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Abstract This study conducted 24- to 72-h multi-model

ensemble forecasts to explore the tracks and intensities

(central mean sea level pressure) of tropical cyclones

(TCs). Forecast data for the northwestern Pacific basin in

2010 and 2011 were selected from the China Meteoro-

logical Administration, European Centre for Medium-

Range Weather Forecasts (ECMWF), Japan Meteoro-

logical Agency, and National Centers for Environmental

Prediction datasets of the Observing System Research and

Predictability Experiment Interactive Grand Global

Ensemble project. The Kalman Filter was employed to

conduct the TC forecasts, along with the ensemble mean

and super-ensemble for comparison. The following results

were obtained: (1) The statistical–dynamic Kalman Filter,

in which recent observations are given more importance

and model weighting coefficients are adjusted over time,

produced quite different results from that of the super-

ensemble. (2) The Kalman Filter reduced the TC mean

absolute track forecast error by approximately 50, 80 and

100 km in the 24-, 48- and 72-h forecasts, respectively,

compared with the best individual model (ECMWF). Also,

the intensity forecasts were improved by the Kalman Filter

to some extent in terms of average intensity deviation

(AID) and correlation coefficients with reanalysis intensity

data. Overall, the Kalman Filter technique performed better

compared to multi-models, the ensemble mean, and the

super-ensemble in 3-day forecasts. The implication of this

study is that this technique appears to be a very promising

statistical–dynamic method for multi-model ensemble

forecasts of TCs.

1 Introduction

Tropical storms (TSs) or typhoons in the western Pacific

frequently bring strong winds, rainstorms and ocean surges

and generally cause serious economic losses and casualties

across the entire East Asian region. As a result, the fore-

casting of typhoons, especially their intensity, rainfall and

tracks, has been challenging for operational weather centers

in different countries and regions. Some improvements have

been achieved. Relying on the development in numerical

weather prediction (NWP), the technologies of data as-

similation and multi-model ensemble forecasting, as well as

satellite observations, the forecasting of tropical cyclone

(TC) tracks and intensity have improved considerably, in

which multi-model ensemble prediction has played a sub-

stantial role in enhancing both the accuracy of deterministic

forecasts and providing information on forecast uncertainties

(WMO 2008a; Franklin 2012; Yamaguchi 2013).

The multi-model ensemble technique has been widely

used in typhoon prediction, successfully reducing forecast

errors since the first applications at the beginning of the

1990s (Leslie and Fraedrich 1990). With the ensemble

mean and super-ensemble multi-model methods presently

being the most frequently utilized, a series of tropical

system forecast experiments have been conducted, and

both track and intensity forecast errors have been reduced

compared with individual ensemble members (Goerss
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2000; Krishnamurti et al. 1999; Kumar et al. 2003; Willi-

ford et al. 2003). Advanced and new techniques are con-

stantly emerging in predicting TC tracks. For example, Qi

et al. (2014) proposed a selective ensemble mean technique

for TC track forecast based on the errors of ensemble

prediction system members at short lead times. Similarly, a

method of retrieving optimum information of typhoon

tracks in a multi-model ensemble of forecasts is explored

by Tien et al. (2012). Twenty-four- to seventy-two-hour TC

track forecast errors have been reduced by nearly half from

1990 to 2008; however, track prediction errors exceeding

1000 km for 3-day predictions still occur (Franklin 2012;

DeMaria et al. 2014). Also, intensity forecasting has shown

statistically significant improvement during the past two

decades, but little or no progress has been made in im-

proving the methods that produce TC intensity forecasts

(DeMaria et al. 2014). Thus, reducing TC track and in-

tensity forecast errors remains an important research topic.

The Kalman Filter was first applied in multi-model

forecasting based on satellite rainfall data (Shin and Krish-

namurti 2003). Since then, Rixen et al. (2009) and Lenartz

et al. (2010) also took advantage of the Kalman Filter ap-

proach to forecast 48-h sea surface temperature (SST). To

improve surface drift prediction, a hyper-ensemble method

was introduced by Vandenbulcke et al. (2009). Nevertheless,

the Kalman Filter is still mainly used to revise the tem-

perature, precipitation and other scalar atmospheric fields in

the post-processing of single-model forecasts (Libonati et al.

