered in the

northwestern part during the periods of May–June and

June–July, respectively. However, the intensity distribu-

tions of SDWAA events during the period of July–August

were exactly opposite between 1998 and 2011 (Fig. 4g, h).

Stations with a lower occurrence of DWAA events also

observed lower intensities in these 2 years. Compared with

LDWAAI, therefore, the SDWAAI can more accurately

reflect the spatial distribution of the intensity of DWAA

events.

3.2.3 Trends

The Mann–Kendall method (Mann 1945; Kendall 1975)

was applied to analyze the spatial distributions of the trends

of DWAA events and the results are presented in Fig. 5.

This analysis suggests that considerable spatial differences

exist in the trends of DWAA events in different stations.

LDWAAI exhibits an increasing trend in most of the

study area except in the northwestern part, and an espe-

cially significant increasing trend is present in the Dongting

Lake watershed (Fig. 5a). Therefore, the intensity of long-

cycle WTD events is increasing in the northwestern part,

but decreasing in the remainder of the basin. It should be
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Fig. 3 Spatial distributions of the frequency of long-cycle (a, b) and short-cycle (c–h) DWAA events
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Fig. 4 Spatial distributions of the intensity of long-cycle (a, b) and short-cycle (c–h) DWAA events in 1998 and 2011. Green circular and red

triangles represent the stations with DTW events and WTD events, respectively
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noted that the long-cycle WTD events are very likely

transforming into DTW events, especially in the Dongting

Lake watershed. SDWAAI, which has predominantly

positive values during the period of May–June (Fig. 5b),

shows an increasing trend in the basin, except at Wuhan

and Huangshi stations. Thus, the intensity of DTW events

is declining at Wuhan and Huangshi stations, but increas-

ing throughout the remainder of the basin. Similarly, the

intensity of WTD events during the period of June–July has

increased in the northwestern area (Fig. 5c), but has

decreased throughout the remainder of the basin. As

observed for the long-cycle DWAA events, short-cycle

WTD events are also transforming into DTW events,

especially in the Dongting Lake watershed. For the period

of July–August (Fig. 5d), the intensity of WTD events is

declining in the northwest and southeast regions, but

increasing in the southwest, even showing a significant

increase in the Dongting Lake watershed.

3.3 Early warning analysis of DWAA events

For LDWAA events, the selected predictive factors are

listed in Table 3. A positive correlation exists between

LDWAAI and North Africa subtropical high ridge line in

September of the previous year, and negative correlations

exist between LDWAAI and the following five indices:

NAOI in May of the previous year; index of the strength of

the polar vortex in Asia in May of the previous year; the

ridge line of the Indian subtropical high in January of the

current year; index of the northern extent of the Indian

subtropical high in January of the current year, and index

of the strength of the polar vortex in the Northern Hemi-

sphere in February of the current year.

The DWAAI time series were ranked in the order of

their values, and circulation indices of the corresponding

years were then rearranged. The rearranged sequences can

be classified into three types: DTW, WTD and normal

conditions. The DTW and WTD classed include the

6 years with the highest and lowest DWAAI values,

respectively, and the remaining 41 years correspond to

normal conditions. First, the average values of the cir-

culation indices of the three classes were calculated

individually, and the variation trends of the predictive

factors with increasing DWAAI values were then ana-

lyzed based on the correlation coefficients test. Based on

the above method, the early warning signals that portend

DWAA events could be identified. For the LDWAA

events, the trends and relationships between the LDWAAI

Fig. 5 Spatial distributions of the trends of variation in long-cycle (a) and short-cycle (b–d) DWAA events. Stations with significant increasing

and decreasing trends are shown as green circular and red triangles
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and the predictive factors are shown in Fig. 6 and

Table 3.

Different circulation patterns have different influences

on DWAA events. Only two predictive factors that exhibit

decreasing trends with an increasing LDWAAI, i.e., NAOI

in May of the previous year and the index of the strength of

the polar vortex in the Northern Hemisphere in February of

the current year. Notably, the correlation coefficient

between the index of the strength of the polar vortex in the

Northern Hemisphere in February of the current year and

the increasing LDWAAI series is as high as -0.301, which

surpasses the 0.05 significance level. Therefore, years in

which the index in February of the current year is greater

than 360.17 have a high probability of the occurrence of

long-cycle WTD events. However, long-cycle DTW events

are still possible when the index is less than 345.33.

Therefore, the index of the strength of the polar vortex in

the Northern Hemisphere in February of the current year

can be a suitable early warning signal for the occurrence of

long-cycle DWAA events. The critical values of the early

warning signals identified based on the analysis approach

described above are listed in Table 4.

3.4 Simulation and prediction

The DWAAI series from 1960 to 2012 were divided into a

calibration period (1960–1997) and a validation period

(1998–2012). The index of qualified rate was used to

evaluate the prediction accuracy. A qualified event is

defined as a scenario in which the event type determined by

the simulation is identical to the real observation from the

same year.

The prediction accuracy results corresponding to

DWAA events with different cycles simulated using the BP

neural network model are shown in Table 5. During the

calibration period, the performance values of the BP neural

network method for DWAA events are above 81%, and the

average is nearly 14% higher than that in the verification

period. Comparison of the simulation accuracy of the

model for both LDWAA and SDWAA events shows that

the results for all SDWAA events are superior to those for

LDWAA events, for both calibration and verification per-

iod, except in the case of the verification period of the

DWAA events during the period of May–June, as the

qualified rate value of 60.00% is slightly lower than that of

66.67% for the long-cycle DWAA events. Moreover, the

qualified rates of the method for periods of June–July and

July–August are all up to 80%, which are 20% higher than

that in the period of May–June.

