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Abstract A new approach to ensemble forecasting of

rainfall over India based on daily outputs of four opera-

tional numerical weather prediction (NWP) models in the

medium-range timescale (up to 5 days) is proposed in this

study. Four global models, namely ECMWF, JMA, GFS

and UKMO available on real-time basis at India Meteo-

rological Department, New Delhi, are used simulta-

neously with adequate weights to obtain a multi-model

ensemble (MME) technique. In this technique, weights for

each NWP model at each grid point are assigned on the

basis of unbiased mean absolute error between the bias-

corrected forecast and observed rainfall time series of 366

daily data of 3 consecutive southwest monsoon periods

(JJAS) of 2008, 2009 and 2010. Apart from MME, a

simple ensemble mean (ENSM) forecast is also generated

and experimented. The prediction skill of MME is

examined against observed and corresponding outputs of

each constituent model during monsoon 2011. The inter-

comparison reveals that MME is able to provide more

realistic forecast of rainfall over Indian monsoon region

by taking the strength of each constituent model. It has

been further found that the weighted MME technique has

higher skill in predicting daily rainfall compared to

ENSM and individual member models. RMSE is found to

be lowest in MME forecasts both in magnitude and area

coverage. This indicates that fluctuations of day-to-day

errors are relatively less in the MME forecast. The inter-

comparison of domain-averaged skill scores for different

rainfall thresholds further clearly demonstrates that the

MME algorithm improves slightly above the ENSM and

member models.

1 Introduction

Forecasting of rainfall over the Indian region is a chal-

lenging task, since monsoon constitutes the major weather

system that affects the economy of a large population.

During last two decades, numerical weather prediction

(NWP) models have acquired greater skill and played an

important role in the weather forecasting. The rainfall

prediction skill of NWP models is still not adequate to

address satisfactorily detailed aspects of Indian summer

monsoon because of large spatial and temporal variability

of rainfall and some inherent limitations of NWP models.

The foundation of these models is deterministic model

based on some initial conditions, which neglect small-scale

effects and also approximate complicated physical pro-

cesses and interactions. During the 1960s, Lorenz (1963,

1965) investigated the fundamental aspects of atmospheric

predictability in the study of butterfly effect and showed

that no matter, how good the observations or how good the

forecasting techniques, there is almost certainly an insur-

mountable limit as to how far into the future one can

forecast. He demonstrated that weather, even when viewed

as a deterministic system, may have a finite prediction time

(1963). Further, predictability varies with different weather

situations (1965). NWP models lose skill due to model

errors arise as a result of errors both in the initial conditions

and in the forecast model itself.
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In order to overcome the shortcomings in observing

systems and model physics, a new approach known as

ensemble prediction systems (EPSs) have been used in

operations at the European Centre for Medium-Range

Weather Forecasts (ECMWF) (Molteni et al. 1996) and the

US National Centers for Environmental Prediction (NCEP)

(Tracton and Kalnay 1993) and the Canadian Meteoro-

logical Centre (CMC) (Houtekamer et al. 1996, 2009).

Buizza and Palmer (1998) have shown in their study that

the greater the number of ensemble members the greater

the skill of the final ensemble prediction. As a result, some

operational centers run large numbers of model integra-

tions to produce their ensemble forecasts (Buizza et al.

1999; Kalnay et al. 1998). The implicit assumption with

most single-model EPSs is that errors result primarily from

uncertainties in the initial conditions. A drawback with this

single-model EPS approach is that any biases present in the

model itself will also be present in the ensemble.

Another ensemble forecasting approach that has been

taken to address the single-model EPS issues are to com-

bine forecasts from more than one NWP model. In this

approach, the ensemble is composed of output from dif-

ferent NWP models and/or initial times, rather than a single

model with perturbed initial conditions to take into account

the uncertainty in the model formulation and initial con-

ditions. Hamill and Colucci (1997, 1998) combined

ensembles from the NCEP Eta model and regional spectral

model to generate improved short-range forecasts of

probability of precipitation. Krishnamurti et al. (1999,

2000) introduced a multi-model super ensemble technique

that shows a major improvement in the prediction skill.

The consideration of multiple NWP models is based on

considering various possible weather scenarios which give

the uncertainty in initial conditions, and model formula-

tions lead to more accurate forecasts (Fritsch et al. 2000).

The precision of the consensus forecasts should be better as

more of the uncertainties are accounted for, and the value

of individual consensus members is determined not only by

their accuracy but also the relationships between members.

A multi-model multi-analysis ensemble system was

reported to evaluate the deterministic forecasts from

UKMO and ECMWF ensemble data (Evans et al. 2000)

and depicts the superiority of the multi-model system over

the single-model data. Richardson (2001) showed that

simple ensemble mean and simple bias correction provide

better forecasts as compared to the individual member

models. Multi-model multi-analysis data were also studied

using ECMWF and UKMO ensemble outputs for quasi-

operational medium-range forecasting (Mylne et al. 2002)

in both probabilistic and deterministic manner. It was

observed that the MME is more beneficial than a single-

model ensemble prediction system (EPS). Johnson and

Swinbank (2009) used the ECMWF, UKMO and GFS

global model data to prepare multi-model ensemble pro-

ducts in medium-range prediction and discussed the fore-

casts using bias correction, model-dependent weights and

variance adjustments. It was observed that multi-model

ensemble gives an improvement in comparison with simple

ensemble mean. Krishnamurti et al. (2009) claimed that the

super ensemble is able to produce the lowest root mean

square error (RMSE), providing roughly 20 % improve-

ment over the best model.