2008; McCollor and Stull 2008). Our goal is to produce

improved tropical system forecasts and develop innovative

Kalman Filter techniques by using a suite of multi-model

forecast outcomes to better predict TC’s track and intensity

evolution. Success in this area would be of great use to

government agencies, especially those involved in decision

making for people living near the coast and suffering the

regular occurrence of TCs in summer and autumn.

In the present study, Kalman Filter techniques were

employed to predict TC tracks and intensities in the

western North Pacific basin. The multi-model ensemble

mean and super-ensemble method were compared. Sec-

tion 2 describes the models used and the verification TC

data. An analysis of the methods and experimental setup is

presented in Sect. 3. The multi-model forecasts, as well as

those from the ensemble mean, super-ensemble, and Kal-

man Filter are compared in Sect. 4. Finally, a summary,

discussion, and future outlook are given in Sect. 5.

2 Data

The THORPEX Interactive Grand Global Ensemble

(TIGGE) is a key component of The Observing System

Research and Predictability Experiment (THORPEX)—a

worldwide weather research program to enhance the ac-

curacy of 1-day to 2-week high-impact weather forecasts

for the benefit of society and humanity. TC ensemble

forecasts of the China Meteorological Administration

(CMA), European Centre for Medium-Range Weather

Forecasts (ECMWF), Japan Meteorological Agency

(JMA), and National Centers for Environmental Prediction

(NCEP) within the TIGGE dataset were used to investigate

the track and intensity (central mean sea level pressure) of

TCs based on ensemble mean, super-ensemble, and Kal-

man Filter methods. The four centers in the TIGGE

archives exploit different tracking algorithms to identify

and track cyclones in the NWP output. The NCEP system

uses a single-pass Bames analysis, in which the TC center

is the location of minimum surface pressure after interpo-

lation. In this way, the position for a TC from a model

dataset with 1-degree resolution can be refined to within

1/16 of a degree (Marchok 2002). The tracking algorithm

currently utilized at the ECMWF is based on extrapolation

of past movement and mean sea level pressure or vorticity

to determine a cyclonic center (Grijn 2002). The TSs, TCs

and typhoons employed in our study are summarized in

Table 1. The verification TC tracks and intensities came

from the best-track datasets provided by the Joint Typhoon

Warning Center (JTWC). The forecast and evaluation data

are summarized as follows:

TIGGE datasets: The average TC tracks and central

mean sea level pressures within the western Pacific region

were exploited during the whole-year periods of 2010 and

2011, whose leading times were 24, 48 and 72 h and twice

a day (UTC 00:00 and 12:00).

JTWC best-track datasets: The corresponding TC daily

data during the same period were applied to verify the

forecasts.

3 Methods

Generally, different forecast models can simulate different

aspects of the real field. Therefore, to provide a forecast

with higher skill, multi-model ensemble techniques usually

‘‘assimilate’’ more than one model that differ in resolution,

physical processes, and data assimilation technique. The

Table 1 Information on the tropical cyclones (TCs)/tropical

storms/typhoons in the training and forecasting periods

Lead time Training period Forecasting period Total

TCs Samples TCs Samples TCs Samples

24 h 14 115 14 153 28 268

48 h 11 82 12 130 23 212

72 h 6 44 10 104 16 148
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simplest and most widely used technique is the ensemble

mean. This is simple to implement without a training pe-

riod and often achieves a better result than a single model

(Goerss 2000). In the ensemble mean, every model weight

is equal to 1
N
, where N is the number of participating

models. The ensemble mean is one of the methods com-

pared in the present paper.

Other kinds of methods make use of historical data to

determine the combination of weights by minimizing the

distance between the historical forecast and observation or

reanalysis data, and then using the weights to combine

different models to predict the future. These methods are

mainly of non-equal weight and obtain better forecasts than

the ensemble mean in most cases. Figure 1 offers a

schematic view of these non-equal weighting methods.

Their processes can be split into two parts, with the

minimization process referred to as the training period and

the second period as the prediction. Obviously, a major

problem faced by these multi-model techniques is whether

or not the combination achieved during the training period

still provides optimal performance in the prediction phase.

For instance, whether or not the model combination, and

thus the forecast skill, can remain stable over time in a

particular forecast period.

