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Abstract A mean–extreme (M-E) vector is defined to

combine the changes of climate means and extremes. The

direction of the vertical axis represents changes in means,

whereas the direction of the horizontal axis represents

changes in extremes. Therefore, the M-E vector can clearly

reflect both the amplitude and direction of changes in cli-

mate means and extremes. Nine types of M-E vectors are

defined. They are named as MuEu, MuEd, MuEz, MdEu,

MdEd, MdEz, MzEu, MzEd, and MzEz. Here M and E

stand for climate means and extremes, respectively,

whereas u, d, and z indicate an upward, downward trend

and no trend, respectively. Both temperature mean and

extremely high temperature days are consistently increased

(MuEu) in nearly whole China throughout four seasons.

However, the MuEd-type vector dominates in some

regions. The MuEd-type vector appears over the Huang

Huai river basin in spring, summer and winter. For the M-E

vector of temperature mean and extremely low temperature

days, the MuEd-type spreads the entire China for all

seasons. The M-E vector for precipitation mean and the

extreme precipitation days possesses identical trends

(MuEu or MdEd) despite of seasons. The MuEu-type

dominates in northeastern China and west of 105�E in

spring, northwestern and central/southern China in sum-

mer, west of 100�E and northeastern China in autumn, and

nearly whole China in winter. Precipitation mean and

extreme precipitation days are all decreased (MdEd) in the

rest of China for all reasons. The trends relationship in

means and extremes over China presented herein could

provide a scientific foundation to predict change of

extremes using change of mean as the predictor.

1 Introduction

The changes in temperature and precipitation are important

indicators reflecting climate change. In the last five decades

(1960–2013), the surface air temperature in China has

increased by 0.27 �C per 10 years, which is higher than the

global and northern hemisphere warming rate during the

same period (Ding et al. 2004; Wang et al. 2014; Sun et al.

2016). Besides, the annual mean precipitation throughout

the country also shows an upward tendency. Global climate

changes embodied in not only the climate means but also

the climate extremes. Under the context of global warming,

it has been indicated that extremes relating to low tem-

peratures, such as cold surges, cold nights and days, frost

days, and cool summers are generally decreased in fre-

quency and intensity, whereas extremes that associated

with high temperatures, such as heat waves, warm nights

and days, frost-free days and warm winters are mostly

increased in frequency and intensity (Bonsal et al. 2001;

Qian and Lin 2004, 2005; Alexander et al. 2006; Met
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Office 2011; Zhang and Zhou 2013; Cai et al. 2014; Moore

et al. 2015). Extreme weather/climate events cause prop-

erty damage, injury and loss of life, and threaten the

existence of some species (Kunkel et al. 1999; Easterling

et al. 2000a, b; Meehl et al. 2000; Huynen et al. 2001; Dai

2013; Moore et al. 2015; Lesk et al. 2016), harming the

human and natural systems much more than the average

climate conditions (Parmesan et al. 2000; Pendleton et al.

2013). Therefore, projecting climate extremes is important

for developing mitigation and adaptation measures.

In recent years, global and regional climate models are

employed in projecting future changes in climate extreme

events (Durman et al. 2001; Boo et al. 2006; Gao et al.

2006; Michel 2007; Thibeault et al. 2010; Engelbrecht

et al. 2013; Patricola et al. 2013). However, climate models

still have difficulties in simulating historical observed cli-

mate extremes (Kharin and Zwiers 2000; Hegerl and

Zwiers 2004; Kostopoulou and Jones 2005; Alexander and

Arblaster 2009; Jiang et al. 2011; Sillmann et al. 2013;

Zwiers et al. 2013; Chan et al. 2014). This leads to an

additional uncertainty in projecting future changes in cli-

mate extremes. On the contrary, global or regional climate

models are more reliable in simulating the climate means

(Jiang et al. 2005; Luo et al. 2005; Wild 2009; Brands et al.

2013; Neale et al. 2013).

Because climate means and extremes are closely con-

nected (Mearns and Katz 1984; Griffiths et al. 2005;

Peterson et al. 2013), it will be beneficial to projecting

future changes of climate extremes using climate means if

their relationship are clarified. The change in climate

extremes over China in recent decades has been discussed

in many studies (Pan et al. 2004; Wang and Zhou 2005;

Zhai et al. 2005; Hu et al. 2009; You et al. 2011; Wang

et al. 2012; Yin et al. 2015), but its relationship with cli-

mate means is seldom documented. Given that the changes

in climate extremes over China could be opposite to the

changes in climate means and may possess different

regional characteristics, investigations of the linkage

between climate means and extremes in different regions

are important and meaningful for further understanding and

projection the changes in climate extremes.