Roy Bhowmik and Durai (2010, 2012) used the correla-

tion coefficient (CC) method to find weights for member

model and then make a multi-model ensemble (MME)

product. However, the benefit of giving weights to member

models over a simple ensemble mean (giving equal weights)

was not documented there. In recent studies, the MME pre-

cipitation forecast for Indian monsoon was reported by Mitra

et al. (2011) and Kumar et al. (2012). By downscaling the

model data to a uniform resolution and by use of ensemble

technique, they have reported skill enhancement of precipi-

tation forecasts in medium range for the Indian monsoon

region. Recently, Engel and Ebert (2012) have studied the

operational consensus forecasts of 2-m temperature over

Australia region using regional and global model outputs and

discussed that the bias-corrected weighted average consensus

forecast at 1.25� outperforms all models at that scale.

In the present study, a new MME technique is intro-

duced to forecast rainfall over India using four operational

global NWP models data available on near real time at

India Meteorological Department (IMD), New Delhi. The

main purpose of this study was to evaluate the MME

rainfall forecast skill improvement over India in short- to

medium-range timescale during summer monsoon 2011.

Apart from MME, a simple ensemble mean (ENSM)

forecast is also generated and experimented. The prediction

skill of the member models, ENSM and MME technique is

examined and discussed in terms of different statistical

skill scores in spatial and temporal scales. This paper

comprises of five sections. Section 2 gives a brief

description of observed and model data. The MME meth-

odology used in this work is described in Sect. 3. Results of

prediction skills are presented in Sect. 4. Finally, the

summary and concluding remarks are given in Sect. 5.

2 Data source

2.1 Numerical models

In this study, the day 1 to day 5 rainfall forecast data from

four operational global NWP models, namely European

Centre for Medium-Range Weather Forecasts (ECMWF),

the US National Centers for Environmental Prediction

(NCEP)’s global forecasting system (GFS), UK Met Office
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(UKMO) and Japan Meteorological Agency (JMA), are

used. Details of the models used for this study are provided

in Table 1. ECMWF global model (Persson and Grazzini

2007) runs at 20-km horizontal grid resolution and 91

vertical layers. NCEP/GFS (Kanamitsu 1989) runs at

27-km horizontal grid and 64 vertical layers. UKMO model

runs at 40-km horizontal grid and 50 vertical layers (Davies

et al. 2005). JMA (Saito et al. 2006) model runs at 20-km

horizontal grid and 60 vertical layers. Here, the 00 UTC

run of all models (except JMA) is used to generate 24-h

accumulated rainfall forecast valid for 00 UTC of the next

5 days. For JMA, 00 UTC run is used to generate forecast

valid for 00 UTC of day 1, day 2 and day 3, and JMA 12

UTC run the previous day is used to generate 24 h rainfall

accumulation of 84–108 h forecast valid for 00 UTC of day

4, and 108–132 h forecast valid for 00 UTC of day 5. The

model data used are at 1� 9 1� uniform latitude/longitude

resolution, to represent the large-scale aspect of the mon-

soon rainfall. These models were being run at their

respective centers (countries) at a higher horizontal and

vertical resolution. Thus, the individual NWP model sim-

ulation is done at higher spatial scales than the MME

results which have been analyzed at 1� 9 1� uniform lat-

itude/longitude resolution in this study.

2.2 Observational data

The daily observed (rain gauge) rainfall data from the India

Meteorological Department (IMD) are quality controlled

and objectively analyzed at 1� 9 1� latitude–longitude grid

(Rajeevan et al. 2005). The objective technique used for

this rainfall analysis is based on the Cressman interpolation

method (Cressman 1959). The Cressman weight function

used in the objective rainfall analysis is defined by

Wðri;mÞ ¼
R2 � r2

i;m

R2 þ r2
i;m

� �2

; for ri;m\R

¼ 0; for ri;m�R

where R is the radius of rainfall influence (R = 200 km),

and ri,m is the distance of the station from the grid point in

km.

The analyzed observed rainfall (rain gauge) used for the

study is accumulated rainfall in the 24 h ending 0830 h IST

(0300 UTC). The final daily rainfall analysis data at the

resolutions of 1� 9 1� are prepared by merging rain gauge

observations data for the land areas and Tropical Rainfall

Measuring Mission (TRMM) 3B42V6 data for the sea

areas (Durai et al. 2010). The temporal and spatial distri-

butions of observed and model predicted rainfall have been

studied. The accumulated values of seasonal rainfall, sea-

sonal mean errors and root mean square errors have been

compared. High-quality rainfall observations are key ele-

ments of MME because the gridded rainfall analysis data

are used to update bias correction and compute weights for

the member models. In India, the synoptic observation of

rainfall is performed over a 24-h period ending at 0300

UTC. Hence, we have verified the model forecast valid at

00 UTC against the observed rainfall analysis (rain gauge)

ending at 0300 UTC. The error caused by the timing

mismatch is usually negligible compared to model forecast

errors.