Comparisons of the actual and simulated DWAAI by BP

neural network are shown in Fig. 7. In calibration period,

the simulated DWAAI values, even the outliers, are in

almost perfect agreement with the actual results. Moreover,

the general trends of the predicted values, in the verifica-

tion period also approximately agree with those of the

different cycles. These results reveal that the BP neural

network method is an efficient tool for simulating the

occurrence of DWAA events.

4 Conclusions

The spatial and temporal characteristics of the intrasea-

sonal DWAA events over YRB-ML were analyzed by

calculating the DWAAI values. Correlation coefficients

and a stepwise regression model were applied to select

potential predictive factors, and suitable early warning

signals were then identified based on the correlation

Table 3 Tendencies of the predictive factors of long -cycle DWAA events

Predictive factor Month Event type Tendency Correlation

coefficient
WTD Normal DTW

The ridge line of the Indian subtropical high (65E–95E) January of the current

year

11.83 10.39 10.67 – –

The ridge line of the North African subtropical high (20W–

60E)

September of the

previous year

21.83 23.32 22.83 – –

Index of the northern extent of the Indian subtropical high

(65E–95E)

January of the current

year

13.00 10.88 11.83 – –

Index of the strength of the polar vortex in Asia (region 1,

60E–150E)

May of the previous

year

45.17 40.98 42.83 – –

NAOI May of the previous

year

0.73 -0.22 -0.39 ; -0.152

Index of the strength of the polar vortex in the Northern

Hemisphere (region 5, 0–360)

February of the

current year

360.17 349.95 345.33 ; 20.301

Boldface indicating the tendencies of their corresponding series surpass the 0.05 significance level
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coefficients test. Subsequently, a BP neural network model

was applied to simulate DWAA events. The results are

summarized as follows:

1. The temporal evolution characteristics of DWAA

events were evaluated in terms of the entire basin.

The main type of LDWAA and SDWAA events during

the periods of June–July and July–August was WTD,

and the frequency and intensity have gradually

decreased over time. However, DTW was the main

type of SDWAA events during the period of May–

June, and the frequency and intensity increased over

time.

2. The spatial distribution characteristics were analyzed

in terms of three aspects: frequency, intensity and

trends. High-intensity and high-frequency long-cycle

DTW events and DTW events during the period of

June–July were concentrated in the northwestern part

of the basin, and no significant increasing or decreas-

ing trends were observed. While WTD events of the

same time scale were centered in the southeastern part

and the middle reaches of the river, and a significant

decreasing trend was present in the Dongting Lake

Fig. 6 Trends and relationships between the LDWAAI and its six

predictive factors. Blue and red lines (dots) represent LDWAAI

values listed by ascending counts and circulation indices of the

corresponding years, respectively. Black dotted lines represent the

average values of circulation indices in the three classes (from left to

right: WTD, normal conditions and DTW)
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watershed. Importantly, high-intensity and high-fre-

quency DTW events with significant increasing trends

in the period of May–June occurred in most parts of

the basin. The frequency and intensity of DWAA

events in the period of July–August were relatively

small, and the spatial distributions were more uniform.

3. Early warning signals that exhibit significant trends of

variation with an increasing DWAAI values could be

used to help predict the occurrence of DWAA events

by comparing actual values to the critical values of

these warning parameters. DWAA events with differ-

ent cycles have different early warning signals.

4. The BP neural network approach was beneficial for

simulating DWAA events. For the simulations of

SDWAA events, the average qualified rate during the

verification period was as high as 73.33%, markedly

Table 4 Tendencies and critical values of the early warning signals of DWAA events

Period Predictive factor Month Event type Tendency Correlation

coefficient

Significance

WTD Normal DTW

Long-

cycle

NAOI May of the

previous

year

0.73 -0.22 -0.39 ; -0.152 No

Index of the strength of the polar vortex in

the Northern Hemisphere (region 5, 0–360)

February of

the current

year

360.17 349.95 345.33 ; -0.301 Yes

May–

June

Index of the northern extent of the North

American subtropical high (110W–60W)

December of

the previous

year

17.67 18.95 20.33 : 0.269 No

Index of the northern extent of the Northern

Hemisphere subtropical high (5E–360)

November of

the previous

year

22.00 21.44 20.67 ; -0.210 No

Index of the strength of the polar vortex in

the Northern Hemisphere (region 5, 0–360)

May of the

previous

year

160.50 158.80 143.50 ; -0.249 No

June–

July

Index of the northern extent of the

subtropical high over the western Pacific

(110E–150E)

June of the

previous

year

27.00 26.05 24.33 ; -0.340 Yes

Index of the area of the North African

subtropical high (20W–60E)

October of the

previous

year

14.33 20.29 23.50 : 0.279 Yes

NAOI September of

the previous

year

0.48 -0.21 -0.56 ; -0.097 No

Index of the strength of the polar vortex in

North America (region 3, 120W–30W)

February of

the current

year

110.50 97.37 87.83 ; -0.523 Yes

July–

August

Index of the area of the polar vortex in the

Atlantic and European sector (region 4,

30W–60E)

March of the

current year

158.00 169.49 182.33 : 0.330 Yes

Index of the strength of the center of the

polar vortex in the Northern Hemisphere

(JQ)

July of the

previous

year

36.50 42.17 42.17 : 0.280 Yes

Boldface indicating the tendencies of their corresponding series surpass the 0.05 significance level

Table 5 BP neural network

model simulation results for

DWAA events

Period Qualified rate (%)

Long-cycle Short-cycle

May–June June–July July–August Average

Calibration period 81.58 92.11 86.84 84.21 87.72

Verification period 66.67 60.00 80.00 80.00 73.33
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higher than that for LDWAA events. Therefore, this

approach may serve as a useful reference for intrasea-

sonal wet and dry management in the Yangtze River

Basin.
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