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Abstract Hourly wind speed forecasting is presented by a

modeling study with possible applications to practical

problems including farming wind energy, aircraft safety and

airport operations. Modeling techniques employed in this

paper for such short-term predictions are based on the

machine learning techniques of artificial neural networks

(ANNs) and genetic expression programming (GEP).

Recorded values of wind speed were used, which comprised

8 years of collected data at the Kersey site, Colorado, USA.

The January data over the first 7 years (2005–2011) were

used for model training; and the January data for 2012 were

used for model testing. A number of model structures were

investigated for the validation of the robustness of these two

techniques. The prediction results were compared with

those of a multiple linear regression (MLR) method and

with the Persistence method developed for the data. The

model performances were evaluated using the correlation

coefficient, root mean square error, Nash–Sutcliffe effi-

ciency coefficient and Akaike information criterion. The

results indicate that forecasting wind speed is feasible using

past records of wind speed alone, but the maximum lead

time for the data was found to be 14 h. The results show that

different techniques would lead to different results, where

the choice between them is not easy. Thus, decision making

has to be informed of these modeling results and decisions

should be arrived at on the basis of an understanding of

inherent uncertainties. The results show that both GEP and

ANN are equally credible selections and even MLR should

not be dismissed, as it has its uses.

1 Introduction

Autoregressive types of regression models are used to

formulate forecasting models by using the information

contained within their recorded values. The study employs

wind speed time series at the hourly interval and investi-

gates four techniques: two machine learning techniques

(artificial neural networks and genetic expression pro-

gramming) and two techniques for comparison: a multiple

linear regression and the simple Persistence methods. The

study has potential applications to energy sources from the

wind and, as stated by Burton et al. (2001) and Li and Shi

(2010), this source of energy is particularly attractive for

being clean, renewable, economically competitive and

environmentally friendly. The wind energy systems depend

on wind speed and a host of factors as discussed by

Tandjaoui et al. (2013), including (i) low production

capacity when deployed in a sheltered area and (ii)

Responsible Editor: C. Simmer.

& M. A. Ghorbani

Ghorbani@tabrizu.ac.ir; m_ali_ghorbani@ymail.com

R. Khatibi

rahman.khatibi@gmail.com

L. Naghipour

Naghipour.L@tabrizu.ac.ir

O. Makarynskyy

makarynsky@live.com

1 Department of Water Engineering, Faculty of Agriculture,

University of Tabriz, Tabriz, Iran

2 GTEV-ReX - Research and Mathematical Modelling,

Swindon, UK

3 Department of Water Engineering, Faculty of Civil

Engineering, University of Tabriz, Tabriz, Iran

4 METOcean Dynamic Solutions, 19 Pelion Street,

Bardon 4065, Australia

123

Meteorol Atmos Phys (2016) 128:57–72

DOI 10.1007/s00703-015-0398-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00703-015-0398-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00703-015-0398-9&amp;domain=pdf


generated noise. The focus of this paper is on studying the

forecasting problems of wind speed.

Machine learning techniques have been used extensively

for wind speed predictions over the years. Some recent

examples include applications of artificial neural networks

(Bilgili and Sahin 2010; Li and Shi 2010; Khatibi et al.

2014), Fuzzy Logic (Barbounis and Theocharis 2007;

Damousis et al. 2004; Kariniotakis et al. 1996a; Wang et al.

2004), Genetic Programming (Ghorbani et al. 2010; Guven

et al. 2008; Kalra and Deo 2007; Kalra et al. 2008; Khatibi

et al. 2011; Ustoorikar and Deo 2008), as well as radial

basis function (Beyer et al. 1994), recurrent neural net-

works (Kariniotakis et al. 1996b; More and Deo 2003) and

support vector machines (Ji et al. 2007; Mohandes et al.

2004). Notably, artificial neural networks and genetic

programming techniques are among the most frequently

used; they will be described in more detail here.

Artificial neural networks (ANNs) are parallel infor-

mation processing system and emulate the working pro-

cesses in the brain. ANNs consist of a set of neurons or

nodes arranged in layers and, in the case that weighted

inputs are used, these nodes provide suitable inputs by

conversion functions (Kisi 2005). Each neuron in a layer is

connected to all the neurons of the next layer, but without

any interconnection among the neurons in the same layer.

Neural networks can learn from past data, recognize hidden

patterns or relationships in historical observations and use

them to forecast future values and thus system behavior.

The genetic programming (GP) methods, first proposed

by Koza (1992), are wide ranging and similar to genetic

algorithms (GA) (Goldberg 1989). GP techniques are

robust applications of optimization algorithms and repre-

sent one way of mimicking natural selection. These tech-

niques derive a set of mathematical expressions to describe

the relationship between the predictant and dependent

variables using such operators as mutation, recombination

(or crossover) and evolution. These are operated in a

population evolving in generations through a definition of

fitness and selection criteria. Applications of GP suit a wide

range of problems and in particular to cases where: (i) the

interrelationships among the relevant variables are poorly

understood or suspected to be wrong; (ii) conventional

mathematical analyses are constrained by restrictive

assumptions, but approximate solutions are acceptable

(Banzhaf et al. 1998). The genetic expression programming

(GEP), an extension of genetic programming (GP), is used

as an alternative approach to prediction of wind speed time

series in this study. The fundamental difference between

the GEP and GP algorithms resides in the nature of the

individuals. In GP, the individuals are non-linear entities of

different sizes and shapes (parse trees). In GEP, the indi-

viduals are encoded as linear strings of fixed length (the

genome or chromosomes), which are afterward expressed

as non-linear entities of different sizes and shapes (simple

diagrammatic representations or expression trees). Also,

GEP is faster than GP, by two to four orders of magnitude.

Due to its simple and efficient features, GEP is also a

popular method for evolution modeling and widely used

(Ferreira 2006).

Statistical regression models are simple and straight-

forward and usually the first choice to establish the base-

line; conversely, their applications often go back many

decades. In addition to reporting multiple linear regression

(MLR) method, the Persistence method is also reported

here as a possible alternative, which has no mathematical

sophistication.