Krishnamurti et al. (1999, 2000) presented a multi-

model method called super-ensemble forecasting in which

the weighting factor for each model is calculated through

multiple linear regression analysis between the forecasts

and observed values. The method has been successfully

applied to forecasting TC tracks and intensity in the Pacific

and Atlantic basins (Krishnamurti et al. 1999, 2000; Kumar

et al. 2003; Williford et al. 2003) and to climatology (Feng

et al. 2011). However, once the models’ weighting coeffi-

cients have been fixed in the training period by either a

linear or nonlinear method, the forecasts will become in-

creasingly inaccurate after a prediction period, because the

participating models show seasonal or interseasonal var-

iation, which cannot be completely captured by fixed

weights. Based on this view, a running training period

weighted super-ensemble technique was introduced by Zhi

et al. (2012); also a nonlinear combination model, artificial

neural network, was found to lead to a small improvement

compared to the super-ensemble with a static training pe-

riod. Another major challenge faced by the super-ensemble

is the continuity of the participating models. Since the

super-ensemble customarily adopts the least-squares

method to minimize the distance between observation and

forecasts and to calculate the weights of models involved in

the ensemble, if each model shows significant changes,

e.g., in model configuration and the updating of physical

processes between the training and prediction period, the

forecast by the super-ensemble would be inferior to the

participating model outcomes, because the weighting co-

efficients may not be able to capture the change even in a

running training period. Actually, the models in the TIGGE

project do indeed update every 2 or 3 years.

An improved method based on the super-ensemble

technique was used in the present study. First, the absolute

errors between observation and each model are calculated;

then, the weight coefficients are determined according to

the relative error size and their time lag relation to fore-

casts; and lastly, the weighting factors are applied to

Eq. (1) for forecasting. With the gradual passage of time,

the training period will thereafter run progressively in our

algorithm and, accordingly, the weights are dynamically

adjusted [see Zhi et al. (2012) for more details]. Ap-

proaching the forecast period, the proportion of good-per-

forming models increases, and vice versa. Each forecast

step and each variable, such as longitude, latitude and

central mean sea level pressure per forecast time, are

handled separately:

FSE ¼ Ot þ
XN

i¼1

�wi;tðFi�t � FiÞ; ð1Þ

where FSE is the forecast of the super-ensemble, Fi�t rep-

resents the ith model forecast value, Fi the mean of the ith

model in the running training period, �wi;t the mean weight

of the ith model at time t, Ot the mean observed value

during the training period, and N is the number of models.

During the training period, the weights of each time step

satisfy the equation
PN

i¼1 wi ¼ 1, and according to the lag

correlation coefficient, more importance would be given to

the several latest samples when calculating the average

weight coefficients �wi;t in the training period. In this way,

training samples closer to forecast would gain more im-

portance so that the effect of changing model configuration

could be eliminated to some extent (Zhi et al. 2011, 2012;

Zhang and Zhi 2015).

However, even with a running training period (sliding

window) in the super-ensemble, all observations and

forecasts are equally important during this period if no

weight is given to the latest information. Actually, the

importance of the observed values will rise over time.

Therefore, a method that automatically adjusts the weights

and adapts model changes can be of great advantage (Shin

2001; Vandenbulcke et al. 2009). This view is somewhat

similar to the data assimilation technique: starting from the

training period prediction period

: observations
time line

Fig. 1 Schematic representation of the multi-model method of non-

equal weights
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best guess, weights change during the training period, and

thereafter they are instantly updated after the latest obser-

vations have been included. And finally, weights remain

unchanged and are used for prediction. For another fore-

cast, the cycle begins again. The Kalman Filter has a sig-

nificant influence on data assimilation and model post-

processing, and it has been demonstrated as a powerful tool

for eliminating systematic errors (Evensen 1997; Evensen

and van Leeuwen 2000). Using data assimilation tech-

niques such as the Kalman Filter and particle filter, Shin

and Krishnamurti (2003), Rixen et al. (2009), Vandenbul-

cke et al. (2009), and Lenartz et al. (2010) introduced

dynamically evolving weights in a linear combination of

models. This tool can automatically discard old informa-

tion and dynamically adjust the weights in accordance with

the latest information available, and the weights are

transformed according to the uncertainty of forecasts and

observations.