3 Methodology

In this MME approach, the first step is to estimate the

biases of the individual model. The second step is to apply

bias correction to each individual model and generate bias-

corrected ensemble mean (ENSM) forecast. In the ENSM

forecast, all the individual member models have been

assigned same weight while carrying out ensemble mean.

Initially, equal weight averaging appears to be a poor

algorithm because it assigns the same weight to all fore-

casts irrespective of their relative historical or theoretical

merit. It is likely that some models exhibit more skill than

other models in certain situations, and the best individual

model forecasts are contaminated by the worst model.

Therefore, it is sensible to estimate model-dependent

weights. In view of this, in the third step, we have com-

puted the model-dependent weights and generated weigh-

ted MME forecast.

3.1 Systematic bias estimation

For obtaining the bias-corrected ENSM forecast, the first

step is to remove the systematic error (bias) in the

Table 1 Characteristics of NWP model used for MME forecasts at IMD

Model (global) Type Lag (h) Spatial resolution Temporal resolution

ECMWF Spectral model 00 UTC 0.25 0–168 h, 6 hourly

UKMO Finite-difference model 00 UTC 1.0 0–144 h, 12 hourly

JMA Spectral model 00 12 UTC 0.25 0–84 h, 6 hourly

0.25 0–264 h, 6 hourly

NCEP–GFS Spectral model 00 UTC 1.0 0–171 h, 3 hourly
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models at each grid point. The bias parameter (bi, j, k) at

each grid point (i, j) for model k is provided by the best

easy systematic estimator (BES). Many meteorological

studies (Fritsch et al. 2000; Engel and Ebert 2012) used

the BES as the measure of the center of the historical

sample in operational consensus forecasting. For the

computation of systematic bias at each grid point, the

global model (k) forecasts Fi,j,k and observed rainfall

analysis Oi,j of the same forecast hour from three con-

secutive monsoon periods, i.e., from 1 June to 30 Sep-

tember 2008, 2009 and 2010 (366 days) have been used.

The best easy systematic bias (BES) at each grid for

each model (k) is given as

bi;j;k ¼ ðQ1 þ 2Q2 þ Q3Þ=4

where Q1, Q2 and Q3 are the forecast minus observed

(Fi,j,k - Oi,j) error of first, second and third quartiles of the

distribution of daily bias errors, respectively.

3.2 Ensemble mean (ENSM)

For obtaining the bias-corrected ENSM forecast, the first

step is to remove the systematic error (bias) in the models

at each grid. At each grid point, the bias parameter (bk) for

model k is estimated by the best easy systematic (BES)

estimator. The bias correction scheme attempts to estimate

the current systematic error at each grid using a modified

mean of past errors. The bias-corrected ensemble mean

(ENSM) forecast is computed as

ENSM ¼ 1

N

X4

K¼1

½Fi;j;k � bi;j;k�

where N is the total number of models used in the ensemble

forecast.

3.3 Multi-model ensemble (MME)

In this method, the random errors of the member models

(after bias correction) are then used to generate the

weighting parameters to make a MME product. Roy

Bhowmik and Durai (2010) used the linear correlation

coefficient method to find weights for member model and

then make a multi-model ensemble product. In order to

generate a MME method, firstly, the model outputs of

constituent member models are interpolated at the uniform

grid resolution of 1� 9 1� lat/long for the domain from lat

0� to 40� N and long 60�E to 100�E. Secondly, the weight

for each model and for each grid is determined objectively

by computing the unbiased mean absolute error (UMAE)

between the bias-corrected forecast and observed rainfall

time series of 366 daily data of 3 consecutive southwest

monsoon periods (1 June–30 September of 2008, 2009 and

2010). Weights are lower for component forecasts with

greater UMAE during the training periods (t = 1, 2….,

366 days), and the sum of weights is constrained to equal

one. The unbiased mean absolute error (UMAE) is given

as

UMAEi;j;k ¼
1

N

Xn

t¼1

Fi;j;k � bi;j;k � Oi;j

�� ��

where i ¼ 1; 2; . . .; 41, j ¼ 1; 2; . . .; 41:
The model-dependent weighting parameters Wi;j;k for

each grid point (i, j) of each model (k) are then obtained

using an inverse UMAE from the following equation:

Wi;j;k ¼
ai;j;kP4

k¼1 ai;j;k

and ai;j;k ¼
1

ðUMAEÞi;j;k

where i ¼ 1; 2; . . .; 41, j ¼ 1; 2; . . .; 41:
For the computational consistency, the UMAE is taken

as 0.01 in case UMAE is equal to 0. Deficiency in either

bias removal or weighting may result in a suboptimal

consensus forecast. Another practical point of consider-

ation is the normalization of the weighting. With not all

models available at all hours, the influence of individual

models can vary between forecast hours. Normalized

weighting of model forecasts also varies between forecast

hours due to the relative skill of the models at each hour

through the forecast period.

The final MME forecast is generated from the model-

dependent weight and bias-corrected component forecasts

using the equation.