The present work describes the development and train-

ing of ANNs and GEP models for the purpose of estimating

hourly wind speed, and the results are compared with the

MLR and the Persistence Method. The model perfor-

mances have been estimated by using the correlation

coefficient (CC), Nash–Sutcliffe efficiency coefficient (E),

root mean square error (RMSE) and Akaike information

criterion (AIC). The study employs the time series of wind

speed values obtained at Kersey in Colorado, USA.

2 Materials and methods

2.1 Artificial neural networks (ANNs)

Neural networks are inspired by the studies of the brain and

nervous systems in biological organisms. They have the

capability for self-learning and automatic abstraction.

Their developments go back to McCullon and Pitts (1943)

as the designers of the first artificial neural networks

(ANNs). Over the years, ANNs have been recognized to

provide an important alternative to the traditional methods

of data analysis and modeling.

The fundamental processing element of a neural net-

work is a neuron. Each neuron computes a weighted sum of

its p input signals, xi, for i = 0, 1, 2,…, P hidden layers,

wij, and then applies a nonlinear activation function to

produce an output signals uj. The model of a neuron is

Fig. 1 Nonlinear model of a neuron
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shown in Fig. 1. A neuron j may be mathematically

described with the following pair of equations:

uj ¼
Xp

i¼0

wijxi ð1Þ

and

xj ¼ / uj � hj
� �

: ð2Þ

The use of threshold hj has the effect of applying an

affine transformation to the output of the linear combiner in

the model of Fig. 1. A threshold transfer function is

sometimes used to quantify the output of a neuron in the

output layer. In particular, depending on whether the

threshold hj is positive or negative, the relationship

between the effective internal activity level or activation

potential vj ¼ uj � hj
� �

of neuron j and the linear combiner

output uj is modified in the manner illustrated in Fig. 2.

Affine transformation method is applied for the coordinate

transformation between two reference systems. A coordi-

nate transformation model can be optimized so that it is

easy to perform and gives the highest accuracy. If coor-

dinates from two coordinate systems are available for some

common points, those transformation parameters can be

estimated (Haykin 1999; Melesse and Hanley 2005).

The sigmoid logistic nonlinear function is described by

the following equation (Bilgili et al. 2007):

/ðxÞ ¼ 1

1þ e�x
: ð3Þ

The type of ANN used in this study is a feedforward

multilayer perceptron (MLP) which is the most commonly

used ANN in hydro-meteorological applications. A set of

neurons or nodes may be arranged as layers. The structure

of a three-layer MLP is shown in Fig. 3. It consists of three

layers: an input layer, a hidden layer and an output layer.

The number of neurons in the input and output layers is

defined based on the number of input and output variables

of the system under investigation, respectively. However,

the number of neurons in the hidden layer(s) is usually

determined via a trial-and-error procedure. As seen from

the figure, the neurons of each layer are connected to the

neurons of the next layer by weights. To obtain optimal

values of these connection weights, ANNs must be trained.

The neural networks technique for wind speed predic-

tion was first investigated by Mohandes et al. (1998) who

compared its performance with an autoregressive model.

This included investigations of the statistical characteristics

of mean monthly and daily wind speed in Jeddah, Saudi

Arabia. The autocorrelation coefficients and correlogram

were employed to investigate the real diurnal variation of

mean wind speed. They showed that for prediction of wind

speed time series, feedforward back propagation (FFBP)

artificial neural networks had higher accuracy than the used

regression model, and the best network based on the RMSE

over the training data was one with 24 hidden units.

The study by Cadenas and Rivera (2009) investigated

hourly wind speed time series during about 1 month repre-

sentative of three sites inMexico, and diverse configurations

of ANN were generated and compared through error mea-

sures. First, a model with three layers and seven neurons was

chosen, according to the recommendations of various

authors. The results were not sufficiently satisfactory, so

other three models were developed, consisting of three

layers and six neurons, two layers and four neurons, and two

layers and three neurons. The simplest model of two layers,

with two input neurons and one output neuron, performed

the best in the short-term wind speed forecasting and

showed a good accuracy to be used for the energy supply.

Fig. 2 Transformation produced by the presence of a threshold

Fig. 3 Simple configuration of a multilayer perceptron neural

network
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The authors indicated that the efficiency of the FFBPmay be

increased by using the conjugate gradient learning.

A comprehensive comparison study on the application

of different ANN, namely, adaptive linear element, back

propagation and radial basis function in hourly wind speed

forecasts was presented by Li and Shi (2010). The results

of that study showed that no single neural network out-

performed others when overall evaluation metrics were

considered.

2.2 Genetic expression programming

Genetic expression programming (GEP) proposed by

Candida Ferreira in 1999 is an evolutionary technique,

which combines features of its predecessors, genetic

algorithm (GA) and genetic programming (GP). The main

difference between the three algorithms resides in coding

of individuals, as defined below. In GA, individuals are

represented by symbolic strings of a fixed length, the so-

called chromosomes. Individuals in GP are nonlinear

entities of different sizes and shapes, the so-called parse

trees. GEP individuals are encoded as symbolic strings of a

fixed length (chromosomes), which are then expressed as

nonlinear entities of different size and shape, the so-called

expression trees (ET).

GA and GP suffer from two main limitations. They may

be easy to manipulate genetically but they lose in func-

tional complexity. On the other hand, when their functional

complexity is high, it is extremely difficult to reproduce

without some modification. Furthermore, use of genetic

operators in GP is very limited and operators act directly on

parse trees. GEP resolves those constraints leading to

possible improvements in speed and accuracy (Ferreira

2002). The application of GEP to practical problems is

diversifying and in recent years and these include: Guven

et al. 2008; Ustoorikar and Deo 2008; Kisi and Guven

2010; Zakaria et al. 2010; Khatibi et al. 2014. GEP auto-

matically generates equations that describe cause and effect

relationships in the data; it is significantly slower in

developing models and generates relatively simple equa-

tions describing the relationships that can be interpreted

directly.