The Kalman Filter equations can generally be divided

into the following two parts:Forecast:

Wf
t ¼ IWa

t�1; ð2Þ

Pf
t ¼ IPa

t�1I
T þ Q; ð3Þ

where superscript f denotes the forecast and a the analysis.

W is the state vector, which contains the weights of the

models involved in multi-model ensembles. I is the identity

matrix, because we have little knowledge about the

weight’s evolution. In Eq. (2), the latest analysis weights

are used as forecast weights, assuming that the combination

of member models remains optimal at short term. The

weight error covariance matrix is P; and Q is the model

error covariance matrix. Initially, both P and Q are di-

agonal, but non-diagonal elements in P become non-zero

with time, whereas Q remains unchanged throughout the

process. The sum of the former matrices will approach zero

along with the iteration of the algorithm, which shows a

sign of convergence. Although initial values in P are ran-

dom, they had not been given as all-zero to avoid the de-

fault W being optimal. A substantial number of trials

conducted by us have shown that Q\10�2 provides a

relatively optimal result, because if Q is too large, P would

never diminish in Eq. (3).Analysis:

Kt ¼ Pf
tH

T
t ðHtP

f
t H

T
t þ RÞ�1; ð4Þ

Wa
t ¼ Wf

t þ KtðYt � HtW
f
t Þ; ð5Þ

Pa
t ¼ Pf

t � KtHtP
f
t ; ð6Þ

Observed values are represented by the vector Y , and H is

the observation operator, which contains model forecasts

and projects them to Y . Combined with Eq. (8), it can be

seen that Yt � HtW
f
t yields forecast residual in Eq. (5).

Equation (5) is a fundamental formula that connects

forecasts and observations, where Kalman gain matrix K is

a scale coefficient. Also, K is one of the indicators to

measure convergence of the algorithm. R is the observation

error covariance matrix, containing instrumental errors and

errors caused by the observation operator H. It is quite a

difficult task to estimate R, even in a linear system (Kalman

1960), so we empirically take the standard deviation of the

observed value as R. Finally, the state vector W is initial-

ized by homogeneous model weights equal to 1
N
.

Typhoon positions can be simply denoted as complex

numbers, with the real and imaginary part representing

latitude and longitude, respectively. During the experiment,

an augmented complex extended Kalman Filter (ACEKF)

method was also used (Goh and Mandic 2007; Vanden-

bulcke et al. 2009). All initial vectors or matrices are ex-

panded in the following form:

Eexp ¼ Ereal 0

0 Eimag

� �
: ð7Þ

Therefore, apart from the length of the observation

vector being equal to 2, and the width being double, the rest

of the vector lengths are doubled and the widths become 2.

As a benefit, the error covariance matrix will evolve as a

whole and gradually optimizes.

Finally, the forecast expressions yield

Ft ¼
XN

i¼1

Wf
t Ht: ð8Þ

To summarize, the Kalman Filter was used to allow a

dynamic evolution of the model combinations. It was as-

sumed that the error statistics followed a normal distribu-

tion; however, owing to a lack of error and model

information, we did not test this assumption. Particle Fil-

tering could be another possible way to neglect the Gaus-

sian distribution requirement, but would significantly

increase the amount of computation (Rixen et al. 2009).

Non-immediacy of calculated weights, empirical esti-

mates of the observation and model error covariance ma-

trix, and uncertainty of error distribution patterns require a

calibration of the final results, especially at the beginning

of a typhoon forecast. By studying the error of each model

in the training phase, we propose the following relatively

simple method of correction: in the forecast period, the

range of model forecasts is

Ddt ¼ maxðHtÞ �minðHtÞ ð9Þ

If

Ft [maxðHtÞ þ Ddt or Ft\minðHtÞ � Ddt ð10Þ

The sum of W will be revised to 1. Although no other

mathematical constraint is added to W, we still want the

sum of W to be approximately equal to 1, and each com-

ponent in W to be within the range 0–1. After several trials,
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we found that this process effectively reduces the initial TC

track forecast uncertainty, decreasing the overall mean

absolute track error by about 10 km.