MME ¼ 1

N

Xk¼4

k¼1

Wi;j;k Fi;j;k

where i ¼ 1; 2; . . .; 41, j ¼ 1; 2; . . .; 41:

This method is applied to prepare day 1 to day 5

forecasts of daily rainfall during the summer monsoon (1

June–30 September 2011) using the rainfall prediction of

constituent models with the pre-assigned grid point

weights.

4 Evaluation of MME prediction skill

The standard procedure for the model rainfall forecast

verification (WMO No 1992) is to compute mean error,

root mean square error (RMSE) and correlation coefficient

(CC) between forecast and analyzed fields valid for the

same verification time. In this study, the error statistics

(mean error, RMSE, CC and skill score) based on the daily

rainfall analysis and corresponding day 1 to day 5

ensemble forecasts have been computed. A quantitative
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inter-comparison of error statistics among the constituent

models and the bias-corrected ensemble mean and multi-

model ensemble forecast are discussed. In order to examine

the performance of the model in different homogeneous

regions of the country, we selected (Fig. 1) six represen-

tative regions for (1) northwest India (NW: lon: 75E–80E,

lat: 25N–30N), covering Rajasthan and Haryana, (2) Cen-

tral India (CE: lon: 75E–80E, lat: 19–24N), covering

Vidarbha and neighborhoods, (3) East India (EI: lon: 83E–

88E, lat: 20–25N), covering Orissa and neighborhoods, (4)

northeast India (NE: lon: 90E–95E, lat: 24N–29N), cov-

ering Assam and neighborhoods (5) west coast of India

(WC: lon: 70E–75E, lat: 13N–18N), covering Konkan-Goa

and (6) south peninsular India (SP: lat 12�N–17�N; lon

76�E–81�E), covering Royalseema and neighborhood. The

reason for selecting these domains is related to the known

important synoptic circulation features of the large-scale

Indian monsoon system and the associated rainfall over the

regions.

An approach based on hypothesis testing (Wilks 1995;

Hamill 1999) for comparing the performances of two

forecast systems is adopted. The hypothesis for difference

in RMSE between MME and member models, namely

ECMF, UKMO, JMA, GFS and ENSM, is written as

H0 : RMSEMME � RMSEMEM ¼ 0

Ha : RMSEMME � RMSEMEM 6¼ 0

where H0 is the null hypothesis, and Ha is the alternate

hypothesis. RMSEMME and RMSEMEM are the population

RMSEs of the MME and member model.

The paired t test requires a vector of the daily differ-

ences in RMSE between MME and individual models.

From the sample estimates of the mean and variances, the t

test parameter can be written as

ts ¼ ð RMSEMME� RMSEMEMj j= sDÞ;

where sD = SD/Hn, and SD is the standard deviation of

differences in RMSE between MME and individual mod-

els. The average RMSE and its sample standard deviation

are calculated from the daily differences of 122 (n) days of

forecast during monsoon periods (1 June–30 September

2011). The null hypothesis is that there is no underlying

difference in quality between the two forecasts, and the

alternative hypothesis is that one of the forecasts is better

than the other for the user application considered. The

significance level (p value) of the difference between the

two estimated values is evaluated. If the p value is very

small, the data support the alternative hypothesis. If the

p value is large, the data support the null hypothesis. The

hypothesis H0 is rejected with (1 - a) 100 % confidence if

|ts| [ t (1 - a/2), (n-1). That is RMSEMME and

RMSEMEM differ with a significance level more than (1-

a) 100 % when the above condition is satisfied. The sig-

nificance level is calculated using the paired t test.

The percentage of skill improvement by the MME

forecast in terms of RMSE with respect to reference fore-

casts is given by

SKILLð%Þ ¼ ðRMSEREF � RMSEMMEÞ
RMSEREF

� 100

where RMSEMME is the RMSE of the MME forecast, and

RMSEREF represents the RMSE of the reference, i.e.,

ECMF or ENSM forecasts.

4.1 Spatial distribution of error

In this section, the error statistics and spatial distribution

pattern of mean error (ME), mean absolute error (MAE)

and RMSE of rainfall in mm/day for day 3 forecast have

been discussed. Excellent reviews of forecast verification

scores and methods have been carried out by Fuller (Fuller

2004) and Wilks (1995). Bias is the difference between the

model forecast and its observation, MAE uses the mean

absolute value of the bias, and RMSE is the mean of square

root of the sum of the squared bias. The MAE of rainfall

for MME and member models, namely ECMF, UKMO,

JMA, GFS and ENSM, for day 3 forecast during monsoon

Fig. 1 Topography of India; shading indicates areas of terrain

elevation greater than 500 m above mean sea level; and the regions

of study is shown in outline: NW, northwest India; CE, Central India;

EI, eastern India; NE, northeast India; WC, west coast of India and

SP, south peninsula India
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Fig. 2 Spatial distribution of season’s (1 June–30 September 2011) mean absolute error (MAE) in mm day-1 of ECMF, UKMO, JMA, GFS,

ENSM and MME for day 3 forecast
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2011 is shown in Fig. 2. At a first glance, the ENSM and

MME seem to have less MAE as compared to all the four

member models in the day 3 forecast. The GFS model

produces larger MAE in all the regions over India as

compared to member models and MME forecast. ECMF

has smaller MAE among the four member models. All the

models produce almost the similar error pattern of larger

error over west coast of India in more realistic way. The

west coast of India, which is on the windward side of the

Western Ghats, interacts with the lower troposphere moist

winds of the Arabian Sea to produce heavy rainfall

amounts during the summer monsoon season (Rao 1976).