In GEP, the chromosome consists of a linear, symbolic

string of a fixed length. One chromosome can contain one

or more genes, each encoding a sub-expression tree.

Despite the fact that the length of chromosomes is fixed, it

is still possible to code expression trees of different sizes

and shapes. Structural organization of genes in a head and a

tail always guarantees production of valid programs (Fer-

reira 2001a). GEP identifies an appropriate relationship for

any given time series by two components: (i) a set of

functions and their parameters (referred to as the terminal

set), which emulates the role of proteins or chromosomes in

biological systems; and (ii) a parse tree, which is a func-

tional set of basic operators such as fþ;�; �; =;^; ffip
; log;

a log; sin; a sin; exp; . . .g:
The process of GEP begins with the random generation

of the chromosomes of the initial population. Then the

chromosomes are expressed and the fitness of each indi-

vidual is evaluated. The individuals are then selected

according to fitness to reproduce with modifications,

leaving progeny with new traits. The individuals of this

new generation are, in their turn, subjected to the same

developmental process: expression of the genomes, con-

frontation of the selection environment and reproduction

with modification. The process is repeated for a certain

number of generations, or until a solution has been found

(Ferreira 2001b). The fundamental steps of the GEP are

schematically represented in Fig. 4.

Flores et al. (2005) explored the applicability of genetic

programming to wind speed prediction. Unlike other arti-

ficial intelligent techniques, GP provided closed-form

models for the time series under analysis. They used a form

of GEP for the implementation of the modeling tools, and

the techniques were applied to the time series formed by

monthly averages of the wind speed in the Isthmus of

Tehnuantepec, Mexico. GP has shown to be a good alter-

native to provide models for wind speed prediction.

The method of least squares support vector machine

(LS-SVM) for short-term wind speed prediction was put

forward by Xiaojuan et al. (2009), and the influence of

parameters selection of LS-SVM on prediction accuracy

was analyzed. The genetic algorithm was adopted to realize

parameters optimization of LS-SVM and establish short-

term wind speed prediction model of LS-SVM based on

genetic algorithm. It was shown that the method proposed

in this paper can quickly and effectively carry out short-

term wind speed prediction by simulation example.

Huang et al. (2011) used a real-valued genetic algorithm

(RGA)-based least-squared support vector machine (LS-

SVM) to precisely predict the short-term regional wind

speed. A dataset including the time, temperature, humidity

and the average regional wind speed being measured in a

randomly selected date from a wind farm being located in

Penghu, Taiwan, was selected for verifying the forecast

efficiency of the proposed RGA-based LS-SVM.

Numerical weather prediction models were used by

Arellano et al. (2012) to produce wind speed forecasts at a

high spatial resolution. The integration of the weather

research and forecasting-advanced research WRF (WRF-

ARW) mesoscale model with four different downscaling

approaches was presented. WRFARW forecasts and

observations at three different sites of the state of Illinois in

the USA were analyzed before and after applying the

60 M. A. Ghorbani et al.
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downscaling techniques. Three of the proposed methods

needed a predefined model to be applied. The fourth

approach, based on genetic programming (GP), implicitly

found the optimal model to downscale WRF forecasts, so

no previous assumptions about the model had to be made.

The results obtained demonstrated that GP was able to

successfully downscale the wind speed predictions,

reducing significantly the inherent error of the considered

numerical models.

2.3 Multiple linear regression (MLR)

The multiple linear regression analysis is a widely used

technique for expressing the dependence of a response

variable on several predictants. It fits a linear combination

of the components of a multiple signals xi to a single output

signal y, as defined by (4):

y ¼ a0 þ
Xn

i¼1

aixi; ð4Þ

where ai. values are called regression coefficients, which

are estimated by using the least square or any other similar

method. In this study, the coefficients of regression were

determined using the least square method. The stepwise

regression is applied as a robust method for the selection of

best subset models and is based on adding or deleting the

variable/variables with the greatest impact on the residual

sum of squares (Ghorbani et al. 2012).

2.4 Persistence method

The Persistence method is the simplest way for the short-

term forecasting of wind speed and assumes that the future

wind speed is the same as the current one or x̂tþk ¼ xt. This

No

Iterate

Yes

Terminate

Create chromosomes of initial population

Express chromosomes 

Execute each program

Evaluate fitness

Iterate or Terminate?

Best of generation?

Selection

Reproduction

New chromosomes of next generation

End

Fig. 4 The flowchart of a

genetic expression algorithm

Table 1 Summary of wind speed data (xt, m/s) used in the study

Data set Training Testing

Number of data points 5206 744

Mean 1.56 1.78

Maximum value 12.96 12.07

Minimum value 0 0

Standard deviation 1.85 2.14

Coefficient of variation 1.20 1.20

Skewness 2.37 2.29
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method is used as reference for evaluating the performance

of advanced forecasting methods (Zhu and Genton 2012).

2.5 Used data and performance criteria

In this study, hourly wind speed time series were used from

the Kersey site in Colorado, USA (latitude 40�220 3600 north
and longitude 104�310 5500 west; altitude 1409.7 m above

sea level).

The dataset used in this study corresponds to the months

of January 2005 through to January 2012. The wind speed

characteristics are presented in Table 1 for the site and

their time series are displayed in Fig. 5 at the hourly

interval.

Hourly wind speed time series for the site was down-

loaded from the Colorado Climate Center (http://ccc.atmos.

colostate.edu/). As shown in Fig. 5, the data for the first

7 years (2005–2011) were used for training and that for

2012 for model testing. Four performance criteria are

employed, comprising: correlation coefficient (CC), root

mean square error (RMSE), Nash–Sutcliffe efficiency

coefficient (E) and Akaike information criterion (AIC).

These are used to assess the goodness of fit for the selected

models. The latter two performance criteria are expressed

as:

E ¼ 1�

PN

i¼1

ðxobs � xcompÞ2

PN

i¼1

ðxobs � �xobsÞ2
; ð5Þ

AIC ¼ N � Ln MSEð Þ þ 2k: ð6Þ

In the expressions, i is an integer varying from 1 to N,

xobs and xcomp are the observed and computed wind speed,

respectively, the average value of the associated variable is

represented with a bar above it, N is the total number of

records and k is the number of model coefficients or

parameters, and MSE is mean square errors.