For verification of the single model and evaluation of

the multi-model ensemble forecasts, the root-mean-square

error was employed:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðFi � YiÞ2
s

; ð11Þ

where Fi is the ith sample forecast and Yi is the corre-

sponding observed value. The RMSE can be decomposed

into two terms: (1) the average deviation of the model and

the observed ðbiasÞ; and (2) the overall amplitude and

phase disagreement between the variable part of the two

variables ðunbiased RMSEÞ. The bias and unbiased RMSD

are

bias ¼ 1

n

Xn

i¼1

Fi � Yij j; ð12Þ

URMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ððFi � FiÞ � ðYi � YiÞÞ2
s

; ð13Þ

which are linked with RMSE:

RMSE2 = bias2þURMSE2: ð14Þ

4 Results

We took TCs, TSs and typhoons from the whole year of

2010 and prior to June 2011 as the training set, and used

TCs, TSs and typhoons after June (inclusive) as forecasts.

For 2010 and 2011, the western Pacific season had 35

named tropical systems. Due to differences in the length of

the data at each center, the 24-, 48- and 72-h lead time

forecasts were handled separately; the information is

summarized in Table 1.

The ensemble mean, super-ensemble and Kalman Filter

approach were all employed to forecast tropical system

tracks and intensities in the western North Pacific after

June 2011. Figure 2 illustrates the overall forecast skills of

the member models, their ensemble mean, super-ensemble,

and Kalman Filter. All of these track and intensity forecasts

were compared. Note that for all lead times, the meridional

deviations (circles) of individual models and multi-model

techniques are significantly less than the zonal ones

(squares), indicating the ability to forecast tropical sys-

tems’ west–east trends is relatively weak. Also, for longer

lead times, model forecast uncertainties increase. Com-

pared with 24-h predictions, the mean absolute track errors

for 72 h are almost doubled (Fig. 2d).

Apparently, the mean absolute errors (MAEs) or RMSEs

of the Kalman Filter are less than those of multi-models,

the ensemble mean and super-ensemble for a given set of

track forecasts during the whole 72 h. In the longer forecast

range, the superiority of the Kalman Filter and super-

ensemble is more obvious, especially for track forecasts.

Therefore, the Kalman Filter can provide more useful and

reliable operational guidance than any specific model or

other multi-model technique. Comparing the four member

models, ECMWF almost always outperforms the others,

both in terms of the track and intensity forecast.

The relative improvement in the intensity forecast is less

than that of the track forecast. The main reason for this may

be that all models adopted in our research are global

NWPs, with the highest horizontal grid resolution (in

ECMWF) being about 27 km, which is much too coarse to

properly resolve the inner core of a mature tropical cy-

clone. Nevertheless, unlike the ensemble mean and super-

ensemble, the Kalman Filter does indeed, to some extent,

enhance the intensity forecast both in terms of average

intensity deviation (AID) and correlation, with respect to

reanalysis data (Fig. 2a–c, shading).

4.1 Track forecasts for typhoons after June 2011

There were 19 named tropical systems after June 2011, in-

cluding some tropical storms with short lifetimes. Given that

the length of the forecast data from each agency is incon-

sistent, five storms were excluded: Sarika (1103), Tokage

(1107), Noru (1113), Banyan (1120), and Washi (1121).

The mean absolute track errors for all of the tropical

systems from the participating multi-models and the

ensemble mean, super-ensemble and Kalman Filter are

summarized in Table 2. To assess the forecast skill, all

forecasts from the multi-model technique are homogeneous

comparisons under the same conditions and constraints.

Similar to Fig. 2, the MAEs of the Kalman Filter are less

than those of multi-models, and of the ensemble mean and

super-ensemble, during the 3-day forecast. The reduction in

MAE compared with the best individual model (ECMWF) is

quite substantial—about 100 km for the 72-h forecast. Apart

from tropical storm Kulap (1114) and Meari (1105), whose

life cycles were relatively short, forecasts from the Kalman

Filter regularly outperform those of multi-models, and of the

ensemble mean and super-ensemble, significantly improving

the forecasting skill and showing stability and consistency.