The MAE is relatively high over the west coast of India

region as compared to other regions of India in all the

member models and MME forecast. The NWP model skills

are very low for forecasting heavy rainfall amount. Hence,

the individual NWP model skill for heavy rainfall amounts

has to be improved further to reap any benefit from the

MME technique. MME is able to improve upon the indi-

vidual models for light and moderate rainfall. The MME

and the four member models have smaller MAE over NW

and SP India. The magnitude of MAE for MME forecast is

less as compared to ENSM and the four member models in

all the regions of India.

The values of MAE are increased in day 3 forecast as

compared to day 1 and day 2 forecasts (figure not shown)

in all the models. Day 3 forecast also produce almost the

similar error pattern of day 1 forecast with larger error over

west coast of India, NE India and East India and smaller

error over NW and SP India, but the magnitude of MAE is

little larger as compared to day 1 forecast. The MAE biases

of member models continue to remain higher than MME in

all the days of forecasts with changing magnitudes. In

general, MME provides less MAE than the entire member

models in all the regions of India.

The spatial pattern of seasonal mean error (bias: fore-

cast - analysis) for the entire 2011 monsoon season for

day 3 forecast is shown in Fig. 3. The mean errors of

ECMWF, UKMO and JMA model show that the rainfall

along the west coast of India is significantly underesti-

mated (by 6–10 mm) in the forecasts. Except ECMWF, all

the models overestimate rainfall (positive bias) in day 3

forecast over the northeastern regions except a small por-

tion where model gives negative bias. The magnitude of

mean error in the MME forecast is less as compared to

member models over all the regions of study. Most of the

member models (UKMO, JMA and GFS) show under

estimation (negative bias) of rainfall over East India, parts

of Central India, west coast of India and southern penin-

sular India in the forecast. The spatial distribution of ME

plot clearly depicts the regions of mean biases in the MME

and member model forecasts over India. The MME

products show the least biases compared to member

models and ENSM in all the forecast days.

RMSE of the member model and MME forecast in

comparison with the observations are given in Fig. 4 for

day 3 forecast. For ECMWF, UKMO and JMA, the RMSE

ranges between 20 and 25 mm along the west coast in the

forecast. The magnitude of RMSE over parts of northeast

India and Central India is in the order of 15–20 mm for all

the models. GFS has higher RMSE values among member

models in all the regions over India. The higher RMSE

values are seen over the west coast of India, monsoon

trough region. RMSE for MME is smaller than member

models and ENSM. MME again has less RMSE as com-

pared to respective member models in day 3 forecast. The

magnitude of RMSE values is of the order 10–15 mm for

MME over most parts of the country. Broadly, similar

pattern of RMSE is observed for ENSM in all the days of

forecast. In general, MME have smaller RMSE compared

to ENSM and member models in the short-range timescale

during the monsoon periods.

4.2 Anomaly correlation coefficient (ACC)

Anomaly correlation coefficient (ACC) of the observation

and forecasts are computed from their respective seasonal

mean during 2011 monsoon for day 3 (Fig. 5) forecast. The

ACC lies between 0.3 and 0.5 over a large part of Central

and East India in all the models. The magnitude of ACC

decreases with the forecast lead time, and by day 5, ACC

values over most parts of India are between 0.2 and 0.4,

except in pockets near the east coast and south peninsular

India where the ACC values are below 0.2. The magnitude

of ACC is higher for MME forecast as compared to ENSM

and ECMF, UKMO, JMA and GFS over most of the

country. For a sample size of 122 (monsoon days), the

ACC is statistically significant at the 99 % confidence level

for ACC values exceeding 0.239. Inter-comparison reveals

that MME has relatively higher ACC than ensemble mean

and member models in all day 1 to day 5 forecasts. MME,

ENSM and member models show higher values of ACC

along the monsoon trough region and smaller values over

NW and SP India in all the 5 days forecasts. The magni-

tude of ACC decreases with the forecast lead time and by

day 3 ACC values over most of India lies between 0.3 and

0.5, except MME and ENSM forecast. MME has higher

skill than ENSM and member models in day 3 also. It has

been observed that the value of ACC for ECMF, UKMO,

JMA and GFS is very low in day 5 (Figure not shown), and

may not be having any forecast value. It concludes that for

monsoon rainfall forecasts, the current state-of-the-art

global models have some skill till day 3, which is enhanced

by the MME technique.
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Fig. 3 Spatial distribution of season’s (1 June–30 September 2011) mean error (ME) in mm day-1 of ECMF, UKMO, JMA, GFS, ENSM and

MME for day 3 forecast
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Fig. 4 Spatial distribution of season’s (1 June–30 September 2011) root mean square error (RMSE) in mm day-1 of ECMF, UKMO, JMA, GFS,

ENSM and MME for day 3 forecast
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Fig. 5 Spatial distribution of season’s (1 June–30 September 2011) anomaly correlation coefficient (ACC) of ECMF, UKMO, JMA, GFS,

ENSM and MME for day 3 forecast
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4.3 Skill score and statistical significance