The CC, which may range from -1 to 1, is a statistical

measure of how well the regression line fits the observed

data; a coefficient value of one indicates that the regression

line perfectly fits the observed data. The CC also indicates

whether or not the two variables move in the same or

opposite directions and the degree of linear association.

The RMSE can provide a balanced evaluation of the

goodness of fit of the model; the best RMSE would be zero,

or close to it.

The range of E lies between 1.0 (perfect fit) and -?. A

lower than zero efficiency indicates that the mean value of

the observed time series would have been a better predictor

than the model being tested.

The Akaike information criterion (AIC) indicates by

how much the dependent variable changes with the change

of the predictant (Kisi and Guven 2010). In the selection

process, the model with a lower AIC value is preferred.

3 Results

3.1 Selection of inputs

Inclusion of multiple inputs into any predictive system is

often at the expense of increasing system complexity, but

with diminishing returns. Therefore, selection of relevant

input variables is an important problem when developing

such systems. Overview of past studies indicated that

modeling/predicting of wind speeds based on machine

Fig. 5 Time series plots of

hourly wind speeds at the

Kersey site for the period of

January of each year
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learning techniques usually involved using several previous

wind records (see e.g., Mohandes et al. (2004); Monfared

et al. (2009); Cadenas and Rivera (2010); Li and Shi

(2010); Sheela and Deepa (2013)).

In this study, input variables were determined by the

cross-correlation between the wind speed at the present time

x(t) and time-lagged wind speed x(t - 1), x(t - 2),….,

x(t - d). Figure 6 shows the variation of the cross-correla-

tion against the lag time for the wind speed at the Kersey

site. It is seen clearly that the cross-correlation values are

higher than zero for time lags of up to 14 h, and approxi-

mately equal to zero after a time lag of 15 h. Therefore, any

value of wind speed to be forecasted is regressed on a

maximum number of its antecedent 14 values. The 14 input

structures are shown in Table 2 and these models were used

to train and test the developed ANNs, GEP, Persistence, and

MLR models.

3.2 ANN training

The training of the ANN model used the inputs as repre-

sented in Fig. 3 and the outputs obtained from the network

are compared with the target output values to estimate

errors. The computed errors are back-propagated through

the network and the connection weights are updated, until

reaching a desirable level of performance, if at all. The

logarithmic sigmoid transfer function was used in the

hidden layer and the linear transfer function was employed

from the hidden layer to the output layer, because the linear

function is known to be robust for a continuous output

variable.

Selection of the number of neurons for the hidden layer

intended achieving the best network architecture. A three-

layer network that achieved the minimum value of RMSE

was selected.

The M1 to M14 model structures with different input

structures were trained and tested. The optimum number of

neurons in the hidden layer was identified for I, 2I, and

2I ? 1, where I is the number of inputs, which was suc-

cessfully implemented by, e.g., Makarynskyy (2004);

Mishra and Desai (2006); Makarynskyy and Makarynska

(2007). The values applied in the input and output layers

were normalized in the range from 0 to 1. The effect of

changing the number of hidden neurons on the CC, RMSE,

E, and AIC for each model is presented in Table 3.

In the training phase, the M8 model, where the number

of hidden neurons is equal to I, demonstrates the best CC,

RMSE and E statistic values of 0.892, 0.839 m/s and 0.796,

respectively. This is selected as for the comparison

Table 2 Model structures for

hourly wind speed prediction
Model Input Output

M1 xt-1 xt

M2 xt-1, xt-2 xt

M3 xt-1, xt-2, xt-3 xt

M4 xt-1, xt-2, xt-3, xt-4 xt

M5 xt-1, xt-2, xt-3, xt-4, xt-5 xt

M6 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6 xt

M7 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7 xt

M8 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7, xt-8 xt

M9 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7, xt-8, xt-9 xt

M10 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7,xt-8, xt-9, xt-10 xt

M11 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7, xt-8, xt-9, xt-10, xt-11 xt

M12 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7, xt-8, xt-9, xt-10, xt-11, xt-12 xt

M13 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7, xt-8, xt-9, xt-10, xt-11, xt-12,xt-13 xt

M14 xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7, xt-8, xt-9, xt-10, xt-11, xt-12, xt-13, xt-14 xt
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Fig. 6 Cross correlations between time-lagged wind speed (m/s)

values at the Kersey site
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Table 3 Comparison of ANN