In terms of the weakness in forecasting Kulap and Meari,

this is because a convergent process is shown in the Kalman

Filter, which takes several steps for K and P to approach

zero. Even so, the forecast is still superior to most multi-

models. In short, these reductions of MAE provided by the

Kalman Filter are encouraging.
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The forecasts obtained from the super-ensemble also

significantly outperform the ensemble mean and par-

ticipating models in most cases. However, sometimes, the

prediction from individual models is better than that from

the super-ensemble, such as in the forecast for typhoon

Nanmado (1111) and Haima (1104). Both cases are of

same traits that more than three participating models show

similar MAEs. The small variation in MAE between them

suggests either limited skill, especially in the longer range,

or low correlation with regard to observations, which has a

negative effect on the super-ensemble weight coefficients

(Williford et al. 2003). Overall, the super-ensemble is more

selective in the bias removal of member models and shows

advantage over the equal weight ensemble mean approach.

Although there were 10 typhoons after June 2011, we

only illustrate the track forecasts for certain typhoons;

namely, Muifa (1109), Talas (1112) and Roke (1115), whose

life cycles were longest among the 10 typhoons. The track

forecasts for typhoon Muifa are shown in Fig. 3a–c. These

figures show the official best track determined by the JTWC

in post analysis, along with the forecasts of the best indi-

vidual model (ECMWF), the ensemble mean, super-

ensemble and Kalman Filter forecasts. The Kalman Filter

forecast tracks are generally superior to the other models,
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especially for the 24- and 48-h forecasts. For the 72-h

forecast, all the other models (CMA, JMA and NCEP are not

shown in the figure, but are reflected by the tracks predicted

by the ensemble mean) except the Kalman Filter predict

frequent landfall in the provinces of Fujian, Zhejiang,

Jiangsu, Shandong and Liaoning. Any false alarms would

affect people in these regions in that they would be told to

evacuate their homes. However, even though the Kalman

Filter forecasts are more reliable in terms of landfall posi-

tion, one of the notable problems during the 72-h forecast is

that the after-landfall typhoon forecasts show an opposing

tendency of moving track on the last day. Much effort has

Table 2 The mean absolute errors of tropical cyclones (TCs) within the 72-h forecasts during the whole forecasting period of 2011

Name ID Leading time Forecast life CMA ECMWF JMA NCEP Ensemble mean Super-ensemble Kalman Filter