In the present study, we attempt to combine the climate

means and extremes to investigate the connection between

them. Based on their individual trends, two different vari-

ables in climate means and extremes are combined in one

vector. The main purpose of this paper is to examine spatial

and temporal changes in temperature and precipitation

means and extremes over China, and more importantly, to

use a new vector to systematically analyze the relationship

between the trends of temperature/precipitation extremes

and their means during the period 1960–2013. The rest of

this paper is organized as follows. Section 2 describes the

data, method utilized. Section 3 introduces the definition of

the climate extreme indices and the M-E vector. In Sec-

tion 4, spatial patterns of the M-E vector for all seasons are

investigated, and the temporal evolution for climate means

and extremes during summer is further examined. Sec-

tion 5 provides the conclusion and discussion.

2 Data and methods

2.1 Data

A homogenized daily temperature dataset that derived from

the 753 stations in mainland China (Li et al. 2016) are

employed. Daily precipitation records of 821 stations

obtained from the National Meteorological Information

Center of China Meteorological Administration are also

utilized. All the records span from 1960 to 2013. Stations

with missing records for more than 10 days in each season

in any given year are excluded. In the present study, the

four seasons stand for the northern spring (March, April

and May), summer (June, July and August), autumn

(September, October and November) and winter (Decem-

ber, January and February).

3 Methods

The linear regression analysis is adopted to estimate linear

trends. The Mann–Kendall test (Mann 1945; Kendall 1975)

is used to check the significance of the trend. To display the

intrinsic temporal changes of the variables, we use

ensemble empirical mode decomposition (EEMD) method

to extract the interannual and interdecadal variability (Wu

et al. 2007; Qian et al. 2010). Application of the spectral

analysis technique EEMD to time series produces an

orthogonal set of Intrinsic Mode Functions (IMFs) and a

residual (or adaptive trend). The added white noise in each

EEMD ensemble member has a standard deviation of 0.2,

and a total size of 1000 ensemble is used. Four IMFs are

obtained. The adaptive trend is obtained as the residual of

EEMD. As the EEMD algorithm is locally adaptive, it is

suitable for decomposing time series that appear non-sta-

tionary in terms of mean and variance (Wu and Huang

2009). EEMD also achieves a better denoising performance

than the conventional filters (Zhang and Zhou 2013).

4 Definitions

4.1 Extreme indices

Three percentile-based extreme indices, i.e., the extremely

high, low temperature days and extreme precipitation days,
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are defined using the similar definition of previous works

(Jones et al. 1999; Yan et al. 2002; Li et al. 2012). For a

given station, a daily maximum temperature is defined as

an extremely high temperature day if it exceeds the 95th

percentile threshold of a set of daily records, including

those observed on the same calendar day and 10 neigh-

boring days (five before and five after that day) for the

period 1960–2013. Similarly, an extreme of daily precipi-

tation for a given calendar day at a station is defined as

exceeding the 90th percentile of a set of daily precipitation

records, including those on the same calendar day and 80

neighboring days (40 before and 40 after that day) from

1960 to 2013. Note that the choice of a relatively smaller

percentile and longer window for precipitation is simply

because that the time series of daily precipitation is not

temporally continuous.

4.2 Mean–extreme vector

We defined a new mean–extreme (M-E) vector to investigate

the relationship between trends of climate means and

extremes. The direction of the vertical axis of vector repre-

sents trends in means, whereas the direction of the horizontal

axis of vector represents trends in extremes. Therefore, the

M-E vector can clearly reflect both the amplitude and

direction of changes in climate means and extremes. In this

manner, the changes in means and extremes are combined

into one vector. Nine types of M-E vectors are defined. They

are named as MuEu, MuEd, MuEz, MdEu, MdEd, MdEz,

MzEu, MzEd, and MzEz. In each type, M and E represent the

climate means and extremes, respectively, and u indicates an

upward trend, d indicates a downward trend, z represents no

change. For example, MuEd indicates that the climate means

have an upward trend whereas the climate extremes owns a

decreasing trend (vector shown as !), and the vector MuEu

that stands for an in phase increasing trends between means

and extremes is in the first quadrant (vector shown as %).

The other seven vectors are expressed in the similar manner.

The nine types of M-E vectors are corresponding to four

quadrants, four axes and one origin, respectively. An M-E

vector that trends in means and extremes are both significant

at 95 % confidence level is defined as a significance vector.