structures for the Kersey Site
Model Hidden Layer Training Testing

CC RMSE (m/s) E AIC CC RMSE (m/s) E AIC

M1 I 0.881 0.878 0.777 -1350.6 0.909 0.896 0.826 -162.1

2I 0.882 0.875 0.778 -1384.5 0.909 0.895 0.826 -162.7

2I ? 1 0.882 0.875 0.778 -1384.7 0.909 0.895 0.826 -163.1

M2 I 0.884 0.868 0.782 -1470.6 0.913 0.877 0.833 -192.0

2I 0.886 0.862 0.785 -1537.4 0.913 0.878 0.832 -190.1

2I ? 1 0.886 0.861 0.785 -1547.7 0.914 0.876 0.833 -193.3

M3 I 0.884 0.869 0.781 -1455.8 0.914 0.874 0.834 -193.8

2Ia 0.881 0.885 0.773 21265.5 0.909 0.900 0.824 -151.5

2I ? 1 0.881 0.879 0.776 -1339.5 0.913 0.876 0.833 -191.4

M4 I 0.886 0.863 0.784 -1524.9 0.912 0.882 0.831 -179.0

2I 0.887 0.858 0.787 -1584.1 0.913 0.876 0.833 -189.8

2I ? 1 0.888 0.854 0.789 -1630.3 0.912 0.886 0.829 -171.7

M5 I 0.885 0.866 0.783 -1491.9 0.911 0.887 0.829 -167.9

2I 0.888 0.856 0.788 -1610.4 0.911 0.889 0.828 -165.7

2I ? 1 0.886 0.864 0.784 -1509.7 0.912 0.886 0.829 -169.7

M6 I 0.886 0.864 0.784 -1505.1 0.911 0.888 0.828 -164.1

2I 0.887 0.860 0.786 -1551.7 0.909 0.899 0.824 -146.3

2I ? 1 0.884 0.870 0.781 -1440.6 0.911 0.889 0.828 -162.3

M7 I 0.887 0.858 0.787 -1578.8 0.909 0.899 0.824 -144.2

2I 0.887 0.857 0.787 -1586.3 0.909 0.900 0.824 -142.3

2I ? 1 0.891 0.843 0.794 -1759.7 0.912 0.883 0.830 -170.5

M8 I 0.891 0.843 0.794 -1761.0 0.909 0.894 0.826 -150.1

2I 0.891 0.851 0.790 -1658.1 0.903 0.933 0.811 -87.7

2I ? 1b 0.888 0.856 0.788 -1598.8 0.914 0.874 0.834 -184.8

M9 I c 0.892 0.839 0.796 21803.2 0.908 0.899 0.824 2140.2

2I 0.886 0.862 0.785 -1527.2 0.909 0.903 0.823 -133.8

2I ? 1 0.881 0.879 0.776 -1319.6 0.900 0.937 0.809 -79.2

M10 I 0.887 0.864 0.784 -1497.4 0.911 0.899 0.824 -138.1

2I 0.883 0.882 0.775 -1285.0 0.904 0.941 0.808 -70.8

2I ? 1 0.886 0.866 0.783 -1475.4 0.909 0.906 0.821 -126.1

M11 I 0.886 0.862 0.785 -1526.5 0.911 0.892 0.827 -147.6

2I 0.889 0.853 0.789 -1629.0 0.905 0.919 0.816 -103.9

2I ? 1 0.888 0.859 0.787 -1562.0 0.905 0.921 0.816 -100.6

M12 I 0.885 0.868 0.782 -1449.0 0.913 0.880 0.831 -165.5

2I 0.884 0.879 0.777 -1321.2 0.899 0.959 0.800 -38.2

2I ? 1 0.886 0.867 0.783 -1458.5 0.913 0.884 0.830 -158.9

M13 I 0.889 0.853 0.789 -1622.0 0.913 0.881 0.831 -162.6

2I 0.889 0.851 0.790 -1645.0 0.910 0.890 0.828 -146.8

2I ? 1 0.887 0.874 0.779 -1366.9 0.911 0.902 0.823 -126.6

M14 I 0.890 0.848 0.792 -1689.7 0.910 0.893 0.826 -139.1

2I 0.885 0.866 0.783 -1469.5 0.907 0.906 0.821 -118.1

2I ? 1 0.885 0.865 0.784 -1483.4 0.905 0.916 0.817 -101.6

a The model structure in bold italics suggests the model selection on the basis of the AIC value
b The results in italics above identify the best values for the testing periods, which do not correspond to the

selected model
c The results in bold show the selected model specified as: M8(8,8,1)
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purpose, although the best performance for the validation

phase is the M8 model with 2I ? 1 numbers of hidden

neurons (the best CC, RMSE and E statistic values of

0.914, 0.874 m/s and 0.834, respectively). Hence, in

accordance with the performance indices, ANN (8, 8, 1)

has been selected as the most effective and appropriate

ANN model. Notably, the performance parameters are not

overly sensitive to model structures and there is a conflict

between the performance parameters, such that the above

selected model structure based on CC, RMSE and E does

not produce the lowest AIC value. Therefore, according to

the AIC values, the lowest value is -1266 as produced by

the model structure of M3 with 2I-number of hidden layers.

3.3 GEP training

In the preliminary investigations for the GEP model, the

four sets of operators presented in Table 4 were tested.

The GEP structure was developed based on the authors’

previous studies, literature review and trial-and-error

procedure. The chromosomes of GEP are generally com-

posed of more than one gene. Each gene codes for a sub-

program or sub-expression tree. Then the sub-program can

interact with one another in different ways, forming a

more complex program. In the GEP model, the sub-ex-

pression tree must be linked through the linking function.

Both the addition and multiplication operators were tested

in the model, and it was found that the addition function

provided a better fitness value. This study employed both:

(i) the RMSE fitness function (based on the absolute

error), and (ii) the various chromosomes linked together

into algebraic subtrees by adding them, as opposed to

multiplying them.

The default parameters and the architecture used for GEP

modeling are given in Table 5. In this table, insertion

sequence elements or IS elements are short fragments of the

genome with a function or terminal in the first position that

transposes to the head of genes except the root. The IS

transposition operator randomly chooses the chromosome,

the start and termination points of the IS element and the

target site. Root insertion sequence (RIS) elements are short

fragments with a function in the first position that transpose

to the start position of genes. The RIS transposition operator

randomly chooses the chromosome, the gene to be modified

and the start and termination points of the RIS element.

The set of GEP model structures, defined in Table 4,

were investigated. Their performances were evaluated for

each model combination in Table 2 and the results of this

investigation are presented in Table 6. The results show

that model structures are almost insensitive to the values of

CC, RMSE and E, but there is more discrimination sug-

gested by the AIC values. Based on CC, RMSE and

E values, the M2 model with the function type F3 suggests

the best performance for the training phase, which pro-

duces the statistic values of 0.889, 0.869 m/s and 0.79 (and

AIC value of -1615.9, which is not the best), respectively,

and this is selected as the representative model. Notably,

the same M2 model with the function type F3 performs the

best in terms of the CC, RMSE and E statistic values of

0.884, 0.909 m/s and 0.781, respectively, for the testing

phase. However, the quality of these performance param-

eters drops in the testing phase, but the performance

parameters for the testing phase should not be used for

decision making and is discussed in more detail in the next

section. Notably, based on the AIC values, the M14 model

with the function type F2 suggests the best performance for

Table 4 Defined operators for

GEP modeling
Function set Operator

F1 {?, -, *, /}

F2 {?, -, *, /, x2}

F3 {?, -, *, /, Exp(x)}

F4 {?, -, *, /, x2, x3, x1/3, exp, Ln,
ffiffiffi
x

p
, Sin(x), Cos(x), Arctang(x)}

Table 5 Initial setting for

implementing the GEP models
General setting Genetic operators

Number of chromosomes 30 Mutation rate 0.044

Head size 8 Inversion rate 0.1

Number of genes 4 IS transposition rate 0.1

Number of generation 1000 RIS transposition rate 0.1

Linking function Addition One-point recombination rate 0.3

Fitness function Two-point recombination rate 0.3

Error type RMSE Gene recombination rate 0.1

Gene transposition rate 0.1
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Table 6 The results of GEP