The skill of the model is dependent on both the timescale

over which the forecasts are being examined and the spatial

coverage of the rain itself, i.e., it is easier to predict with

reasonable accuracy the probability of rainfall over a large

area than a small one, and when the rainfall is widespread

rather than localized. The MAE is one of the common

measures of forecast accuracy. A box-and-whiskers plot of

MAE (mm/day) for day 3 forecast of ECMF, UKMO,

JMA, GFS, ENSM and MME over different homogeneous

regions of India is shown in Fig. 6. The box-and-whisker

plot is a very widely used graphical tool introduced by

Tukey (1977). It is a simple plot of five quintiles: the

minimum, the lower quartile, the median, the upper

quartile and the maximum. Using these five numbers, the

box plot essentially presents a quick sketch of the distri-

bution of the underlying data. Box-and-whiskers plots

show the range of data falling between the 25th and 75th

percentiles, mean (dot circle), median (horizontal line

inside the box) and the whiskers showing the complete

range of the data, i.e., lowest and highest values in the data.

The mean, median and the range of MAE values are

smaller for MME as compared to ENSM and other member

models. MME forecast also reduces the error variance

significantly in all the regions of study, i.e., CE, EI, NE,

NW, WC and SP. The mean, median and error range of

MAE for GFS day 3 forecast are larger as compared to

other models over almost all the regions of India. The high

mean MAE is noticed over NE and WC India, and it is in
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Fig. 6 Box-and-whiskers plots of MAE (mm/day) for day 3 forecast

of ECMF, UKMO, JMA, GFS, ENSM and MME over different

homogeneous region of India during 1 June–30 September 2011. The

boxes show the median, 25th and 75th percentiles, and the red dot

inside the box represents the mean, while the whiskers showing the

lowest and highest values
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the order of 10–15 mm/day, while it is less over SP India in

all the member models and MME forecast. In general,

MME provides less mean, median and error range in all the

regions of India.

The daily mean RMSE of day 1 to day 5 forecasts of

member models and MME products for different homo-

geneous regions of India, i.e., NW India, Central India,

East India, NE India, west cost of India and southern

peninsula India during monsoon 2011 are shown in Fig. 7.

For Central India, the RMSE is in the order of 10–15 mm/

day among member models. ENSM and MME have lower

RMSE. RMSE for UKMO is lesser than GFS. Also RMSE

is more in models where the rainfall amounts is more. The

higher value of RMSE (more than 20 mm/day) is observed

over NE India and the west coast of India. ENSM and

MME have lesser RMSE compared to member models over

NE and west coast of India. The magnitude of RMSE errors

vary from 2 mm/day over East India to 10–15 mm/day

over northeast and west coast of India. In all the regions,

the day 1 to day 5 forecasts of MME have less RMSE

compared to member models and ENSM.

The performance of both competing forecast model on a

given day is related to the synoptic conditions on that day.

So, the hypothesis test should treat the forecast data as

paired. On days where the weather is dominated by high

pressure, both forecast models are likely to correctly

forecast large areas of no precipitation, but on stormy days

both forecasts are likely to exhibit generally higher than

normal error. Pairing of the data reduces the variance and

results in a more powerful hypothesis test. A paired t test is

carried out for differences in RMSE between MME and

member models, namely ECMF, UKMO, JMA, GFS and

ENSM (Table 2), over different homogeneous regions of

India during monsoon periods (1 June–30 September

2011). The average differences in RMSE (DIFF) and its

sample standard deviations (SD) are calculated from the

daily differences of 122 days for the day 3 forecast. The

differences in RMSE between MME and member models

are significantly greater than zero, as indicated by the p

value in Table 2. It was found from the significant test on

difference in RMSE that the improvement of MME fore-

cast over member models and the ensemble mean forecast

is statistically significant at 99 % confidence level mostly

over all the homogeneous regions of India in the forecasts.

As shown in Fig. 8, the mean RMSE of MME was lower

than both the best individual model (ECMF) and the
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Fig. 7 Mean root mean square error (RMSE) of day 1 to day 5 forecasts of ECMF, UKMO, JMA, GFS, ENSM and MME over different

homogeneous region of India during 1 June–30 September 2011
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ENSM in all day 1 to day 5 forecasts. The skill score

ranges from 0 to 100 with value of zero indicating no skill

improvement and a value of 100 is for perfect skill. The

MME forecast shows improvement in RMSE in the range

of 15–20 % as compared to the best individual model

(ECMF; Fig. 8a), while the improvement in RMSE is in

the range of 5–10 % as compared to ENSM (Fig. 8b) over

most of the regions of India in all day 1 to day 5 forecasts.

The equal weight ensemble average (ENSM) always

improves the RMSE, but the improvement is more signif-

icant for weighted ensemble average, i.e., MME forecast.

The RMSE skill improvement of MME over west coast of

India is low as 10 % and over CE and EI regions are high

(15–20 %) compared to the best model. The inter-com-

parison of RMSE skill improvement reveals that MME

have significant skill improvement in RMSE over different

homogeneous regions of India by taking the strength of

each constituent model and has the potential for operational

applications.