More detailed information of M-E vector is listed in Table 1.

5 Results

5.1 Spatial pattern of the M-E vector

First, the M-E vectors are applied for describing trends in

temperature mean and extremely high temperature days

throughout China (Fig. 1). In spring (Fig. 1a), the MuEu-

type appears over most of China except for small area

along the lower reach of Yellow River basin. The trends

over middle and lower reach of Yangtze River basin show

relatively larger amplitude than elsewhere. In summer

(Fig. 1b), the MuEd-type vector appears over Huang Huai

River basin. Over parts of Qinling Mountains, both tem-

perature mean and extremely high temperature days shows

decreasing trends (MdEd). In addition, the MdEu-type with

decreasing trend of temperature mean and increasing trend

of extremely high temperature days occurs around

Chongqing Municipality. The rest parts of China are all

dominated by the MuEu-type vector, with the larger

amplitude and most significant regions over western and

southeastern China. In autumn (Fig. 1c), the MuEu-type

vectors control the entire China. The amplitude of MuEu

over western and central China has relatively large

amplitude comparing with elsewhere. In winter (Fig. 1d),

the MuEd-type dominates in Huang Huai River basin. The

rest of China has increasing trends in both temperature

mean and extremely high temperature days. Significant

trends mainly locate over western China.

Figure 2 shows the M-E vector for the trends of tem-

perature mean and extremely low temperature days. Note

that M-E vectors in the fourth quadrant are dominant

almost the entire China in all seasons except for summer.

In spring, the MuEd-type vectors are nearly significant over

the entire China except parts of central China. In summer, a

region of MdEd-type vector appears in parts of Shanxi and

Sichuan provinces. In autumn, areas of MdEd-type vector

are significant over whole China. In winter, except for

Yunnan-Guizhou Plateau and parts of northeastern China,

significant MdEd-type vector spreads over the entire China.

Figure 3 shows that the M-E vector for the trends of

precipitation means and extreme precipitation days. Gen-

erally, trends of precipitation mean and extreme precipi-

tation days have two types of M-E vectors with either

Table 1 Nine types of mean and extreme (M-E) vectors

Types of

M-E

vector

Trends in

temperature and

precipitation

Trends in days of extremely high

(low) temperature and extreme

precipitation

MuEu % Upward Upward

MuEd ! Upward Downward

MuEz ? Upward No change

MdEu - Downward Upward

MdEd . Downward Downward

MdEz / Downward No change

MzEu : No change Upward

MzEd ; No change Downward

MzEz (the

origin)

No change No change
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increasing or decreasing trends in both means and extremes

(MuEu or MdEd) throughout all seasons. In spring

(Fig. 3a), the MuEu-type vector is distributed over north-

eastern China and west of 105�E, whereas decreasing

trends in both precipitation mean and extreme precipitation

days (MdEd-type) are observed in central and southern

China. For summer time (Fig. 3b), the precipitation and

extreme precipitation days both increase (MuEu) in

northwestern, central and southeastern China, and both

decrease (MdEd) in southwestern China and northern

China. A few stations over eastern Inner Mongolia even

display a MuEd-type vector. Note that, the M-E vector over

southern China experienced an out of phase relationship

between spring and summer. While both precipitation

means and extremes over southern China suppressed in

spring, they tend to increase during summer. The result is

consistent with the previous study of Zhu et al. (2014) in

which a season-dependent tropical sea surface temperature

anomalies control mechanism is proposed to explain the

out of phase rainfall changes during spring and summer

over southern China. In autumn, the MdEd-type vector is

distributed to east of 100�E and south of 40�N, whereas the

significant MuEu-type vector is distributed to west of

100�E of China. Note that MdEu-type vector appears over

northeastern China Plain, suggesting that precipitation

mean and extremes have opposite trends. This out of phase

relationship between climate means and extremes may be

attributable to the increasing influence from the synoptic

system, such as Northeast China Cold Vortex (He et al.

2007, 2010). In winter, nearly all the regions display sig-

nificant increasing trends for both precipitation mean and

extreme precipitation days (MuEu). The MdEu and MdEd

types are confined to southwestern China.