models for the training and

testing period

Model Function Set Training Testing

CC RMSE (m/s) E AIC CC RMSE (m/s) E AIC

M1 F1 0.886 0.879 0.785 -1494.9 0.879 0.925 0.773 -24.04

F2 0.886 0.879 0.785 -1487.2 0.879 0.926 0.772 -23.65

F3 0.886 0.877 0.786 -1509.2 0.881 0.921 0.775 -25.72

F4 0.886 0.879 0.785 -1487.6 0.880 0.925 0.773 -24.09

M2 F1 0.887 0.875 0.787 -1536.3 0.882 0.918 0.776 -24.83

F2 0.886 0.890 0.780 -1343.0 0.879 0.941 0.765 -16.41

F3a 0.889 0.869 0.790 21615.9 0.884 0.909 0.781 228.15

F4 0.887 0.876 0.786 -1523.4 0.882 0.916 0.777 -25.32

M3 F1 0.887 0.876 0.786 -1518.4 0.881 0.920 0.775 -21.77

F2 0.888 0.872 0.789 -1580.0 0.884 0.910 0.780 -25.52

F3 0.887 0.875 0.787 -1534.6 0.881 0.919 0.776 -22.19

F4 0.886 0.879 0.785 -1480.5 0.881 0.921 0.775 -21.50

M4 F1 0.887 0.882 0.784 -1444.9 0.881 0.925 0.773 -18.05

F2 0.886 0.896 0.777 -1264.1 0.879 0.945 0.763 -10.70

F3 0.888 0.873 0.788 -1558.8 0.883 0.916 0.777 -21.24

F4 0.886 0.879 0.785 -1488.9 0.878 0.930 0.771 -16.30

M5 F1 0.886 0.890 0.780 -1334.1 0.879 0.940 0.765 -10.33

F2 0.887 0.888 0.781 -1364.6 0.881 0.935 0.768 -12.35

F3 0.887 0.879 0.785 -1480.7 0.880 0.925 0.773 -16.00

F4 0.886 0.880 0.785 -1466.7 0.880 0.921 0.775 -17.31

M6 F1 0.887 0.889 0.780 -1352.7 0.880 0.937 0.767 -9.51

F2 0.887 0.878 0.786 -1492.8 0.880 0.927 0.772 -12.89

F3 0.887 0.879 0.785 -1479.5 0.881 0.917 0.776 -16.42

F4 0.887 0.877 0.786 -1505.4 0.881 0.921 0.775 -15.18

M7 F1 0.887 0.876 0.787 -1515.2 0.881 0.921 0.775 -13.11

F2 0.887 0.876 0.786 -1510.4 0.881 0.920 0.775 -13.37

F3 0.887 0.898 0.776 -1229.3 0.880 0.943 0.764 -5.04

F4 0.887 0.875 0.787 -1530.4 0.881 0.919 0.776 -13.70

M8 F1 0.886 0.906 0.772 -1126.4 0.879 0.955 0.758 1.50

F2 0.886 0.906 0.772 -1126.4 0.879 0.955 0.758 1.50

F3 0.888 0.872 0.789 -1564.6 0.883 0.913 0.778 -13.55

F4 0.888 0.873 0.788 -1546.6 0.882 0.919 0.776 -11.46

M9 F1 0.886 0.883 0.783 -1424.1 0.879 0.929 0.771 -5.55

F2 0.886 0.906 0.772 -1123.4 0.879 0.955 0.758 3.74

F3 0.887 0.876 0.787 -1508.5 0.881 0.918 0.776 -9.68

F4 0.887 0.876 0.787 -1513.2 0.881 0.918 0.776 -9.55

M10 F1 0.886 0.906 0.772 -1122.4 0.879 0.955 0.758 6.00

F2 0.887 0.876 0.787 -1513.7 0.881 0.920 0.775 -6.73

F3 0.887 0.875 0.787 -1517.7 0.881 0.918 0.776 -7.41

F4 0.886 0.879 0.785 -1465.3 0.881 0.919 0.776 -7.13

M11 F1 0.886 0.906 0.772 -1119.2 0.879 0.955 0.758 8.29

F2 0.887 0.876 0.787 -1506.6 0.883 0.912 0.779 -7.24

F3 0.887 0.888 0.781 -1347.8 0.881 0.936 0.767 1.47

F4 0.887 0.876 0.787 -1510.8 0.882 0.916 0.777 -5.75

M12 F1 0.888 0.875 0.787 -1520.4 0.882 0.917 0.777 -3.14

F2 0.887 0.888 0.781 -1348.4 0.880 0.937 0.767 4.14

F3 0.886 0.906 0.772 -1117.0 0.879 0.955 0.758 10.61

F4 0.886 0.886 0.782 -1368.1 0.880 0.932 0.769 2.42

66 M. A. Ghorbani et al.

123



the training phase, which produces the lowest AIC value of

-1110.