The CC between trends in the forecast and observation

is a measure of the phase relationship between them. The

mean values of daily spatial CC of observed rainfall and

day 1 to day 5 forecasts of MME, ENSM and member

models over different homogeneous regions of India during

summer monsoon 2011 are shown in Fig. 9. It is seen from

the Fig. 9 that the mean spatial CC over CE, NW, WC and

SP regions is higher compared to EI and NE regions for all

models, but MME have higher scores of spatial CC

compared to ENSM and member models. GFS has very

low spatial CC over all the regions of study. MME and all

the member models have lower spatial CC in day 4 and day

Table 2 Two-sided p values of

the significance of differences in

RMSE between MME and

individual models, namely

ECMF, UKMO, JMA, GFS and

ENSM, for day 3 forecast over

different homogeneous regions

of India during summer

monsoon (1 June–30 September

2011) season

Model T test Central India East India NE India NW India SP India WC India

ECMF DIFF 2 3.24 2.39 2.13 1.57 3.21

SD 7.35 5.42 5.82 4.31 3.52 6.39

t (121) 2.99 6.58 4.52 5.42 4.9 5.52

p value 0.0034 \0.00001 0.000014 \0.00001 \0.00001 \0.00001

UKMO DIFF 1.97 3.31 1.2 3.26 0.39 0.81

SD 3.5 5.7 4.64 4.21 1.83 4.6

t (121) 6.19 6.39 2.83 8.54 2.32 0.93

p value \0.0000 \0.00001 0.0054 \0.00001 0.0220 0.0552

JMA DIFF 0.84 2.09 1.02 2.29 0.71 2.47

SD 3.03 4.19 3.85 4.25 2.8 5.17

t (121) 3.07 5.5 2.91 5.92 2.79 5.25

p value 0.00264 \0.00001 0.0043 \0.00001 0.0061 \0.00001

GFS DIFF 8.77 7.1 9.56 4.39 1.76 3.5

SD 10 8.25 8.72 7.93 2.73 7.88

t (121) 9.64 9.48 12.06 6.09 7.09 4.88

p value \0.00001 \0.00001 \0.00001 \0.00001 \0.00001 \0.00001

ENSM DIFF 1.09 1.7 1.2 1.02 0.27 1.64

SD 2.63 3.63 3.33 2.62 1.37 3.81

t (121) 4.54 5.15 3.96 4.3 2.15 4.72

p value 0.000013 \0.00001 0.00013 0.000035 0.0335 \0.00001
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Fig. 8 a Improvement of MME forecast in terms of RMSE (in %)

with respect to ECMF; b improvement of MME forecast w.r.t ENSM

over different homogeneous region of India during monsoon 2011
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5 as compared to day 1 to day 3 forecasts over CE, EI and

NW India. ENSM shows spatial CC similar to the best

individual model occasionally over some regions of India

(Fig. 9). The lower spatial CC for ENSM as compared to

the best individual model is due to the straight average

approach of assigning an equal weight of 1.0 to each

individual model in the ENSM, which may include several

poor models. The average of these poor models degrades

the overall results. But, the spatial CC for all day 1 to day 5

forecasts of MME (weighted ensemble) is always higher

than the ENSM and the best individual model over almost

all the homogeneous regions of India during summer

monsoon 2011.

4.4 Threshold statistics

All the above results give some general idea of the quality

of rainfall forecasts in terms of error statistics. The statis-

tical parameters based on the frequency of occurrences in

various classes are more suitable for determining the skill

of a model in predicting precipitation. Therefore, it is rel-

evant to examine the skill of rainfall forecasts in terms of

rainfall amounts in different thresholds. Standard statistical

parameters such as threat score (TS) also called the critical

success index, (CSI, e.g., Schaefer, 1990) and probability

of detection (POD) or hit rate (HR) are computed for the

comparisons in different categories of rainfall amounts. TS

is the ratio of the number of correct model prediction of an

event to the number of all such events in both observed and

predicted data. HR is the ratio of the number of correctly

forecast points above a threshold to that of the number of

forecast points above the corresponding threshold.

The HR and TS skill scores are obtained from the data

covering the daily values for the entire 2011 monsoon

season of 122 days. HR for rainfall threshold of 0.1, 2.5, 5,

10, 15, 20, 25, 30, 35 and 65 mm/day for day 1 to day 5

forecasts of MME and member models over all India

during monsoon 2011 is shown in Fig. 10. It is observed

that the HR is more than 60 % for class marks below

10 mm/day for day 1, day 2 and day 3 forecast, while it is

further below for day 3 and day 5 forecast for all the

models. Also, it is shown that skill is a strong function of

threshold as well as forecast lead time (day 1 to day 5),

with HR decreasing from about 80–90 % for rain/no rain
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([0.1 mm/day) to about 20 or 30 % for rain amounts above

30 mm/day. For HR, the ENSM and MME products are

mostly seen to perform better than the member models. For

all days, HR from MME and ENSM are superior to the

member models in all thresholds range. MME shows

slightly higher values of HR skill than ENSM and other

member models for all days and for all thresholds over all

India regions. The number of data point (n) over Indian

land area is 4,485 (x axis 69 and y axis 65), and the stan-

dard deviation of HR for MME and member models is in

the range from 0.174 to 0.226 for different threshold ran-

ges. The statistical significance test for difference in HR

(Fig. 10) is carried out using student’s t test over all India

and found that this difference in HR between MME and

member models, at all threshold range is statistically sig-

nificant at 95 % confidence level.