Average – 24 – 145.2 121.3 153.0 145.8 131.0 117.3 77.8

48 221.0 164.7 219.5 222.9 188.0 140.4 108.6

72 328.4 238.4 321.5 325.0 270.1 194.8 143.9

Haima (TS) 1004 24 4 168.9 129.7 149.6 162.7 146.7 222.1 89.9

Meari (TS) 1005 24 4 192.8 173.9 199.4 205.8 184.8 161.2 146.3

48 3 249.1 186.3 298.2 269.0 241.8 193.6 216.2

72 2 240.9 227.6 469.1 378.7 279.1 210.4 272.4

Ma-on (T) 1106 24 10 139.7 117.1 151.3 145.2 126.4 119.9 82.6

48 9 197.3 151.7 200.8 190.3 168.0 140.3 111.3

72 8 330.6 202.6 268.3 246.6 223.0 187.6 151.5

Nock-ten (TS) 1108 24 4 168.0 131.4 177.8 174.9 156.1 139.0 70.1

48 4 268.8 213.2 352.2 305.5 281.1 137.2 131.7

72 3 371.9 278.7 502.9 474.6 401.0 220.0 154.0

Muifa (T) 1109 24 11 96.7 106.7 123.3 127.9 104.4 93.6 54.6

48 10 184.6 164.6 192.0 191.5 150.4 120.9 79.1

72 9 356.2 238.8 274.4 275.5 229.7 173.2 125.1

Merbok (TS) 1110 24 6 178.5 142.1 191.3 183.7 165.3 94.4 83.6

48 5 351.2 210.1 305.8 250.9 263.1 162.9 106.2

72 4 547.8 350.7 492.2 349.1 388.4 212.6 203.5

Nanmado (T) 1111 24 7 86.6 71.3 115.6 78.8 75.9 109.2 45.1

48 6 152.8 138.9 223.0 176.0 148.0 163.8 84.3

72 5 150.5 230.5 340.9 313.2 231.5 244.0 117.1

Talas (T) 1112 24 8 80.4 62.9 95.9 86.5 73.2 70.7 53.2

48 7 111.0 77.3 99.1 125.2 93.0 79.6 70.3

72 7 169.6 123.0 198.4 182.2 145.9 132.3 108.3

Kulap (TS) 1114 24 2 205.5 115.5 191.3 168.1 151.9 82.4 121.1

48 2 374.2 145.7 186.0 208.2 189.1 150.2 181.2

Roke (T) 1115 24 8 130.6 119.7 145.6 127.0 120.9 117.1 68.7

48 6 219.0 165.4 215.8 225.9 196.8 126.9 86.4

72 6 384.5 304.4 350.3 367.0 343.3 202.0 130.6

Sonca (T) 1116 24 4 261.6 225.7 255.1 217.5 235.7 193.7 196.1

48 3 255.0 241.9 237.5 274.3 224.1 231.1 193.4

Nesat (T) 1117 24 6 203.1 140.9 190.5 194.3 176.8 146.2 67.4

48 5 262.5 161.8 272.1 329.3 253.4 170.5 90.5

72 4 425.0 243.7 397.5 492.0 384.1 257.2 111.2

Haitang (TS) 1118 24 2 177.7 69.1 48.9 37.9 52.4 128.7 28.8

Nalgae (T) 1119 24 7 147.6 145.2 159.2 168.4 139.0 75.0 67.5

48 6 261.2 203.5 201.5 275.0 204.6 117.5 128.6

72 5 374.0 281.6 265.3 455.4 295.9 192.9 178.9

Values in bold (italics) are minimum (maximum) errors

TS tropical storm, T typhoon
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been invested to identify the reason. Even though the track

forecasts from other member models were over land (not

shown in Fig. 3c, but apparent from track of the ensemble

mean in the yellow box) while the typhoon was still over the

ocean, the forecasts from ECMWF are much more accurate

than the others. Therefore, the Kalman Filter could take

advantage of the forecasts from ECMWF (its weight is

dominant in the algorithm) and improve the prediction.

However, when the track reaches above 36�N, all forecasts

converge to Liaoning Province, far from the actual landfall

position of Muifa (not shown, but apparent from the track of

the ensemble mean in the green box). That is, small varia-

tions of longitude forecast between the models result in the

Kalman Filter forecasts moving westward, which can in-

tercept the opposite tendency of the observed track. Nev-

ertheless, the precision of the latitudinal forecast being much

more accurate than all the other models should be empha-

sized. The forecasts from all multi-models are far from the
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Fig. 3 The a 24-, b 48- and c 72-h track forecasts for typhoon Muifa

from the best individual model (that of the European Centre for

Medium-Range Weather Forecasts, ECMWF), the ensemble mean

(mean), super-ensemble (SE), and Kalman Filter (Kalman). Initial

conditions: 1200 UTC 29 Jul 2011, 1200 UTC 31 Jul 2011 and 1200

UTC 31 Jul 2011 for the 24-, 48- and 72-h forecasts, respectively
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Fig. 4 As in Fig. 3, but for typhoon Talas and initial conditions of 1200 UTC 25 Aug 2011, 1200 UTC 27 Aug 2011 and 1200 UTC 28 Aug

2011 for the 24-, 48- and 72-h forecast, respectively
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landfall position of Muifa on the last day, but the super-

ensemble still produces a correct forecast. This is because

the super-ensemble takes advantage of the mean observed

value Ot during the training period to adjust the track

forecast, while the Kalman Filter only makes use of the

latest observation and forecasts, which are unreliable up to

36�N.

The predicted and reanalysis best tracks for typhoon

Talas and Roke are illustrated in Figs. 4 and 5. Again, we

note the overall superior performance of the Kalman

Filter. However, the 72-h forecast for Talas is not im-

pressive for any of the models or the multi-model tech-

niques. Given that it has a circular track, and all models

predict tracks far behind the reanalysis best track,
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Fig. 5 As in Fig. 3, but for typhoon Roke and initial conditions of 1200 UTC 14 Sep 2011, 1200 UTC 15 Sep 2011 and 1200 UTC 16 Sep 2011

for the 24-, 48- and 72-h forecasts, respectively
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forecasting Roke offers a major challenge for all par-

ticipating models. As the comparison in Fig. 5 shows, the

forecasts of Roke by the Kalman Filter demonstrate su-

periority compared to the ECMWF- and ensemble mean-

predicted tracks—a result that is especially noteworthy in

the 72-h forecasts (Fig. 5c).