The expression trees obtained for the GEP (M2, F3)

model are as shown in Fig. 7 and the simplified form of

equation derived for the expression trees is as follows:

xt ¼ �0:039þ xt�1 þ exp½� expðxt�1Þ� þ 0:0136ðxt�2Þ2:
ð7Þ

3.4 MLR fitting

The standard form of the MLR model based on Eq. (4) was

used for the wind speed prediction. Table 7 presents the

performance of the MLR model, according to which the

model performance is almost insensitive to the model

structure. Based on CC, RMSE and E values, the M13 model

produces the best CC, RMSE and E statistics of 0.888,

0.874 m/s and 0.788 (note that the AIC value of -1527.0 is

not optimum for this model structure), respectively. This is

selected as the representative model. Notably, for the testing

phase, the quality of these performance parameters drops and

it seems that the M6 model has best performance in terms of

CC, RMSE and E with statistic values of 0.882, 0.914 m/s

and 0.778, respectively. However, this is not selected as

discussed further in Sect. 4. The table further shows that on

the basis of the AIC statistic value, M1 should be the model

structure of choice with the AIC value of -1487.4.

xt ¼ 0:212þ 0:972� xt�1 � 0:104� xt�2 þ 0:026� xt�3

� 0:021� xt�4 þ 0:018� xt�5 þ 0:08� xt�6 � 0:043
� xt�7 þ 0:024� xt�8 þ 0:011� xt�9 � 0:039
� xt�10 þ 0:014� xt�11 � 0:011� xt�12 þ 0:010
� xt�13:

ð8Þ

3.5 The results by the Persistence method

This model requires no training due to its underlying

simple structure, i.e., it is only implemented as M1 with no

parameters to identify. Table 7 also presents the perfor-

mance of the Persistence method, which produces the CC,

RMSE, E and AIC statistic values of 0.886, 0.905 m/s,

0.772 and -1148.1, respectively, and these values for the

testing periods are 0.879, 0.958 m/s, 0.757, and -12.3,

respectively.

4 Model inter-comparisons

To further investigate the fitness of the developed models,

the performance criteria of the optimum ANN, GEP and

MLR models and the Persistence method were compared

with one another. The overall performances of the models

for training and testing datasets are summarized in Table 8

and show a mixed fortune for the models. In the first place,

the CC, RMSE and E statistic values are quite insensitive

to model structure. In a black-and-white world defining the

actual statistic values as the basis of decision making, the

ANN model performs better than the GEP and MLR

models and the Persistence method. However, the Persis-

tence method produces the lowest AIC value. In this black-

and-white world, this conflict indicates a disastrous out-

come with no hint to resolve the conflict. The results

provide anecdotal evidence for a more detailed scrutiny of

the results, as discussed below.

The predicted values were also compared with that of

the observed values for the testing period and the results

are presented in Fig. 8.

Table 6 continued
Model Function Set Training Testing

CC RMSE (m/s) E AIC CC RMSE (m/s) E AIC

M13 F1 0.887 0.899 0.776 -1203.8 0.880 0.944 0.763 9.06

F2 0.887 0.885 0.783 -1389.4 0.881 0.930 0.770 4.16

F3 0.886 0.906 0.772 -1114.7 0.879 0.955 0.758 12.96

F4 0.887 0.876 0.787 -1503.3 0.881 0.919 0.775 0.16

M14 F1 0.886 0.906 0.772 -1111.5 0.879 0.955 0.758 15.34

F2b 0.886 0.906 0.772 21110.1 0.879 0.955 0.758 15.36

F3 0.887 0.879 0.785 -1455.1 0.883 0.919 0.776 2.35

F4 0.886 0.884 0.783 -1400.7 0.880 0.925 0.773 4.59

a The results in bold show the selected model specified as: M2-F3
b The model structure in bold italics suggests the model selection on the basis of the AIC value
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5 Discussions

The inter-comparison of the results above suggest that the

Persistence method is the ‘‘best’’ in terms of the AIC

statistic, yet this is a simple method that does not warrant

being even called a model. In fact, this method may be

labeled as a model with ‘‘zero information content’’ i.e.,

low grade information. If this is the best model, does it not

expose a flaw in the world of mathematical modeling that

mathematical sophistication serves little? There is a very

straightforward answer to this, which is: ‘‘no, the zero-

order Persistence model has very little to offer.’’ While in a

pluralistic culture of modeling, any modeling technique has

merits to be considered, the selection criteria should not be

based on the nominal value of the performance parameter.

In the first place, the concept of ‘‘lead time’’ is a very

important concept in forecasting practices, which refers to

real time when forecasting is required for the future time.

The longer the lead time in a forecasting task, the greater is

the utility of the forecasting activities. However, too far

into the future is associated with increasing inherent

uncertainties. Figure 6 shows that the bottom line for the

forecasting lead time is 14 h, but it also indicates the

autocorrelation at 14 h lead time to be very low (high

Fig. 7 The expression trees for

the selected GEP model in this

study
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uncertainties). On this basis, the various model structures

defined in Table 2 may be viewed as follows: (i) any model

(ANN, GEP or MLR) using the M1 model structure

extracts a limited amount of information from the recorded

data; (ii) these ANN, GEP or MLR models using the M14

model structure extract a maximum amount of information

from the recorded data; (iii) the model structures between

M1 and M14 operate in between. The extraction of infor-

mation is in terms of estimating the values of regression

parameters in Eqs. (1) and (2) or (4) or expression trees.

Notwithstanding the above, these regression models are

also required to be parsimonious, i.e., the number of

independent variables should not be too few and not too

many. It indicates that too many independent variables add

to the complexity of the mathematical problem without a

corresponding return (improvement) in the accuracy of the

model; whereas too few of them would undermine the

accuracy. The parsimony of a model is not simple either.

The Persistence method using the bare information

within the 1 h antecedent observed value has a very limited

utility, although it is still better than nothing. Notably, it is

widely known that assuming the weather today would be

the same as that of yesterday can still be useful, but such a

forecast can be completely wrong as well. Another use of

the Persistence method is that it helps to understand the

baseline of the forecasting problem better. This method is

not recommended for use.

While the selected model structure of M13 for MLR

(based on CC) extracts information from 13 h of auto-

correlated data, that of M1 based on AIC extracts infor-

mation from 1 h of antecedent record and this should also

not be a preferred option. However, the M13 model

structure associated with MLR has fluctuating results with

a greater tendency to underestimate (or even overestimate).