Climate variations are governed by internal variability,

natural external forcing (such as changes in solar radiation

and volcanism), and anthropogenic forcing (such as aero-

sol, greenhouse gas emissions, land use and land cover

changes). All of these factors could influence climate

means and extremes. Since climate means may provide a

background for the occurrence of climate extremes, the

physical mechanisms driving changes in mean may also

drive changes in extremes (Seneviratne et al. 2012). Thus,

(a) (b)

(c) (d)

Fig. 1 The distribution of M-E vector for trends of temperature mean and extremely high temperature days in boreal a spring, b summer,

c autumn, and d winter in China for 1960–2013 (only vectors that significant at the 95 % confidence level are shown)
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it is not surprising that trends in means and extremes dis-

play coherent changes in most parts of China. However, at

regional scales, additional processes can still modulate the

overall changes in extremes through regional feedbacks

such as the land–atmosphere interactions (Seneviratne et al.

2012), leading to the inconsistent between changes in cli-

mate means and extremes.

5.2 Temporal changes over the domain of each M-E

vector in summer

China is greatly affected by East Asian summer monsoon

(Ding et al. 2008; Wang et al. 2008; Ha et al. 2012).

Summer temperature and rainfall and the corresponding

extremes has critical climatic impacts, thus more attention

should be paid to the their temporal changes during sum-

mer season. In this section, we mainly focus on the tem-

poral evolution of temperature/precipitation means and

extremes during summer. The time series averaged over

domain of different M-E vector are analyzed to obtain the

temporal features of temperature and precipitation means

and extremes.

The trends of summer temperature mean and extremely

high temperature days over most parts of China are MuEu

type. Figure 4 shows the averaged time series of tem-

perature mean and extremely high temperature days over

the region of MuEu-type. As shown in Fig. 4a, b, both

mean temperature and extremely high temperature days

display significant positive linear trends in summer. The

temporal correlation coefficient (TCC) between the

extremely high temperature days and the temperature

mean is 0.89, exceeding the 95 % confidence level. This

indicates that on the year-to-year timescale, more extre-

mely high temperature days will occur if the temperature

mean is higher. Figure 4c shows that the adaptive trends

of temperature means and extremely high temperature

days evolve in phase during the entire period. The tem-

perature mean and extremely high temperature days

synchronously declined before mid-1970s and increased

dramatically after mid-1970s.

(a) (b)

(c) (d)

Fig. 2 Same as Fig. 1 but for M-E vector trends for temperature mean and extremely low temperature days
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The trends of summer temperature mean and extremely

low temperature days over most parts of China are MuEd-

type. Figure 5 shows the time series of temperature mean

and extremely low temperature days over the domain of

MuEd-type vector. On year-to-year timescale, the TCC

between the temperature mean and the extremely low tem-

perature days is -0.85, exceeding the 95 % confidence

level. It means on interannual timescale, with the mean

temperature increasing, fewer extremely low temperature

days will occur. Over the domain of this MuEd-type vector,

same as the highly correlated negative year-to-year rela-

tionship, the adaptive trends also have a synchronous neg-

ative relationship. The mean temperature decreases before

1970 and increases quite after that, whereas the changes in

extremely low temperature days evolve in an opposite way.

Summer precipitation mean and extreme precipitation

days display a quite consistent evolution, despite of the

year-to-year timescale or the adaptive trends. MuEu and

MdEd are the two basic M-E vector types for summer

precipitation mean and extremes over southern China and

northern China, respectively. Figure 6a, b shows the

regional averaged time series of summer precipitation

mean and extreme precipitation days over the domain of

the MuEu-type vector. Positive trends are observed in both

summer mean and extreme precipitation days. As indicated

by the adaptive trend (Fig. 6c), the summer mean precip-

itation and extreme precipitation days synchronously

increased in the whole period. Note that the increasing rate

of both precipitation mean and extreme precipitation days

is slower after 1990s than the former period. Figure 6d–f

shows the temporal evolution over the domain of MdEd-

type vector, in which both the summer precipitation mean

and extreme precipitation days present negative linear

trends. The adaptive trends indicate that the precipitation

mean and extremely precipitation days evolve in a quite

similar manner. Concurrent with the decrease in precipi-

tation mean from 1960 to 2013, the extreme precipitation

days decline during the entire period. Note that, different

from summer temperature, summer precipitation and

extreme precipitation days either increased or decreased

throughout the whole period (1960–2013). The TCC

between precipitation means and extremes over the domain

of MuEu-type and MdEd-type vector are 0.94 and 0.96,

respectively, exceeding the 95 % confidence level. Based

(a) (b)

(c) (d)

Fig. 3 Same as Fig. 1 but for M-E vector trends for precipitation mean and extreme precipitation days
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on TCC, it seems that the summer precipitation means and

extremes have a closer relationship comparing with the

summer temperature means and extremes.