Figures 3, 4 and 5 also indicate that the early typhoon

forecasts from the Kalman Filter are relatively less ac-

curate compared to its later forecasts. Initially, feeding

new TC, TS or typhoon information derived from indi-

vidual models as inputs into the Kalman Filter, a new

iteration cycle begins. However, the algorithm cannot

converge within two or three steps, so the early forecasts

are relatively less accurate, as demonstrated by the fore-

casts of Talas and Roke. When the typhoon moving track

is approximately a straight line or in a stable state, the

Kalman Filter is able to accurately predict the typhoon

moving process. Even when the typhoon turns sharply, the

Kalman Filter is still superior to the other approaches

(Fig. 5).

4.2 Intensity forecasts for key typhoons

Intensity prediction has always been a difficult issue for

tropical NWP (Williford et al. 2003; Kumar et al. 2003;

DeMaria et al. 2014). As Fig. 1a–c show, a slight im-

provement is apparent in the 72-h forecast from the Kal-

man Filter. The biases are reduced by about 3–5 hPa

compared to the member models, and the mean correlation

coefficients increase by about 0.2. The intensity forecasts

of Muifa and Talas are shown in Fig. 6. Similar to the track

prediction, the central mean sea level pressure in the ty-

phoon forecasts by the Kalman Filter produces relatively

smaller errors in comparison to the member models and

other multi-model techniques. Figure 6a shows that the

Kalman Filter forecasts are highly correlated with the re-

analysis data (see also Fig. 1a–c), but with small fluc-

tuations during the forecast period. In contrast to Fig. 6a,

the forecasts from both the super-ensemble and Kalman

Filter are poorly correlated with JTWC data in Fig. 6b.

Although the forecasts from the member models and
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ensemble mean exhibit higher correlation, they all over-

estimate the intensity of Talas by almost 15 hPa.

Overall, the improvement in the intensity forecast is less

than that of the track forecast. Since global NWPs are too

coarse to resolve the inner core of a mature tropical cy-

clone, intensity forecasts should be carried out more di-

rectly using higher resolution models.

5 Concluding remarks and future outlook

Three approaches (the ensemble mean, super-ensemble and

Kalman Filter) were used to predict TCs’ tracks and in-

tensities in the western Pacific region based on the TIGGE

data during 2010 and 2011. The differences between

forecasts and observations showed that the Kalman Filter

technique, as a dynamically adapting multi-model method,

performed best, considerably reducing the forecast error of

TC track and intensity. Quantitatively, compared to the

best single model (ECMWF), the MAEs of the 24-, 48- and

72-h track forecasts were reduced by roughly 50, 80 and

100 km, respectively, and the AIDs were also reduced, by

3–5 hPa. In addition, in comparison to the other two

methods, the track and intensity forecasts measured by

central mean sea pressure also improved.

Given the low number of TC samples, and the fact that

multi-models often undergo significant updates, a cross-

validation approach in which all other TCs are used to

determine the weighting coefficients, except the one being

predicted, is frequently used in super-ensemble TC fore-

casting. However, the cross-validation technique disorders

the chronology of the typhoons and, therefore, this method

is difficult to apply operationally. Several measures can be

employed to solve this problem to a certain extent, such as

using principal component analysis and stepwise regression

to select participating models more objectively.

However, the Kalman Filter is easy to apply op-

erationally, even though its early forecasts may be

relatively inaccurate compared to its later predictive skill.

More investments in participating models and the

observation-error covariance matrix may help to speed up

the convergence rate of the algorithm and thus improve the

forecast performance in the early stages of its application.

Although the Kalman Filter technique shows considerable

advantages for the whole 72-h forecast, data shortages

make it impossible to provide forecasts for the 120-h and

longer lead times. Using the central mean sea pressure as

an indicator of TC or typhoon strength is also not entirely

satisfying. Still, it is a promising multi-model technique for

improving operational TC track and intensity forecasting,

and this method can also be applied to other meteorological

variables or fields, such as temperature, precipitation and

winds.
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