Hence, this model is associated with problems, though it is

easy to implement.

The model structure for GEP (based on CC statistic

value) is M2, but that based on AIC is M14. However, the

CC values are insensitive to the model structure and

therefore the choice of model structure should be based on

Table 7 The results of the

MLR model for the training and

testing period

Model Training Testing

Comb. CC RMSE (m/s) E AIC CC RMSE (m/s) E AIC

MLR M1a 0.886 0.879 0.785 21487.4 0.879 0.926 0.772 -23.7

M2 0.887 0.875 0.787 -1538.0 0.881 0.919 0.776 -24.3

M3 0.887 0.875 0.787 -1534.9 0.881 0.919 0.776 -22.2

M4 0.887 0.875 0.787 -1534.5 0.881 0.918 0.776 -20.4

M5 0.887 0.875 0.787 -1531.6 0.881 0.918 0.776 -18.2

M6b 0.887 0.875 0.787 -1531.7 0.882 0.914 0.778 -17.6

M7 0.887 0.875 0.787 -1534.1 0.882 0.915 0.778 -15.1

M8 0.887 0.875 0.787 -1531.8 0.882 0.916 0.777 -12.6

M9 0.887 0.874 0.787 -1530.5 0.882 0.915 0.778 -10.8

M10 0.887 0.874 0.788 -1533.5 0.882 0.916 0.777 -8.2

M11 0.888 0.874 0.788 -1530.9 0.882 0.916 0.777 -5.9

M12 0.888 0.874 0.788 -1528.6 0.882 0.916 0.777 -3.6

M13c 0.888 0.874 0.788 21527.0 0.882 0.916 0.777 21.3

M14 0.888 0.874 0.788 -1524.6 0.882 0.916 0.777 1.1

Persistence - 0.886 0.905 0.772 -1148.1 0.879 0.958 0.757 -12.3

a The results in bold italics show a possible model selection based on the AIC value
b The results in italic show the model with best values for the testing periods specified as M6—this was not

selected
c The results in bold show the selected model specified by Eq. (8)

Table 8 Comparison of the

performances of Persistence

method, and MLR, ANN and

GEP models for the Kersey site

Model Training Testing

CC RMSE (m/s) E AIC CC RMSE (m/s) E AIC

ANN 0.892 0.839 0.796 -1803.2 0.908 0.899 0.824 -140.2

GEP 0.889 0.869 0.790 -1615.9 0.884 0.909 0.781 -28.15

MLR 0.888 0.874 0.788 -1527.0 0.882 0.916 0.777 -1.3

Persistence 0.886 0.905 0.772 -1148.1 0.879 0.958 0.757 -12.3
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AIC. This conflict in the implication of performance cri-

teria is reversed by ANN, in which the model structure

selection based on CC suggests M8, I, which has 8 h of

information extraction base, whereas that based on AIC

suggest M3, 2I, which has 3 h information extraction base.

The above conflicts are not the only ones. For instance,

it is expected that the best model should have the lowest

drop in the quality of the information expressed by per-

formance criteria by applying the trained model for the

forecasting at the testing period. However, the results

presented above indicate that this expectation does not

prevail generally. When an overall view is taken, it is clear

that it is futile to seek the single best model, but different

models have to be used and the individual models have to
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Fig. 8 Comparison of the

testing results of ANN, GEP,

Persistence and MLR models

for the Kersey site
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be studied in a greater detail to gain an insight into their

performance. On this basis, both GEP and ANN are equally

credible selections and even MLR should not be dismissed,

as it has its uses. The better performance of GEP and ANN

over MLR has been underlined by other researchers, e.g.,

Beyer et al. (1994); Mohandes et al. (1998); Sfetsos (2000);

Li and Shi (2010); Cadenas and Rivera (2009); Bilgili and

Sahin (2010); Upadhyay et al. (2011).

Short-term wind speed forecasting, as studied in this

paper, is crucial for the production of wind energy, aircraft

and airport safety, as well as in other applications including

the account given by Lei et al. (2009), Luickx et al. (2008),

Monfared et al. (2009), Pinson et al. (2009) and Sfetsos

(2000) on estimating the efficiency, the integration and

scheduling of a wind power-generating system. Also, an

insight into wind speed behavior is used for positioning the

systems in a sheltered area through predictive estimations

of wind energy dependent on wind (Burton et al. 2001).

Modeling may be the key for cost-efficient predictions of

wind speed. In this paper, a comparison of the performance

of different modeling strategies shows that forecasting

wind speed is feasible, but different techniques would lead

to different results, where the choice between them is not

easy. Thus, decision making has to be informed of these

modeling results, and decisions should be arrived at on the

basis of understanding inherent modeling uncertainties.

6 Concluding remarks

The objective of this study was to predict wind speed by

using wind speed time series recorded at an hourly interval.

The recorded data from the Kersey site in Colorado, USA,

were used to investigate the performance of two modeling

strategies: artificial neural networks (ANNs) and genetic

expression programming (GEP). The obtained results were

compared to multiple linear regression (MLR) model and

the Persistence method.

Autocorrelation and partial autocorrelation functions for

various wind speed data lags were used to find out the

number of past observations to provide effective inputs to the

models. The model performances were estimated and their

results were compared with one another. This inter-com-

parisons indicated that the ANN, GEP, MLRmodels and the

Persistence method can be successfully applied to the tasks

of forecasting short-term wind speed,. In this paper, a com-

parison of the performance of different modeling strategies

shows that forecasting wind speed is feasible, but different

techniques would lead to different results, where the choice

between them is not easy. Thus, decision making has to be

informed of these modeling results and decisions should be

arrived at on the basis of understanding inherent uncertain-

ties. The results show that it is futile to seek for the single best

model, but different models have to be used and the indi-

vidual models have to be studied in greater detail to gain an

insight into their performance. On this basis, both GEP and

ANN are equally credible selections and even MLR should

not be dismissed, as it has its uses.
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