Since the formula for HR contains reference to misses

and not to false alarms, the hit rate is sensitive only to

missed events rather than false alarms. This means that one

can always improve the hit rate by forecasting the event

more often, which usually results in higher false alarms

and, especially for rare events, is likely to result in an over

forecasting bias. However, the TS is typically lower for

rare events than for more common events for a particular

hit rate. For accuracy, correct negatives have been removed

from consideration, i.e., TS is only concerned with fore-

casts that count. It does not distinguish the source of

forecast error and just depends on climatological frequency

of events (poorer scores for rarer events) since some hits

can occur purely due to random chance. The higher value

of a threat score indicates better prediction, with a theo-

retical limit of 1.0 for a perfect model. TS skill score

(Fig. 11) starts close to 0.65 for rainfall threshold of

0.1 mm/day and then decreases to 0.35 near 10 mm mark.

TS skill gradually decreases with increase in threshold.

Also, with increase in length of forecast period (day 1 to

day 5) for each threshold rainfall category, TS skill score

falls gradually. TS for all member models looks similar for

all forecast length and thresholds. However, in general, TS

of MME is slightly higher than ENSM and other member
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Fig. 10 Hit rate (HR) for rainfall threshold of 0.1, 2.5, 5, 10, 15, 20,

25, 30, 35 and 65 for day 1, day 3 and day 5 forecasts of ECMF,

UKMO, JMA, NCEP, ENSM and MME forecasts during monsoon

2011
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Fig. 12 Spatial distribution of threat score (TS) for rainfall threshold of 15 mm/day for day 3 forecast of ECMF, UKMO, JMA, GFS, ENSM and

MME forecasts during monsoon 2011
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models for all thresholds even with increase in forecast

lengths. A multi-model product for rainfall in terms of TS

skill concludes that the use of multi-model has some ben-

efits compared to using single independent models for

rainfall forecasts. The number of data point (n) over Indian

land area is 4,485 (x axis 69 and y axis 65), and the stan-

dard deviation of differences in TS between MME and

member models is in the range from 0.134 to 0.186 for

different threshold ranges. The statistical significance test

for TS (Fig. 11) is carried out using paired student’s t test

over all India and found that this difference in TS between

MME and member models at all threshold range is statis-

tically significant at 95 % confidence level.

The spatial distribution of TS for rainfall threshold of

15 mm/day for day 3 forecast of ECMF, UKMO, JMA,

GFS, ENSM and MME forecast is given in Fig. 12. The

spatial pattern of TS skill score for all member models

looks similar in all days of forecasts. The TS skill score is

more than 0.4 over a large part of Central and East India in

all the member models except GFS, but the same for MME

is slightly higher in day 1 forecast (Fig not shown). The

magnitude of TS value for MME forecast is slightly higher

in all the regions over India as compared to ENSM and

member models. The TS skill score distribution pattern of

day 3 forecast looks almost similar to day 1 forecast with

larger TS skill score value over west coast of India, NE

India and East India and smaller over NW and SP India.

The magnitude of TS skill score is smaller in day 3 forecast

as compared to day 1 forecast in all the models. In general,

the TS skill score of MME remains relatively higher than

ENSM and other member models in all the regions of

study.

5 Summary and concluding remarks

This study assesses the performance of MME and four

NWP models (ECMWF, GFS, UKMO and JMA) to pro-

vide rainfall forecasts over Indian region in spatial and

temporal scales during summer monsoon season of 2011.

The verification of rainfall is done in the spatial scale of

100 km, in a regional spatial scale and also country as a

whole in terms of skill scores, such as mean error, root

mean square error, correlation efficient and categorical

statistics such as HR and TS. The inter-comparison of

rainfall prediction skill of MME forecast against the con-

stituent models reveals that MME forecast is able to pro-

vide more realistic spatial distribution of rainfall over the

Indian monsoon region by taking the strength of each

constituent model. The spatial pattern of RMSE and ACC

clearly indicates that MME forecast is superior to the

forecast of constituent models. RMSE is found to be lowest

in MME forecasts both in magnitude and in the area

coverage. This indicates that fluctuations of day-to-day

errors are relatively less in case of MME forecast.

The domain-averaged categorical skill scores for dif-

ferent rainfall thresholds clearly demonstrate that the MME

algorithm improves slightly above the ENSM and member

models in all the day 1 to day 5 forecasts. The method is

found to be very useful in forecasting spatial distribution of

rainfall over Indian monsoon region. MME forecasting

provides better information for practical forecasting in

terms of making a consensus forecast and the model

uncertainties. For all forecast periods, the MME is more

skillful than the individual models according to most sta-

tistical measures. The results are statistically significant at

95 % confidence level. The method with three season

training data has shown sufficiently promising results for

operational applications. The rainfall forecast skill of MME

improves by taking the strength of each constituent model

and has the potential for operational applications. It

remains to be observed what further improvement in MME

prediction skill is possible from the construction of the

downscaled MME and use of monthly weights for con-

stituent models on the basis of the longer training periods.
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