The changes in temperature/precipitation mean and

extremes not only highly correlated on year-to-year time-

scale, but also maintain a quite stable relationship in terms

of long-term adaptive trend. This close relationship is

anticipated to provide a clue to predict climate extremes by

taken climate means as predictor.

6 Conclusion and discussion

The present study investigates the relationship of the means

and extremes for the temperature and precipitation over

China via a newly defined mean–extreme (M-E) vector.

For the first time, we combine the trends of climate means

and extremes as one single vector. It can better and con-

cisely demonstrate the change of extremes in different

regions under the scenario of the changing climate means.

Spatially, both temperature mean and extremely high

temperature days consistently increase (MuEu) in nearly

whole China for all four seasons. However, the MuEd-type

and MdEu-type of M-E vector still exists in some regions.

The MuEd-type vector mainly appears over Huang Huai

River basin in spring, summer and winter. The MdEu-type

appears in small area of Chongqing Municipality in sum-

mer. The MdEd-type is found over Qinling Mountains. For

the M-E vector of temperature mean and extremely low

temperature days, the MuEd-type spreads almost the entire

China in all four seasons. However, trends in the temper-

ature mean and the extremely low temperature days are all

decreasing (MdEd) in parts of Shanxi and Sichuan pro-

vinces in summer.

The trends for precipitation mean and extreme precipi-

tation days are generally identical (either MuEu or MdEd)

regardless of seasons. The MuEu-type is distributed in

northeastern China and western China in spring, north-

western and central/southern China in summer, western

China in autumn, and nearly all China expect parts of

Sichuan-Yunnan region in winter. Precipitation mean and

extreme precipitation days are mostly decreased (MdEd) in

the rest of China for all reasons.

(a)

(b)

(c)

Fig. 4 The averaged time series of a temperature mean (TM, dark

line, and red line for linear trend), b extremely high temperature days

(ETmax, dark line, and red line for linear trend), and c the adaptive

trend of normalized temperature mean (blue line) and extremely high

temperature days (red line) over the region of the MuEu-type vector

in summer

(a)

(b)

(c)

Fig. 5 The averaged time series of a temperature mean (TM, dark

line, and red line for linear trend), b extremely low temperature days

(ETmin, dark line, and red line for linear trend), and c the adaptive

trend of normalized temperature mean (blue line) and extremely low

temperature days (red line) over the domain of the MuEd-type vector

in summer
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The temporal changes of temperature and precipitation

mean and extreme over the domain of each M-E vectors

during summer are further studied. On the year-to-year

timescale, when the temperature mean increases, the

extremely high/low temperature days increases/decreases.

As for the adaptive trends, the changes of means and

extremes are synchronous over most parts of China. The

mean temperature and extremely high temperature days are

synchronously declined before mid-1970s and increased

dramatically after mid-1970s, whilst extremely low tem-

perature days evolves in an opposite way with increase

trend before 1970 but decrease trend after that. No matters

for year-to-year variability or adaptive trend, evolutions in

precipitation mean and extreme precipitation days are

consistent. The precipitation means and extremes both

increase (MuEu-type) over southern China with a larger

rate before 1990s but slower rate after that, whereas the

precipitation means and extremes both decrease (MdEd-

type) over northern China with a steady rate throughout the

entire period.

Because the predictive skill of dynamic model for cli-

mate means is much higher than that for climate extremes

(Zhou and Yu 2006; Jiang et al. 2011; Tao et al. 2012),

prediction of the frequency of temperature or precipitation

extremes over China can be made according to the pre-

dicted changes of temperature or precipitation means. The

result of the present study shows that the linear trend of

temperature and precipitation means can be used to predict

the trend extreme temperature or precipitation days in most

parts of China except some small regions that show

inconsistent changes. In most parts of China, because both

controlled by the large-scale circulation change, the chan-

ges in means and extremes are not surprisingly consistent.

However, at regional and local scales, additional processes

can still modulate the overall changes in extremes

(Seneviratne et al. 2012), leading to the inconsistent

between changes in means and extremes. Note that, one

may ask whether the relationship between extremes and

means in the present study are stable across the huge

country and in different epochs. To check this issue, we

conduct a spatial stratified heterogeneity q-statistic (Wang

et al. 2010) to test the significance of classification. Results

show the spatial–temporal relationship for means and

extremes over China are significant at a 95 % confidence

level (figure not shown). So far, the physical mechanism

for the trends of climate means and extremes remains

unclear. A further understanding on the relationship

between climate means and extremes is anticipated to

facilitate the future assessment of climate changes.
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